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a b s t r a c t

We study the scaling behavior of quotation activities for various currency pairs in the
foreign exchange market. The components’ centrality is estimated from multiple time
series and visualized as a currency pair network. The power-law relationship between a
mean of quotation activity and its standard deviation for each currency pair is found. The
scaling exponent α and the ratio between common and specific fluctuations η increase
with the length of the observation time window 1t . The result means that although for
1t = 1 (min), the market dynamics are governed by specific processes, and at a longer
time scale 1t > 100 (min) the common information flow becomes more important. We
point out that quotation activities are not independently Poissonian for 1t = 1 (min),
and temporally or mutually correlated activities of quotations can happen even at this
time scale. A stochastic model for the foreign exchange market based on a bipartite graph
representation is proposed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The complexity of economic and social systems has attracted a lot of attention from physicists recently [1–8]. Collective
behavior among interacting agents shows different properties from particles governed by Newtonian laws. However,
intriguing universal properties could be found and mathematical models should be considered. This movement, called
socio/econo-physics, is expected to bridge a gap between physics and our societies [9].
Financial markets are complex systems which consist of many interacting agents. The progress of understanding infor-

mation flows among agents sheds light on the states of financial markets, i.e. the states of market participants. The recent
accumulation of a massive amount of data about financial markets due to both the development and spread of information
and communication technology allows us to quantify the states of financial markets in detail [10,11]. In fact, the correla-
tion structure of high-frequency financial time series is exhaustively and quantitatively investigated [12,13]; however, the
further the dimension of multiple time series increases, the more difficult it becomes to compute cross-correlations and to
recognize them.
On the other hand, several studies in both socio/econo-physics and engineering were focused on the structure of

corresponding complex networks, their internal dynamics and the flows of the constituents on them [14–17]. Menezes
and Barabási studied the scaling behavior of constituents’ flows on several constructions such as river networks (water
flows), transportation systems (car flows), and computer networks (information flows) [18,19]. As a result, scaling properties
are found for flow fluctuations in such systems. This relationship is known as a fluctuation scaling or Taylor’s power law
[20,21]. Taylor’s power law is known as the scaling relationship between the mean of populations and their standard
deviation in ecological systems. The ubiquity of Taylor’s power-law slopes between 1/2 and 1 suggests that there exists
an underlying fundamental mechanism affecting the transportation of constituents.
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Eisler andKertész found that there is such a power-law relationship between amean of traded volumes of stocks and their
standard deviation on the New York Stock Exchange, and that the power-law exponent takes nontrivial values between 1/2
and 1 [22]. Jian et al. investigated trade volumes of stocks in the Chinese stock market [23]. They also found a non-universal
scaling exponent of different fluctuations from 1/2 and 1. We think that their results provide a method to quantify the
states of agents withmultiple time series in the financial markets. This method is also useful to quantify the states of market
participants from the viewpoint of information flows in financial markets.
The aim of this paper is to investigate information flows in the foreign exchange market (FX market) by means of

quotation activities, measured as arrival rates of quotations on brokerage systems. We investigate the statistical properties
of quotation activities in the FX market and quantify the total states of the market participants through fluctuation scaling.
The organization of this paper is as follows. Section 2 is a short overview of high-frequency financial data taken for our

studies from the FX market. Section 3 is a brief summary of the power-law relationship (Taylor scaling) between a mean
of constituents’ flow on a graph and their standard deviations. In Section 4 an empirical analysis of quotation activities is
performed. In Section 5 the dependence of scaling exponents on a time window length is examined, and the relationship
between the states of market participants in the FX market and the scaling exponents is discussed. Section 6 is devoted to
concluding remarks, and addresses possible future studies.

2. Foreign exchange market

The foreign exchange market is the largest financial market in the world. It is a network consisting of brokers, bank
traders, and investors. Recent developments in Information and Communication Technology have led to the spread of
electronic trading systems all over theworld. As a result,manymarket participants candirectly access the FXmarket by using
computer terminals. Moreover, trading activities are recorded in the computer servers, which performmatching operations
among quotations from the market participants, and one can analyze a large amount of data about market activities with
high resolution.
In the analysis we use Time & Sales (T&S) data provided by CQG Inc. [24]. The data contain time stamps, rates, and

indicators to show ask or bid quotations with a 1 min resolution. The database includes 45 currency pairs1 consisting of 24
currencies.
Quotation activities for each currency pair are extracted from the database. Since the two-way quotation is adopted in

the FX market, it is enough to count the number of the bid or ask quotations.
Let Xi,1t(t) (i = 1, . . . ,N; t = 0,1t, 21t, . . . , (Q − 1)1t) denote the number of all incoming ask quotations for a

period between t and t+1t for the currency pair i.1t(>0) denotes the timewindow to compute the number of quotations.
Examples of quotation activities for EUR/JPY, USD/JPY and EUR/USD are shown in Fig. 1. We shall treat the FX market as a
complex system consisting of 45 sites iwith an unknown number of internal variables, where every site i is a corresponding
currency pair from our database and its internal activity is given by the number of quotations Xi,1t(t). It is confirmed that
the quotation activities exhibit an intraday pattern related to the rotation of the earth, so that they have a strong regional
dependence due to entering and leaving of market participants. We focus on the short-term behavior of quotation activities
under the assumption of local stationarity. In the context of financial markets, the number of quotations or transactions
is known to represent a proxy variable of the latent number of information arrivals in the system [25], where the term
‘‘information’’ is defined by Bateson as ‘‘a difference which makes a difference’’ [26].

3. Theory

3.1. Fluctuation scaling

It is known [18–20,22,21,27] that for complex systems consisting of many sites i, the mean values of their internal
activities Xi,1t(t)

〈Xi,1t〉 =
1
Q

Q−1∑
j=0

Xi,1t(j1t), (1)

and their standard deviations

σi,1t =

√√√√ 1
Q

Q−1∑
j=0

(
Xi,1t(j1t)− 〈Xi,1t〉

)2
, (2)

1 The database contains AUD/CHF, AUD/JPY, AUD/NZD, AUD/SGD, AUD/USD, CAD/CHF, CAD/JPY, CHF/JPY, EUR/AUD, EUR/CHF, EUR/CZK, EUR/GBP,
EUR/HUF, EUR/JPY, EUR/NOK, EUR/PLN, EUR/SEK, EUR/TRL, EUR/USD, GBP/AUD, GBP/CAD, GBP/CHF, GBP/INR, GBP/JPY, GBP/NZD, GBP/USD, NZD/USD,
USD/BRL, USD/CAD, USD/CHF, USD/DKK, USD/HKD, USD/HUF, USD/INR, USD/JPY, USD/KRW, USD/MXN, USD/NOK, USD/PKR, USD/PLN, USD/SEK, USD/SGD,
USD/THB, USD/TRL, and USD/ZAR. These currency names are described based on ISO 4217.
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Fig. 1. Time series of quotation activities at1t = 1 (min) for EUR/JPY, USD/JPY, and EUR/USD in 2nd July 2007.

can follow a power-law relationship

σi,1t = C〈Xi,1t〉α, (3)

where C is a positive constant, and α (1/2 ≤ α ≤ 1) denotes a scaling exponent. This power-law relationship is referred
to as fluctuation scaling, or Taylors’ law [20,21].
The limiting values α = 1/2 and α = 1 can result from several scenarios (see [21] for a detailed discussion). For

α = 1/2 the first possibility is thermal fluctuations observed in systems described by equilibrium statistical physics, e.g. the
dispersion volume of the total magnetization scaling against the system size as the power 1/2. The second possibility can
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be a Poissonian-like process with very low activity where one can neglect the square of the mean of activity compared
to the mean activity itself. The third case is when the activity for every site i is a sum of the activities of identical and
independent constituents. The case α = 1 can result from the situation when every site i is driven by a universal (common)
random variable and the dynamics of different sites varies only due to time-independent multiplicative constants fi. The
second possible scenario for α = 1 is when the activity of every site i is a sum of the activities of identical and completely
synchronized constituents [28,29]. If 1/2 < α < 1 one can have a mixture of different above scenarios, a nonhomogenous
impact for various nodes, partial correlations between conveyances of constituents in the system, as well as the situation
when α depends on the time window 1t because of Hurst exponents’ heterogeneity [21]. We will show that the last case
seems to be present in the observed FX data.

3.2. Specific fluctuations and common fluctuations

According to Ref. [19]we can separate specific and common fluctuations of complex systems as follows. This can be based
on the assumption that a common fluctuationmay originate from exogenous factors of elements and that specific ones come
from endogenous factors. Of course the common fluctuations are not always originated from a common exogenous factor,
e.g. they can occur due to synchronization of interactions among elements [28,29]. We assume that we can separate the two
contributions by writing

Xi,1t(t) = X
spe
i,1t(t)+ X

com
i,1t (t). (4)

It is proposed that a time-independent fraction Ai of the total quotation is determined by the component’s centrality [30].
We shall write the currency pair centrality Ai as the ratio of the total quotations that have arrived on matching engines for
the currency pair i in the time interval t ∈ [0,Q − 1], and the total quotations over all observed components during the
same time interval

Ai =

Q−1∑
j=0
Xi,1t(j1t)

Q−1∑
j=0

N∑
i=1
Xi,1t(j1t)

. (5)

Therefore, the common fluctuations that contribute to the activity of the currency pair i are expected to be

X comi,1t (t) = Ai
N∑
i=1

Xi,1t(t). (6)

From Eqs. (4) and (6), the specific fluctuations are given by

X spei,1t(t) = Xi,1t(t)−


Q−1∑
j=0
Xi,1t(j1t)

Q−1∑
j=0

N∑
i=1
Xi,1t(j1t)

 N∑
i=1

Xi,1t(t). (7)

Furthermore, bymeans of Eqs. (6) and (7), we can determinewhether the fluctuations observed in a system are synchronous
or asynchronous, so that they may be affected by endogenous or exogenous contributions. From each currency pair, we
calculate the standard deviations of both specific and common fluctuations,

σ
spe
i,1t =

√
〈X spei,1t

2
〉 − 〈X spei,1t〉2, (8)

σ comi,1t =

√
〈X comi,1t

2
〉 − 〈X comi,1t 〉2, (9)

and their ratio

ηi,1t =
σ comi,1t

σ
spe
i,1t

. (10)

From definition 〈X spei,1t〉 = 0. If ηi,1t � 1, the common fluctuations are dominant in the dynamics of the currency pair i.
Otherwise, the specific fluctuations are dominant. Moreover, due to definition (6) the common fluctuations scale as a power
law with the exponent α = 1, when we plot the standard deviation σ comi,1t as the function of the mean 〈Xi,1t〉. The scaling of
the specific fluctuation provides us with a more detailed understanding of the system’s dynamics.

4. Data analysis

For each currency pair, quotation activities are extracted from a T&S database. We calculate a mean of the quotation
activities and their standard deviation for each currency pair following Eqs. (1) and (2). As shown in Fig. 2, a power-law
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a

b

c

Fig. 2. Log–log plots of a mean of quotation activities and their standard deviation for each currency pair at 1t = 1 (min) (a), 1t = 10 (min) (b), and
1t = 120 (min) (c) for a period from 2nd to 6th July 2007. The x-axis represents a mean value, and the y-axis a standard deviation. The straight line is
estimated by using the ordinary least squares. log10 C = 0.29± 0.02 and α = 0.80± 0.02 at1t = 1 (min), log10 C = 0.26± 0.04 and α = 0.85± 0.02
at1t = 10 [min], and log10 C = 0.25± 0.07 and α = 0.88± 0.02 at1t = 120 (min).

relationship between a mean and standard deviation in log–log plots exists. In order to estimate C and α, we used the
least-squares method for log10〈Xi,1t〉 and log10 σi,1t . From a logarithmic form of Eq. (3), the fitting function is set as

log10 σi,1t = α log10〈Xi,1t〉 + log10 C . (11)

Following this procedure, the power-law exponent is estimated as α = 0.80 ± 0.02 at 1t = 1 (min), α = 0.85 ± 0.02 at
1t = 10 (min), and α = 0.88± 0.02 at1t = 120 (min) for a period from the 2nd to 6th July, 2007.
Furthermore, the dependences of the α on 1t are computed for four periods in July 2007 (see Fig. 3). One can see that

the exponent α increases as the function of the time window1t . The mean slope of this increase
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Fig. 3. A semi-log plot of a relation between α and1t for a period from 2nd to 6th (filled square), 9th to 13th (unfilled circle), 16th to 20th (filled circle),
and 23rd to and 27th (unfilled triangle) July 2007. By means of the least-squares method slopes are calculated as γ = 0.034± 0.003 from 2nd to 6th July
2007, γ = 0.035 ± 0.002 from 9th to 13th July 2007, γ = 0.034 ± 0.003 from 16th to 20th July 2007, and γ = 0.043 ± 0.002 from 23rd to 27th July
2007, respectively.

Fig. 4. Temporal variation of the scaling exponents α for every trading day (Q1t = 1440 (min)) at 1t = 1 (min) for periods from 1st June to 31st July
2007.

γ =
∂α

∂(log101t)
(12)

is aboutγ = 0.04 and there is a saturation of this dependence for long timewindows1t > 100 (min). Since the larger values
ofα correspond tomore synchronous behavior, we can conclude that such synchronization effects are visible for longer time
windows1t . As shown in Fig. 4, theα value estimated for each trading day (Q1t = 1440 (min)) varies temporally in a range
from 0.8 to 0.9 at1t = 1 (min). This temporal variation can be related to the temporal dependence of the synchronous and
desynchronous activities of the quotation for each currency pair arriving on brokerage systems on trading days.
Following Eq. (5), we calculated the centrality Ai of each currency pair for Q1t = 1440 (min) and drew the currency pair

network with links corresponding to its centrality as shown in Fig. 5. The pairs USD/CHF, AUD/JPY and CHF/JPY possess the
largest centrality values.
As shown in Fig. 6, the distribution of the ratio ηi,1t between common and specific fluctuations of the currency pair i is

dependent on the time window 1t . As 1t increases, the distribution moves to larger values. This observation means that
for longer time windows 1t the fluctuations are more and more driven by common impacts, which is in agreement with
the data presented in Fig. 3 as well in the Figs. 7 and 10. Table 1 shows the values of ηi,1t for each 1t . We see that for
the following currency pairs with small centrality Ai, the specific fluctuations are dominant: EUR/CZK, GBP/INR, USD/BRL,
USD/HKD, USD/INR, USD/KRW, USD/MXN, USD/PKR, USD/SGD, USD/THB, USD/TRL, and USD/ZAR. The currency pairs in
which common fluctuations are dominant (large centrality nodes) are USD/CHF, AUD/JPY, CAD/CHF, CHF/JPY, EUR/AUD,
EUR/GBP, EUR/JPY, EUR/USD, GBP/AUD, GBP/CAD, GBP/CHF, GBP/JPY, GBP/NZD, GBP/USD, USD/CHF, USD/DKK, USD/HUF,
USD/JPY, USD/PLN, and USD/SEK. Consequently, rare currency pairs tend to be subject to specific fluctuations, while hard
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Fig. 5. Graphical illustration of 45 currency pairs in the foreign exchangemarket. Each node represents a currency, and a link between twonodes represents
currency pairs. The link width corresponds to its centrality at 2nd July 2007.

Table 1
The descending order of ratios of specfic fluctuation to common fluctuation ηi,1t for each currency pair at 1t = 1 (min), 10 (min), and 120 (min),
respectively. For ηi,1t � 1 the common fluctuation is dominant, and for ηi,1t � 1 the specific fluctuation is dominant.

Currency
pair

ηi,1t = σ
com
i,1t /σ

spe
i,1t Centrality Currency

pair
ηi,1t = σ

com
i,1t /σ

spe
i,1t Centrality

1t =
1 (min)

1t =
10 (min)

1t = 120
[min]

1t =
1 (min)

1t =
10 (min)

1t =
120 (min)

GBP/CHF 1.968670 2.932370 4.097840 0.073483 USD/HUF 1.069590 1.723470 2.504850 0.003848
GBP/JPY 1.921390 2.880750 4.616420 0.083473 EUR/SEK 1.056040 1.342030 1.516210 0.018920
CHF/JPY 1.788030 2.927300 4.288900 0.050316 AUD/NZD 1.027500 1.575420 2.618750 0.027027
EUR/AUD 1.687810 2.742090 4.224280 0.045738 EUR/PLN 0.964241 1.490540 1.978740 0.007835
GBP/AUD 1.665740 2.690220 4.100750 0.025256 AUD/USD 0.914931 1.440190 2.241430 0.030047
EUR/JPY 1.567680 2.139110 2.471270 0.058396 EUR/CHF 0.879273 1.522200 2.918620 0.021515
AUD/CHF 1.501580 2.585130 4.080710 0.018153 EUR/HUF 0.854864 1.333680 1.947080 0.005011
GBP/NZD 1.488660 2.432650 4.288810 0.019091 AUD/SGD 0.821126 1.384470 2.263380 0.003037
USD/NOK 1.480580 2.212470 2.749590 0.027128 NZD/USD 0.724408 1.023540 1.238160 0.024964
AUD/JPY 1.449240 1.991590 2.285760 0.048812 USD/CAD 0.690279 1.001620 1.429220 0.027763
EUR/USD 1.431830 2.580360 5.546850 0.037189 USD/HKD 0.618552 0.859312 1.176710 0.003615
USD/SEK 1.391260 1.802250 2.041910 0.028913 USD/SGD 0.600880 0.812786 0.966003 0.005496
GBP/CAD 1.380080 2.044050 2.765770 0.023929 GBP/INR 0.479731 0.699536 0.716067 0.000071
EUR/GBP 1.321160 2.059820 2.965900 0.029086 USD/ZAR 0.479609 0.661205 0.839839 0.005222
CAD/JPY 1.273120 1.956630 2.877350 0.038632 USD/TRL 0.460390 0.642635 0.813392 0.002803
USD/CHF 1.260280 2.016300 2.824350 0.046142 USD/MXN 0.400749 0.456217 0.456219 0.010174
GBP/USD 1.256070 1.873100 2.830940 0.048574 USD/INR 0.370464 0.428502 0.437336 0.000626
USD/DKK 1.218130 1.857580 2.583080 0.016821 USD/BRL 0.341083 0.327208 0.335608 0.002162
CAD/CHF 1.212150 1.947910 2.599770 0.009310 USD/KRW 0.305093 0.302344 0.329875 0.000662
USD/PLN 1.156600 1.843390 2.563440 0.009219 EUR/CZK 0.285527 0.436140 0.632806 0.001291
USD/JPY 1.148990 1.757520 2.369350 0.039418 USD/THB 0.210386 0.361743 0.425551 0.000073
EUR/TRL 1.088990 1.936500 2.926600 0.002623 USD/PKR 0.187039 0.402792 0.713309 0.000050
EUR/NOK 1.071960 1.584290 1.978870 0.018088

currency pairs with the large values of the centrality parameter Ai tend to be affected by common fluctuations. Fig. 7 shows
that indeed the ηi,1t parameter increases with increasing centrality Ai.

5. Discussion

The nontrivial values of α presented in Fig. 3 may imply that the market participants are affected by information both
from different origins relating to microscopic dynamics and from common sources relating to macroscopic dynamics, or
may imply that market participants have strong interactions. In other words the arrival rates of quotations on the brokerage
systems are not independently Poissonian.
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b

c

Fig. 6. Histograms of the contribution of specific and common fluctuations (log ηi,1t ) at1t = 1 (min) (a mean=−0.113, a standard deviation= 0.627)
(a), 1t = 10 (min) (a mean = 0.358, a standard deviation = 0.634)(b), and 1t = 120 (min) (a mean = 0.807, a standard deviation = 0.763) (c) on 2nd
July 2007.

The market participants communicate via electronic brokerage systems and perceive both endogenous and exogenous
information through electronic communication (e-mails, telephones, video-chat systems, and so on). Therefore, it is natural
that they are affected by both specific and common fluctuations and/or have strong interactions with one another. When α
descends toward1/2, the quotations arriving on the brokerage system tend to be random.On the other hand,whenα ascends
toward 1, the arrival tends to be synchronous. Therefore, the values ofα are useful to evaluate the states of information flows
in the whole FX market.
According to Ref. [22], exponents α calculated for systems with strong temporal correlations can become time-scale

dependent. Specifically if Hurst exponents are dependent on the activity 〈Xi,1t〉 for each currency pair i, then the α values
depend on the time window 1t . This behavior has been observed in our case and a quantitative agreement between both
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Fig. 7. Relationship between centrality of the ith currency pair Ai and its ratio of specific fluctuation to common one for each time window 1t for four
periods in July 2007. The x-axis represents the centrality and the y-axis the ratio of end-exo. Unfilled squares represent the values of 46 kinds of currency
pairs for1t = 1 (min), unfilled circles those for1t = 10 (min), and unfilled triangles those for1t = 120 (min).

Fig. 8. A semi-log plot of a relation between standard deviationσi,1t and1t of USD/JPY (unfilled circle), USD/NOK (filled circle), USD/PLN (unfilled triangle),
andUSD/PKR (filled triangle) for a period from2nd to 8th July 2007. TheHurst exponents are calculated asHi = 0.898±0.004 (USD/JPY),Hi = 0.940±0.002
(USD/NOK), Hi = 0.928± 0.004 (USD/PLN), and Hi = 0.618± 0.011 (USD/PKR), respectively.

dependences has been found. In fact the following relation should be valid [21]:

∂2(log σi,1t)
∂(log101t)∂(log10〈Xi,1t〉)

= γ ≈ γ ′ =
∂Hi

∂(log10〈Xi,1t〉)
=

∂2(log10 σi,1t)
∂(log10〈Xi,1t〉)∂(log101t)

, (13)

where γ is defined in Eq. (12) and we used the standard definition of the Hurst exponent:

Hi =
∂(log10 σi,1t)
∂(log101t)

. (14)

The Hurst exponents were calculated from plots similar to those presented at Fig. 8. Then from Fig. 9 we got that γ ′ = 0.034,
which is in good agreement with γ = 0.04 received from Fig. 3.
By plotting, for each currency pair, the standard deviations σ comi,1t and σ

spe
i,1t as a function of the average 〈Xi,1t〉, we can get

more insight into the origin of these fluctuations. As shown in Fig. 10, the common fluctuations scale with αcom = 1 (as is
expected from the definition Eq. (6)). By using Eq. (11), it is found that the specific fluctuation scales with αspe = 0.69±0.03
at1t = 1 (min), αspe = 0.68± 0.03 at1t = 10 (min), and αspe = 0.66± 0.04 at1t = 120 (min).
The exponent αspe of specific fluctuations is thus much smaller than the exponent α of total fluctuations and it is nearly

independent from the length of the time window 1t . It follows that as observed in Fig. 3, the increase of the exponent α
with 1t can result from the growing part of common fluctuations that possess the scaling exponent αcom = 1 and give a
larger contribution to the total fluctuations for longer time windows1t (see Fig. 6 and Table 1).
It is known that the asymptotic probability of finding awalker at the site i in unweighted uncorrelated networks is related

to the node degree ki if thewalkermoves randomlywith the same probability on a network [30]. Forweighted networks, this
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Fig. 9. Scatter diagram between Hurst exponents of each currency pair and its mean value calculated from activities during four periods in July 2007.
The x-axis represents a mean value and the y-axis a Hurst exponent. By means of the least-squares method slopes are calculated as γ ′ = 0.034 ± 0.008
from 2nd to 6th July 2007, γ ′ = 0.035 ± 0.009 from 9th to 13th July 2007, γ ′ = 0.034 ± 0.008, and γ ′ = 0.043 ± 0.007 from 23rd to 27th July 2007,
respectively.

probability is proportional to the node strength si [31,32]. In the FXmarket, the relationship amongmarket participants and
currency pairs based on conveyance of quotations can be described as a bipartite network. If we can accept the assumption
that quotations are randomly created bymarket participants, then the component’s centrality estimated by Eq. (5) is related
to the number of market participants connected to it.
This intuitive understanding of the FX market can be mathematically displayed as follows. Let N and M denote the

number of currency pairs and the number of market participants, respectively. Cjk is a weighted adjacency matrix of a
bipartite graph assumed to be taken as non-negative integer values, i.e. Cjk = 0, 1, 2, . . . , and represents a link from the jth
market participant to the kth currency pair. Then the total strength of outgoing links of the jth market participant is given
by sj =

∑N
k=1 Cjk.

Furthermore, we assume that the jth market participant generates a quotation to the kth currency pair with the same
probability proportional to the ratio Cjk/sj. Then the kth currency pair’s centrality may be approximated as

Ak =
M∑
j=1

Cjk
sj
qj/
( M∑
j=1

qj
)
, (15)

where qj is a probability for the jth market participants to enter a quotation during 1t . Practically, Ak can be estimated by
using Eq. (5) with multiple time series in the observed time period [0, (Q − 1)1t].

6. Conclusions

We found the power-law relationship between means of quotation activities for currency pairs at the FX and their
standard deviation. The scaling exponents α take values in a range from 0.8 to 0.9; they increase with the time window1t
and vary in time depending on observation days. The nontrivial value of α implies that market participants may be affected
by both endogenous and exogenous factors, or that they behave with a strong temporal correlation. The dependence α
can be explained by the heterogeneity of Hurst exponents that increase with the mean activity of a given currency pair.
This dependence also follows from the increasing contribution of common fluctuations for larger 1t and can be related to
synchronous and desynchronous states of information transmission in the FXmarket. The standard deviations of the specific
fluctuations scale with αspe ≈ 0.68 as a function of activity means and this scaling exponent is nearly independent of the
time window 1t . The specific fluctuations dominate the dynamics of rare currency pairs, while the common fluctuations
are essential for hard currency pairs with large mean activity.
It follows from our analysis that for short time scale 1t ≈ 1 (min), the dynamics of the FX market are substantially

driven by the specific processes while for 1t around 2 (h) the common factors start to be important. This observation is
consistent with the results of [27] on the stock market fluctuations. It means that in the stock markets and in the FXmarket,
incoming news shows finite time diffusion on the short time scale. On the other hand, since the coherent response can be
observed, collective decisions occur at a longer time scale.
There are certain similarities as well as differences between our results for FX market quotation activity fluctuations

and observations of the stock market value fluctuations [22,27]. In both cases there is a Taylor-like scaling of fluctuation
amplitudes with nonuniversal characteristic exponents α dependent on the time window 1t . Hurst exponents for both
systems increase with mean activity 〈Xi,1t〉 of a currency pair or of a mean stock value. This dependence is, however, very
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Fig. 10. Log–log plots of amean of the specific fluctuation (unfilled circle) and of that of the common fluctuation (filled circle) and their standard deviation
for each currency pair at1t = 1 (min)(a),1t = 10 (min) (b), and1t = 120 [min] (c) for a period from 2nd to 6th July 2007. The x-axis represents a mean
value, and the y-axis a standard deviation. By using the ordinary least squares, the straight line is estimated as log10 Cspe = 0.26±0.03 andαspe = 0.69±0.03
at1t = 1 [min], log10 Cspe = 0.36±0.08 andαspe = 0.68±0.03 at1t = 10 (min), and log10 Cspe = ±0.60±0.14 andαspe = 0.66±0.04 at1t = 120 (min).
The slope of the dashed line is unity.

clear for the stock market data (in the case of 1 > 300 (min) and it is very noisy for the FX market. The other important
difference is the magnitude of common fluctuations σ comi,1t that, in the case of the FXmarket can be larger than the amplitude
of specific fluctuations σ spei,1t even for short time scales 1t = 1 (min) for very active currency pairs with large centrality
values (e.g. GBP/CHF or GBP/JPY).
As for future work, more careful analysis, including the relationship between auto-correlation and cross-correlation, is

needed. In addition, persistent investigation using exhaustive data for long periods, and mathematical modeling of the FX
market from an information transmission point of view, should be conducted. One candidate for an adequate model is that
of the stochastic processes [18,20] and another is that of agent-based models in the financial markets [8,33,34].
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