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The interest in supply chain networks and their analysis as complex systems is rapidly growing. The physical

approach to the topic draws on the concept of heterogenous interacting agents. The interaction among agents

is considered as a repeated process of orders and production. The dynamics of production in the supply chain

network which we observe is nonlinear due to the random failures in processes of orders and production. We

introduce an agent-based model of a supply chain network which represents in more detail the real economic

environment in which firms operate. We focus on the influence of local processes on the global economic

behavior of the system and study how the proposed modifications change the general properties of the

model. We observe collective bankruptcies of firms, which lead to self-emerging network structures. Our

results give insight into the dynamics of default processes in supply chain networks, which have important

implications both for risk managers and policy makers. Based on the simulations we show that agent-based

modeling is a powerful tool for optimization of supply chain networks.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The recent crisis of the world’s financial markets has clearly
shown that the structure of connections among interacting market
participants plays a crucial role in the valuation of default risk.
Uncertainty in the economic environment in which companies are
operating has a significant impact on the financial condition—even
of highly profitable and well-known companies. Before the bank-
ruptcy filing of Chrysler in April 2009 and General Motors in June
2009, analysts claimed that there was more than 95% probability
that one of the three biggest automakers in the US (GM, Chrysler,
and Ford) would go bankrupt in the next 5 years. They estimated
that a default of one of the Big Three could trigger extreme losses in
the $1.2 trillion market for collateralized debt obligations (CDOs),
since 80% of them included credit-swaps on GM or Ford (projected
by Standard & Poor’s and UniCredit in 2008). The impact of default
of one of these car manufacturers on their supply chain could be
even more devastating. The implications of the insolvency can
propagate through different interaction channels, as each firm is part
of a complex supply chain network, composed of parts suppliers
(like Visteon, Lear, TRW), car manufacturers and car dealers (like
Autonation, United Technologies, Lithia) (Schellhorn and Cossin,
2004). In order to understand the means by which defaults
propagate in the complex structures of modern supply chain
networks many techniques have been used, including linear and
ll rights reserved.
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nonlinear programming, stochastic processes modeling, and tradi-
tional discrete-event programming. The major shortcomings of
these methods are that they either look at the supply chain network
from the static perspective or simulate the dynamics as a random
process. In reality however each of the companies has its own
decision making units and uses them to gain competitive advantage.
In this article we will consider the supply chain network as a system
of agents (suppliers, manufacturers, retailers) connected through
production relationships in the form of orders and production flows.
We will use agent-based modeling (ABM) in order to analyze how
local defaults of supply chain participants propagate through the
dynamic supply chain network and form avalanches of bankruptcy.

This article is organized as follows. In Section 2 we give an
overview of the literature. Section 3 describes the features of the
model. In Section 4 we present the results. In Section 5 we discuss
our findings and the managerial implications. We draw the
conclusions and recommend further research ideas in Section 6.
2. Literature overview

2.1. Supply chain networks

As a result of the fast developing technology and growing
complexity of today’s business, logistical systems are becoming
densely interconnected. The complicated structure of supply
chains forms a network consisting of multiple parts. The Council
of Supply Chain Management Professionals (CSCMP) defines a
supply chain network as a network of interconnected elements of
companies in multi-stage supply chain networks. International
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manufacturing plants, distribution centers, points-of-sale, as well
as raw materials, relationships among product families, and other
factors. Following Melo et al. (2009) supply chain network design
and optimization problems can be divided into four groups, based
on the following features:
(1)
Pl
Jo
number of stages (single, multiple);

(2)
 number of commodities (single, multiple);

(3)
 number of periods (single, multiple);

(4)
 economic environment (deterministic, stochastic).
All of these factors influence the complexity of problems studied in
supply chain management (SCM). For instance, the complexity of
production dynamics in a supply chain network increases rapidly
with the number of agents, stages in the network, connections
between suppliers and producers, and the number of uncertain
parameters, such as customers’ demand or quality and frequency of
deliveries. In this article we will focus on the multi-stage supply
chain network with single commodity and multi-period observa-
tions. Examples of similar problem setups can be found in
Ambrosino and Scutell�a (2005) or Troncoso and Garrido (2005),
where the authors study intra-layer flows in the deterministic
environment. The proposed distribution network design includes
facility location, warehousing, transportation, and inventory deci-
sions. The major weakness of this line of research is that many
crucial parameters of these models are set to be deterministic. In the
real world however, managers need to make decisions, taking into
account many sources of operational, market, business or political
risk (for an overview see Bouchaud and Potters, 2000). These risks
are associated with the stochasticity in customer demand, prices,
exchange rates, frequency and quality of deliveries and others.
Uncertainty in network dynamics plays a critical role in the design
and operation of supply chain networks.

There are relatively few papers dealing with the uncertainties in
distribution problems (Cheung and Powell, 1996) or demand
planning (Van Landeghem and Vanmaele, 2002; Yu and Li, 2000).
Santoso et al. (2005) propose a stochastic programming methodol-
ogy for large-scale supply chain network design problems, including
uncertainty. They use the sample average approximation (SAA)
scheme, with an accelerated Benders decomposition algorithm for
efficient solving of a potentially infinite number of scenarios. The
configuration of the network is one of the crucial factors, which
enables the efficient operation of the supply chain network.
Goetschalckx et al. (2002) present an overview of algorithms for
the design of global logistics systems and propose an efficient
decomposition algorithm for multi-period production/distribution
networks. Almeder et al. (2009) observe that combining complex
simulation models and abstract optimization models allows the
modeling and solving of more realistic problems, which include
dynamics and uncertainty. Chopra et al. (2007) show that bundling
two sources of risk (i.e. disruption and delays of supply) can lead to
overutilization of the cheaper and less reliable supplier and
underutilization of the most reliable supplier. They propose
decoupling the two sources of risk. The mitigation strategy to
hedge against the increased risk from disruption is to use the
reliable supplier. The mitigation strategy in case of increased
recurrent risk is to choose the less reliable, but cheaper supplier.

In order to investigate the dynamics of the supply chain
network in an uncertain environment, we will apply the ABM
technique described in the next subsection.
2.2. Agent-based modeling and bankruptcies

ABM is a powerful computational technique, which is very
useful in gaining insights about decision making in large
ease cite this article as: Mizgier, K.J., et al., Modeling defaults of
urnal of Production Economics (2010), doi:10.1016/j.ijpe.2010.09.
interconnected systems. ABM has attracted a great deal of
attention in recent years and has already found many applications
in supporting business decisions, for developing optimized
systems for organizations, improving manufacturing and opera-
tions and managing supply chain networks (North and Macal,
2007). The idea originally comes from complex adaptive systems.
The main question behind the application of this technique
(Surana et al., 2005) is: How does the collective behavior of a
system arise from interactions among autonomous agents?
Supply chain networks belong to a large class of complex
economic systems, in which ABM has proven capable of delivering
new knowledge, developing new business policies, and improving
processes of decision-making (Macal, 2003; Macal et al., 2003).
The complex systems approach, although well established in
many science disciplines, such as physics, engineering, computer
and social science has not been given much attention in
operations and supply chain management (Pathak et al., 2007a;
Amaral and Uzzi, 2007). Below we present some publications
devoted to this field of research and its applications to supply
chain problems. Swaminathan et al. (1998) in cooperation with
IBM developed a multi-agent supply chain simulation and
reengineering tool for developing customized applications. Chat-
field et al. (2007) combined the agent simulation with a process-
oriented approach for supply chain simulation modeling and
presented an open information standard to assist supply chain
modeling, analysis, and decision support (Chatfield et al., 2009).
Another framework was proposed by Julka et al. (2002a,b) who
analyzed business policies in terms of different situations arising
in the supply chain, using the example of a refinery supply chain.
Akanle and Zhang (2008) proposed a methodology for manufac-
turing organizations to optimize supply chain configurations to
cope with customer demand over a future period. Anosike and
Zhang (2009) presented an agent-based approach for optimized
utilization of resources under demand uncertainty, whereas Fox
et al. (2000) provided a prototype of an agent-oriented software
architecture for supply chain management. Their framework is an
optimization software package capable of solving constraint-
based problems and supports decisions under stochastic inven-
tory perturbations. Sawaya (2006) presented a complex adaptive
systems approach to analyze the benefits of sharing point-of-sale
data in supply chain networks. He also addressed the issue of
validation and verification methods for agent-based models with
empirical data.

The multi-layer supply chain network is a dynamic system
in which local interactions between suppliers and producers
unfold with stochastic shortages. These local instabilities, if
accumulated, can amplify and give rise to nonlinear processes
leading to avalanches of bankruptcy. One of the first papers
dealing with this approach to modeling supply chains is by
Bak et al. (1993), who study the connections among firms related
by production activity. The triggering events in their model
are stochastic changes of demand at the customer stage of a
supply chain network. The occurrence of avalanches on a supply
chain network represented by the lattice structure was also
studied by Gatti et al. (2005). Aleksiejuk and Holyst (2001)
proposed an agent-based model of collective bank bankruptcies,
where the properties of the simulated avalanches are in a
good agreement with the percolation theory. In the related
paper Aleksiejuk et al. (2002) observe the scaling behavior of
collective bankruptcies, which are common for self-organizing
complex systems. The most common strategy of risk diversifica-
tion is the expansion of the portfolio of suppliers, known as the
multi-source strategy (Kleindorfer and Saad, 2005). Battiston et al.
(2007) have examined the influence of the network density on
the amplification of systemic risk in trade-credit networks. They
have shown that a trade-off emerges between the local risk
companies in multi-stage supply chain networks. International
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Fig. 1. The structure of the supply chain network.

1 According to Einstein’s famous quote ‘‘everything should be made as simple

as possible, but not simpler.’’
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diversification and the global systemic risk. Wagner et al. (2009)
studied the positive supplier default dependencies using the
copula approach. They indicate that default dependencies are the
important factor in risk mitigation strategies and should be
considered in constructing supplier portfolios. Another phenom-
enon which might lead to shortages in deliveries and production
and in extreme cases to bankruptcies is the bullwhip effect (Lee
et al., 2004). This effect was reproduced using the ABM approach,
for example by Ahn and Lee (2004), who focused on the efficiency
of supply chain networks and the minimization of bullwhip
effects via information sharing between agents. Nagatani and
Helbing (2004) showed that forecasting of future inventory levels
can stabilize the linear supply chain and hedge against the
bullwhip effect. In another model originally developed for
transportation and traffic dynamics Helbing (2003) proposes a
framework in which instabilities of supply chains may lead to
business cycles. Helbing et al. (2004a,b) show that although nodes
of the supply chain network behave in an overdamped way, the
system itself displays damped oscillations. They use equations of
material flows to model supply chain networks. The bullwhip
effect in their model can be explained as a convective instability
phenomenon based on a resonance effect. The authors point out
that the network theory makes a useful contribution to planning
and to the design of stable, robust and adaptive supply chain
networks.

Our objective is to find out, how sources of uncertainty
observed in practice affect the performance of the supply chain
network. We focus on the emergence of global patterns of the
network dynamics, resulting from local dependencies. To achieve
this objective we build an ABM framework of a supply chain
network along with the visualization tool, which allows us to
monitor online the dynamics of the system. This enables us to
understand the dependencies between suppliers and producers
both on local and on global scales. We show that accumulation of
the uncorrelated production disruptions leads to cascades of
bankruptcies. They are the result of the dynamically changing
buyer–supplier relationships, which form a complex supply chain
network. By introducing the dynamically changing interconnect-
edness of the network we show that even the companies with the
highest working capital are exposed to the risk of bankruptcy,
which is much higher than in the static version of the model. The
results have implications for improved risk hedging and opti-
mized decision making for managers of large-scale supply chain
networks.
Please cite this article as: Mizgier, K.J., et al., Modeling defaults of
Journal of Production Economics (2010), doi:10.1016/j.ijpe.2010.09.0
3. Model

The model is based on the framework proposed by Weisbuch
and Battiston (2007) which is a simple agent-based supply chain
network model to analyze the geographical aspects of a supply
chain network. One of the basic assumptions and the limitation of
their model is the static structure of the supply chain network.
Every producer has three suppliers and three customers. The
production dynamics resembles the reaction–diffusion systems
studied in chemical physics. The ‘reaction’ part of the process is
the growth of the total capital coupled with failures in deliveries
and bankruptcies, whereas the ‘diffusion’ part of the process is the
propagation of orders and production across the network. The
result of this multiplicative stochastic process is the occurrence of
meta-stable regions of higher and lower production activity.
Additionally their model reproduces some common stylistic facts
about production economics, such as:
�

com
22
scale-free distributions of wealth and production;

�
 regional organization of wealth and production;

�
 avalanches of shortage and resulting bankruptcies.
These results confirm that the framework is robust and open for
further investigations. We propose a more general framework and
extend the original approach in several dimensions. All basic
assumptions remain the same as in the original model. In our model
we make the framework more realistic by adding features, which
convey the complex character of a supply chain network in the real
economic environment, but we try to keep it as simple as possible.1

We will discuss the following enhancements of this model:
(1)
 Price dispersion.

(2)
 Evolution of supply chain topology.

(3)
 Network reconfiguration.

(4)
 Production dynamics.

(5)
 Costs of production.

(6)
 Bankruptcies and recovery.
Following the framework introduced by Weisbuch and Battiston
(2007) our network consists of N nodes organized in S stages (Fig. 1).
panies in multi-stage supply chain networks. International
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We assume the network has S¼5 stages and N¼150 nodes.
Nodes represent production facilities which are connected by
undirected links. Links represent information flow in one direc-
tion (from consumers to suppliers) and the material flow in the
opposite direction. No reverse activities and closed-loops are
allowed. The stages of the network are numbered in the direction
of the information flow, i.e. from the output stage s¼0 (retail
sector) to the input stage s¼4 (suppliers providing raw materials).
We assume that final goods are fully absorbed by the consumers
and that primary producers have unlimited access to raw
materials.

3.1. Price dispersion

Price dispersion (or the violation of the law of one price) is the
phenomenon often observed in the markets. It captures the fact
that prices of homogenous products may vary from one seller to
another—a common fact, used by price comparison services in the
Internet. A study of price dispersion in the automobile industry
can be found in Delgado and Waterson (2003). Examples for many
other industry sectors and the theoretical analysis can be found in
Baye et al. (2006). To include this phenomenon in our model, at
the beginning of the simulation we assign sales price to all nodes
from the log-normal distribution

f ðx,m,sÞ ¼ 1

x
ffiffiffiffiffiffi
2p
p sexp

�ln2
ðx=mÞ

2s2

 !
ð1Þ

for x40, where m is the expected value, and s is the standard
deviation of the logarithm of x. The log-normal distribution is
widespread in financial mathematics, for instance for simulations
of stock prices. It is convenient to model price dispersion using
log-normal distribution, since values generated from this dis-
tribution are always positive. Price dispersion will allow us to
introduce a mechanism of the dynamic growth of the supply
chain network (linking algorithm).
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3.2. Evolution of supply chain topology

The first element of stochasticity is the variable number of
incoming/outgoing connections, reflecting the continuous search
for suppliers which offer more favorable prices (Wagner and
Friedl, 2007). It has been accomplished by introducing the linking
algorithm. The algorithm assumes that the main objectives of
firms are profit maximization, cost reduction, and hedging against
risk. Since we are in a dynamic regime, it does not automatically
imply that the system is going to end up in the optimal state. The
three objectives mentioned above refer only to the way how we
construct the linking algorithm. These objectives are not used to
formulate the multi-criteria optimization problem, which is
frequently done in the equilibrium analysis. The choice of the
supplier must include the sales price-variable that differentiates
suppliers in the market and contributes to the overall profit of the
company. The linking algorithm is constructed as follows. In each
time step:
0.4

0.3
�
0.2

0.1

0
0 2 4 6 8 10 12 14

P
Jo
starting from the output stage s¼0:
(1) choose randomly node i from stage s;
(2) choose randomly three nodes jk, kAð1,2,3Þ from stage s+1;
(3) check, which node jk has the lowest sales price (jk

min);
(4) connect node i with node jk

min, if the sales price of node jk
min

is lower than the sales price of node i;
leas
urn
k
�
 in
go to stage s+1 and repeat steps (1)–(4);

�

Fig. 2. Probability function of link reconfiguration for two values of parameter a.
the linking process finishes when the connections between the
last two stages are established.
e cite this article as: Mizgier, K.J., et al., Modeling defaults of
al of Production Economics (2010), doi:10.1016/j.ijpe.2010.09.
3.3. Network reconfiguration
The network reconfiguration process imitates the agent’s multi-
sourcing strategy to hedge against risk on one side, but on the other
side it also reflects the constant search for suppliers, who offer the
best prices in the market. If firm i has ki suppliers, then if one of
them cannot deliver the ordered goods, the risk of taking a profit loss
would be proportional to 1/ki. To limit the density of the network
and keep the number of connections at the predefined, realistic level
we used a method of network reconfiguration. Production facilities
are allowed to change the supplier if a new supplier with a lower
sales price was found. Additionally, if the firm has more suppliers
(higher in-degree kin) the probability of switching to the new
supplier increases. Firms with few suppliers face a higher risk of
supply and production shortage in the periods following a switch to
the new supplier. To factor in this assumption in our model we have
chosen a tgh function as probability function of reconfiguration
depicted in Fig. 2.

Preconf ¼ tghðkin=aÞ, ð2Þ

where a40 is a parameter, and kinZ0.
In simulations we used function (2) with parameter a¼5,

which gives the probability value Preconf � 0:95 when kin¼12.

3.4. Production dynamics

The production dynamics is an enhancement of the framework
proposed by Weisbuch and Battiston (2007) with adjustments
required by the variable input and output connections and the
stochasticity of prices. Working capital is in our model the
variable which describes the state of each node in the network.
We have N nodes in the network, which implies that if we were
able to solve the N differential equation, we could describe the
state of the whole system at every point in time. The situation is
complicated by the fact that the companies are in a dynamic
process of interaction. The topology of the network is evolving
and some random failures of production take place. This is why
we choose the numerical approach to see how these nonlinear
phenomena influence the performance of the supply chain
network. At the beginning of each time step we run the linking
algorithm. Next, starting from the output stage, orders to the next
stages are placed. When the order flow reaches the input stage,
production starts. We assume linear production of homogenous
goods, which means that the production function is linear to the
firm’s working capital A. The orders from the output stage (s¼0)
are only limited by production capacity. All basic assumptions are
companies in multi-stage supply chain networks. International
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the same as in Weisbuch and Battiston’s (2007) model, which we
first tested to obtain the same results and later extended to
include our enhancements. Under these assumptions retailers
place their orders Y according to equation:

Y0,iðtÞ ¼ qA0,iðtÞ, ð3Þ

where q is the technological proportionality coefficient, which relates
the working capital A0,i(t) of firm i to the quantity of products Y0,i(t) it
is able to produce. The orders are then distributed proportionally to
all suppliers actually connected to node (0, i), i.e. in the amount of
ð1=ki

inðtÞÞY0,iðtÞ. In all other stages s firms place their orders to stage
s+1 based on the orders coming from stage s�1, following equation:

Ys,iðtÞ ¼min qAs,iðtÞ,
X
jAn

Ys�1,jðtÞ

kj
inðtÞ

0
@

1
A, ð4Þ

where n is the actual set of customers of the firm (s,i) from stage
s�1. Eq. (4) reflects the assumption that if the incoming orders
exceed the production capacity, the total production of the firm is
limited by its working capital (multiplied by q). This procedure
ends up at the input stage. The providers of raw materials now
start the production flow. The delivered production is given by

Yd
s,iðtÞ ¼

X
iuAnu

Yd
sþ1,iuðtÞ

Ys,iðtÞP
jAnYs�1,j

 !
eðtÞ, ð5Þ

where eðtÞ is the stochastic coefficient, which with probability P

leads to the shortage in the firm’s production. Formally, eðtÞ ¼ 0
with probability P and eðtÞ ¼ 1 with probability 1�P. Thus, the
delivered production of firm (s,i) depends on the production
received upstream from suppliers in neighborhood nu from stage
s+1 and is distributed proportionally downstream, according to
the orders placed by the customers in the neighborhood n (Fig. 3).

The next step is the update of profits and losses. The main
variable, which describes the state of each node in the network is
its working capital As,i. The evolution of this variable is described
by equation

As,iðtþ1Þ ¼ As,iðtÞþPs,i, ð6Þ

where Ps,i is the profit in time t. All profits are calculated using
equation

Ps,i ¼ ps,iðtÞY
d
s,i�cs,iðtÞY

d
s,i�lAs,i, ð7Þ
Fig. 3. Example of the operating environment of the firm (s,i). The actual suppliers

and customers belong to the corresponding neighborhood nu and n (highlighted

with squares).

Please cite this article as: Mizgier, K.J., et al., Modeling defaults of
Journal of Production Economics (2010), doi:10.1016/j.ijpe.2010.09.0
where ps,i(t) is the sales price at time t, l is the exogenously given
interest rate constant, which expresses the cost of capital, and
cs,i(t) is the cost of production of a unit of production at time t

cs,iðtÞ ¼

P
iuAnupsþ1,iuðtÞY

d
sþ1,iuðtÞP

iuAnuY
d
sþ1,iu

 !
, ð8Þ

where nu is the neighborhood of node i in stage s+1. Margin of firm
(s,i) is variable and depends on the sales price of all suppliers
which are actually connected

ms,iðtÞ ¼ ps,iðtÞ�cs,iðtÞ: ð9Þ

Margins of firms in the input stage are given as a constant
parameter minp.

3.5. Costs of production

We also introduced the costs of production which are changing
over time as a result of advances in the technology of production
or changes in the labor market. We used the assumption that after
every five time steps firms are changing their costs of production.
The costs of production consist now of two parts. The first term
cs,i(t) includes the deterministic costs consequent to the sales
price offered by the suppliers. The second part is a stochastically
changing term q(t), which will be updated after the predefined
number of time steps. The total cost of production cs,iðtÞ can be
written as follows:

cs,iðtÞ ¼ cs,iðtÞþqðtÞ, ð10Þ

where cs,i(t) is given by Eq. (8). We assume that the change of the
logarithm of q is a random variable with a normal distribution:

qðtþ1Þ ¼ qðtÞexpðZÞ, ð11Þ

where Z is a random variable, with mean value m2 ¼�0:1 and
standard deviation s2 ¼ 0:1. This set of parameters causes that
negative values are more probable than positive values, that is,
firms are more frequently lowering than raising their costs of
production (for instance, thanks to investments in technology of
production). Now we need to rewrite Eq. (7), in order to include
the dynamically changing costs of production

Ps,i ¼ ps,iðtÞY
d
s,i�cs,iðtÞY

d
s,i�lAs,i: ð12Þ

3.6. Bankruptcies and recovery

In this article we will consider the firm as bankrupt when it
cannot meet its short-term commitments (i.e. it has insufficient
cash flows to continue its operations). Since we do not include
inventories and credit in our model, the financial default occurs
when the working capital A of the company hits the threshold
level. This level is assumed to be a fraction of the average working
capital of all firms in the supply chain network Adefault ¼

1
100/AS.

It follows the assumption that bankruptcy processes evolve with
the state of economy. It implies that there are no fixed bankruptcy
thresholds. After a number of time steps t the defaulted firms are
replaced with new ones with the working capital equal to a
fraction of the firms’ average working capital Arecovery ¼

1
10/AS.
4. Results

4.1. Influence of delivery failures on the growth of the total working

capital of the supply chain

We used C++programming language to build an ABM environ-
ment for simulations. The first characteristic of the system, which
companies in multi-stage supply chain networks. International
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we focused on was the influence of the probability of delivery
failures on the total working capital of the supply chain. The
growth of the working capital aggregated over all production
facilities in a supply chain network Atotal is exponential with the
value of the growth constant strongly dependent on the prob-
ability of delivery failure. For the sake of simplicity we analyzed
this dependency by simulating production in the supply chain.
We consider the chain of production facilities with one facility in
each of the S stages. The average growth rate of the working
capital of firm k at time t is given by equation

/mS¼
AkðtÞ

Akð0Þ

� �1=t

, ð13Þ

where Ak(0) is the working capital of the firm k at time 0. The
average growth rate can be calculated from the geometric average

/mS¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞn1 � ð1Þn2t

q
, ð14Þ

where n1 is the number of periods with full profits (margin m40)
and n2 is the number of periods without profits (margin m ¼ 0
due to delivery failures) after t iterations (t¼n1+n2). Assuming
that the delivery failure occurs with probability P, we can rewrite
n1 and n2 as the expected value of respective occurrences in
time t:

n1 ¼ ð1�PÞt, ð15Þ

n2 ¼ Pt: ð16Þ

Because failures are independent and can occur in every stage, n1

and n2 take the following form:

n1 ¼ ð1�PÞSt, ð17Þ

n2 ¼ ð1�ð1�PÞSÞt, ð18Þ

where S is the number of stages in the supply chain. After
substituting n1 and n2 into (14) we obtain

/mS¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞð1�PÞSt

� ð1Þð1�ð1�PÞSÞtt

q
¼ ðmÞð1�PÞS : ð19Þ

This expression is true for the average growth rate of the working
capital of all firms in the chain, since all nodes are independently
exposed to delivery failure with probability P and if one facility
fails to deliver, the margin m is equal to zero for the whole supply
chain. The analytic solution for the supply chain network with the
dynamical reconfiguration of links is subject to future research.
The results of simulations and the theoretical function’s fit are
shown in Fig. 4.

4.2. Performance of the network

A supply chain network with dynamically changing links
between nodes is a nonstationary system. The performance of the
system is characterized by the turbulences during the first period
of the network’s growth. This process is illustrated in Fig. 5, which
shows the performance as a function of time. The performance of
the system is given by

MðtÞ ¼
AtotalðtÞ

Yd
totalðtÞ

� 100%, ð20Þ

where Atotal(t) is the aggregated production capacity of the whole
system and Yd

total(t) is the total delivered production at time t. M(t)
is the measure of the percentage of the working capital utili-
zed in production (for the static network of production
M(t)¼const¼100%). The mean value of the system’s performance
/MS¼ 97:88% corresponds to the value of the average growth
rate of working capital /mS¼ 1:009788. The observed fluctua-
tions are caused by the stochastic process of the network
Please cite this article as: Mizgier, K.J., et al., Modeling defaults of
Journal of Production Economics (2010), doi:10.1016/j.ijpe.2010.09.
reconfiguration. Our result indicates that the reconfiguration
process leads to periods of higher and lower production
performance, which have a negative effect on the average growth
of the total working capital of the supply chain network.
4.3. Evolution of the network topology and aggregated working

capital

The model was first calibrated with the values of parameters
which reproduce the stylistic facts described in Weisbuch and
Battiston (2007). In case of no delivery failures we ensured an
exponentially growing working capital of the supply chain
network (growth regime). The values of coefficients describing
the moments of price distributions were taken from empirical
research, or followed by logical reasoning (e.g. price dispersion
coefficients). We have chosen a relatively low value of l in order
to track the evolution of the system for longer periods of time.
Assigning q¼1 implies constant returns to scale in terms of
production technology. The parameter values are summarized in
Table 1.

After having confirmed the results with the original model we
started to add our extensions stepwise and we observed how the
behavior of the system changed. Online monitoring of the
network dynamics was accomplished by writing an application
for visualization using GLUT—The OpenGL Utility Toolkit libraries.
companies in multi-stage supply chain networks. International
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Table 1
Parameter values.

Parameter Value

Margin level of the raw materials suppliers minp¼0.01

Technological proportionality constant q¼1.0

Interest rate constant l¼ 0:002

Mean value of price dispersion m¼ 1:0

Standard deviation of price dispersion s¼ 0:01

Probability of delivery failure P¼0.05

Fig. 6. State of the network after the test period.

Fig. 7. State of the network after reaching the (meta)stable configuration.

Fig. 8. Total working capital and total delivered production.

Fig. 9. Number of active firms for two different values of l.
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The number of time steps can be days or weeks, or any other scale
which is representative for one cycle of order and production. At
the beginning, we iterate 200 times to establish connections
between the nodes. The state of the network after the test period
is shown in Fig. 6. Afterwards we switch on the production. The
firms with the best profit/cost ratio are growing and adding new
suppliers, whereas the working capital of the firms whose sales
price is higher than the mean price of the given stage is slowly
decaying and results in defaults of firms. After sufficient time a
large portion of firms goes out of the market and the meta-stable
network configuration is formed. The state of the supply chain
network in this phase is shown in Fig. 7. Colors represent different
sales prices of end products in every stage (blue–green–red ¼
low–medium–high). The bigger the node, the more working
capital a firm has. One of the interesting observations is the self-
emergence of the price levels between subsequent stages, which
corresponds to what we see in reality. Most of the companies with
the lowest sales price in a given stage survive. Nevertheless, due
to the limited search area (the linking algorithm searches three
randomly selected companies in the nearest neighborhood) it
may happen that a company with a medium or even high sales
price remains, and quickly generates profits, attributed to the
higher than average margins.

The time series of the total working capital and total delivered
production are depicted in Fig. 8. The system is characterized by
significant turbulences at the beginning of the simulation. By
applying equation

t¼
logðAk,iðtÞÞ�logðAk,ið0ÞÞ

logð1þmÞ
¼

log
Ak,iðtÞ

Ak,ið0Þ

logð1þmÞ
, ð21Þ

we calculate that after approximately 2350 time steps most of the
firms with an unprofitable set of suppliers or customers have
defaulted and at the same time the total production of the system
starts to grow exponentially with the growth constant
Please cite this article as: Mizgier, K.J., et al., Modeling defaults of
Journal of Production Economics (2010), doi:10.1016/j.ijpe.2010.09.0
proportional to the mean margin of the firms which survived in
the network. This process is depicted in Fig. 9.

A next logical step was the introduction of inventories, since
inventories are generally considered a means of reducing
uncertainty (Chopra and Meindl, 2010). As expected, our analysis
shows that fluctuations in the volume of products delivered are
reduced, which eliminates the effect of random failures to a
certain degree. Since buffering of inventories is well documented
(Chikán, 2009) and these new insights are marginal, the level of
inventories and fluctuations is out of the scope of this work.
Therefore we do not report it in this article.
companies in multi-stage supply chain networks. International
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Fig. 10. Evolution of the total working capital of the supply chain network after

choice of one of the two adaptive strategies.
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4.4. Evolution of the aggregated working capital in the presence of

stochastic changes in costs of production

In order to study the behavior of the system in the presence of
stochastic changes in costs of production, we considered two
adaptive strategies of the firms. After each 5 time steps the
stochastic term q(t) of Eq. (10) is updated and one of the following
actions can be undertaken:
(1)
Pl
Jo
Strategy 1: firms are lowering their sales price by the factor
equal to the change of the factor q.
(2)
 Strategy 2: firms are lowering their sales price by the factor
equal to half of the change of the factor q.
In Fig. 10 we see the influence of each of the strategies on the
evolution of the total working capital. Both time series are
characterized by the periodical changes of growth. It is the result
of the stochastic changes of production costs and sales price,
which are not correlated in time and space and are independent of
the size of the firms. We observe that strategy 1 is less effective
than strategy 2.
5. Contributions and implications

5.1. Contributions to the literature

The main contribution of this research is to include two very
important factors, which constitute the complexity of modern
supply chain networks into one model: the dynamics of the
complex network topology and the stochasticity of the economic
variables. In our study we extended the agent-based model of the
supply chain network proposed by Weisbuch and Battiston (2007)
by adding features which reflect some of the uncertainties that
are present in the real market environment. We proposed an
agent-based framework, which is capable of simulating the
production dynamics and leads to the self-emergence of supply
chain network structures. Thanks to the graphic engine we
observed the evolution of the network and we gained more
insight into mechanisms which can lead to avalanches of bank-
ruptcies. As outlined by Choi et al. (2001), modeling of global
supply chain networks needs a sophisticated approach, which
more accurately reflects its true underlying complexity and
dynamism. We added some assumptions which bring the model
closer to reality, but we still keep the number of parameters as
low as possible. The advantage of our approach is that it is based
on the model of dynamics developed to study certain phenomena
ease cite this article as: Mizgier, K.J., et al., Modeling defaults of
urnal of Production Economics (2010), doi:10.1016/j.ijpe.2010.09.
in physics. In other words, there exist ready-to-use analytical
solutions for the set of governing equations, which can be solved
in order to describe the behavior of the system at any given point
in time. Our model is aligned with the research of Pathak et al.
(2007a), who highlighted the importance of the integration of
complexity theory into the existing supply chain management
research and presented their research in more detail in Pathak
et al. (2007b). Based on the OR and the complex systems
literature, we proposed a framework, which can be used to
simulate large-scale supply chain networks and can be easily
adapted to any particular industry.

In contrast to the static topology studied by Bak et al. (1993),
Weisbuch and Battiston (2007), Battiston et al. (2007), and Gatti
et al. (2005) our approach includes the dynamic reconfiguration of
the network based on the simple algorithm of agent behavior. We
note that at a certain point of the system’s evolution, the meta-
stable structures of the network emerge. As a result of the
dynamics of prices and costs of production, we observed both the
emergence of highly profitable supply chains with high market
shares and avalanches of bankruptcies. This process displays the
self-organization effects of the supply chain network and
contributes to the understanding of complex network design
problems. ABM is a promising alternative to the commonly used
mathematical programming optimization techniques (Ambrosino
and Scutell�a, 2005) due to its ability to implement sophisticated
behavioral rules of agents on the local level and its ability to relate
them to the global outcomes.
5.2. Managerial implications

Our observations and quantitative results lead to the following
conclusions which are important for managerial practice. The first
implication is that during the process of assessment of the
company’s risk exposure, managers should keep their focus on the
global structure of the supply chain network instead of being
restricted to the own portfolio of suppliers and customers. Based
on the analytical solution derived in Section 4.1 we conclude that
the average growth of the working capital of a supply chain
depends on the number of stages and decays quickly as the
probability of shortage in production grows. Since this probability
does not depend on time and location in the supply chain,
managers should be aware of the risk coming from the whole
structure of the supply chain network.

Second, as a result of the dynamics of the topology of the
supply chain network, strong competition in prices and fast
changing technology, even the most reliable firms should be
monitored and constantly re-evaluated in terms of their produc-
tion capacity and risks associated with their structure of
connections. In simulations we observed that if a company is
not able to quickly adapt to the changing environment, it might be
exposed to the risk of collective defaults of suppliers, which can
give rise to disruptions and delays in production. After a period of
time, even the biggest and most reliable suppliers may default as
they cannot meet the demand they face from the consumer’s
stage. In other words, managers should be aware of the inertia
risk arising from the connections among suppliers in the next tiers
of a supply chain network. This observation adds to the under-
standing of the risk of collective bankruptcies of suppliers, as
highlighted by Wagner et al. (2009).

Third and most important, managers should find ways to cut
costs and reinvest the free cash flows in new technology of
production, which will allow further cost reductions and the
development of new innovative and cheaper products. Especially
in times of recession, investments made in R&D will prepare
companies better for the economic rebound. At the same time, we
companies in multi-stage supply chain networks. International
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found that if decision makers focus on bringing down the sales
price in order to gain competitive advantage, it turns out to be a
strategy which leads to a lower performance of the global supply
chain network.
6. Conclusions

In this article we studied the collective dynamics of a supply
chain network using the ABM approach. We introduced stochastic
elements to our model and observed how local events affect the
global performance of the system. We observed that although
network reconfiguration leads to turbulent performance of the
system, after a period of time, meta-stable structures are formed,
resulting from the high profitability of selected portfolios of
suppliers and consumers. The development of the graphic engine
allowed us to monitor the behavior of the supply chain network
online. We think that visualization is a powerful tool for analysis
of complex supply chain networks as it gives insight into
underlying network dynamics.

The limitation of our model is the simplified agent’s behavior.
Future research should model the choice of the most optimal
supplier portfolios more realistically (Wagner and Friedl, 2007),
whereas the collection of real-world data would allow us to
empirically test our model. As computational power rises, it is
possible to implement complex behavioral rules, based on the risk
aversion of agents and the commitment to establish long-term
relationships based on the quality of deliveries. This could be
modeled, for instance, by introducing correlations between the
production reliability and the cost of production. Another short-
coming of our model is the lack of competition among companies,
in terms of decision making, based on the anticipation or reaction
to the decisions of other companies. Behavioral game theory
applied to the complex networks is a promising approach. It is out
of the scope of this article, but would be the next step in adding
more realism to the model. The micro-correlations in production
failures among large sets of suppliers may lead to significant
supply chain disruptions occurring with low probability. Quanti-
fying this process is also an open field for investigations. Another
research path is to study the emerging meta-stable network
structures which we observed in simulations. It is interesting to
see which configurations of the network prove the most robust
when production processes are severely disrupted.
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