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We extend a model of community isolation in the d-dimensional lattice to a case with an imposed imbalance
between the birth rates of competing communities. We provide analytical and numerical evidences that in the
asymmetric two-species model there exists a well-defined value of the asymmetry parameter when the emer-
gence of the isolated �blocked� subgroups is the fastest, i.e., the characteristic time tc is minimal. The critical
value of the parameter depends only on the lattice dimensionality and is independent of the system size. A
similar phenomenon is observed in the multispecies case with a geometric distribution of the birth rates. We
also show that blocked subgroups in the multispecies case are absent or very rare when either there is a strictly
dominant species that outnumbers the others or there is a large diversity of species. The number of blocked
species of different kinds decreases with the dimension of the multispecies system.
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The question of imbalance or asymmetry is long known in
many popular and fundamental phenomena in nonequilib-
rium statistical physics, such as gradient-induced transfer of
particles, heat, or current �1�. In this Brief Report, we extend
previously obtained results �2� by drawing attention to the
issue of imbalance in a model of isolation of species �com-
munities�. As social imbalance has already been of interest to
physicists �3,4�, we shall try to show the impact that different
methods of imbalance introduction have on the number of
isolated species.

Recently, we introduced a simple model of community
isolation �2� whose basic rules can be described in the fol-
lowing way: in each time step, one puts a representative
species �↑ � or �↓ � in a random unoccupied node in a chain of
N nodes. The species can be an individual belonging to a
given community or a person characterized by a certain opin-
ion. The probabilities of choosing either of the possible spe-
cies �community birth rates� are equal to 0.5. If n nodes filled
with identical species �e.g., ↓↓↓� are surrounded by individu-
als belonging to another community �e.g., ↑↓ ↓ ↓↑�, then the
nodes inside the cluster are called blocked, and they no
longer interact with the rest of the system. This model can be
easily extended to a case with multiple different species
m�2, where the type of the species is drawn from the uni-
form distribution �1,m�. The analytical treatment shows that
the number of blocked nodes Z for a specific time of the
simulation t, regardless of the number of different species
introduced in the chain, grows roughly as t3 �2�. It also en-
ables the calculation of the characteristic time tc, i.e., the
time when the first isolated node appears.

In this Brief Report, we investigate the asymmetric case
of the model �2�. Symmetry breaking is introduced as an
external bias and is received by changing birth rates of dif-
ferent species occurring in the system, either by a simple
imbalance in the two-species case or by setting a specific
species probability distribution in the multispecies case. We
shall consider the model of isolation of communities on a
d-dimensional lattice where clusters of nodes sharing the
same species will be isolated when neighbors �using von
Neumann’s sense of neighborhood �5�� of all the nodes in the

cluster are connected with each other or with a different spe-
cies.

First, we consider two species �↑ and ↓� that we put into
d-dimensional hypercubic lattice with a total number of sites
N=Ld. Occurrence probabilities p↑ and p↓ of both species are
nonequal and given by p↑=0.5+� and p↓=0.5−�, where
�� �0,0.5� is the symmetry-breaking parameter. These prob-
abilities are microscopic parameters that describe model evo-
lution. Starting from a lattice of empty nodes, after t time
steps the probabilities that a randomly picked node is occu-
pied with the species �↑ � or �↓ � are Prob�↑ �= p↑t /N and
Prob�↓ �= p↓t /N.

Now, let us consider number of blocked nodes Z↑ and Z↓

of both species at time t. These numbers are well approxi-
mated by numbers of individual blocked nodes, i.e., by num-
bers of blocked clusters of size one of both species. When
the total density of all blocked nodes is small �Z↑+Z↓� t�,
then

Z↑ � Z1
↑ = �L − 2�dProb2d�↓�Prob�↑� , �1�

Z↓ � Z1
↓ = �L − 2�dProb2d�↑�Prob�↓� . �2�

Substituting the values Prob�↑ � and Prob�↓ � and taking into
account the form of p↑ and p↓, the above relations for
L�2 may be expressed as

Z↑,↓ �
t2d+1

N2d �1

4
− �2��1

2
� ��2d−1

, �3�

where Z↑ corresponds to the “−” sign in the second brackets.
The above equations allow us to calculate characteristic
times tc

↑ and tc
↓ when the first representative of either species

emerges. Putting Z↑=1 �analogously for ↓�, we obtain after a
short algebra

tc
↑,↓ = � N2d

�1

4
− �2��1

2
� ��2d−1	

1/�2d+1�

, �4�

where tc
↑ corresponds to the “−” sign in the second brackets.

If we consider more than two species, then we can use
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probability distribution Prob�i�, instead of the previously in-
troduced probabilities Prob�↑ � and Prob�↓ �. It requires
changing microscopic probabilities p↑ and p↓ with the value
of pi. The connection between these two sets of variables is
given by Prob�i�= pit /N, for i=1,2 , . . . �the case pi indepen-
dent of i corresponds to the symmetric problem considered in
�2��. Using the same approximation as is used in the two-
species case, we can obtain

Z�i� � Z1
�i� � N 


k=1,k�i

�

Prob�k�2dProb�i� , �5�

for i=1,2 , . . ., which becomes

Z�i� =
t2d+1

N2d pi�

k=1

�

pk
2d − pi

2d� . �6�

Putting Z�i�=1, one obtains a set of characteristic times for
each species i:

tc
�i� = � N2d

pi�

k=1

�

pk
2d − pi

2d�	
1/�2d+1�

, i = 1,2, . . . . �7�

Here, we are presenting the comparison between the analyti-
cal approach given above and the results obtained from the
numerical simulations performed for topologies of
d-dimensional lattices.

Investigation of Z↓ and Z↑ as functions of the parameter �
for a fixed value of time t reveals some surprising results.
Figure 1�a� shows the dependence of the number of blocked
nodes of each species versus the symmetry-breaking param-
eter � obtained in the numerical simulations compared with
the theoretical expectations given by Eq. �3�. The discrepan-
cies between the simulation results and the theoretical ap-
proach can be justified by the approximations used in obtain-
ing Z↓ and Z↑. Still, one can immediately spot the main
difference between those two quantities: Z↑ is monotonic
while Z↓ first increases, reaches a prominent and well-
defined maximum, and then drops down. This observation is
backed with a simple analysis of Eq. �3�; in fact, the deriva-
tive �Z↑ /��	0 for the whole range �� �0,0.5�, and in the
case of Z↓ there is a maximum value for

�� =
1

2

2d − 1

2d + 1
. �8�

The decrease in Z↑ is rather obvious, as it is the dominant
species—the higher is the number of its individuals that are
introduced in the system, the smaller is the probability of this
species being blocked. On the other hand, as it concerns Z↓,
Eq. �8� suggests that there exists a specific value of � for
which the number of blocked individuals reaches the highest
rate. It follows that this value depends only on the dimen-
sionality of the system �i.e., the number of the nearest neigh-
bors�. This phenomenon is even more pronounced while ex-
amining the characteristic times tc

↑ and tc
↓ versus � presented

in Fig. 1�b�. The first quantity exhibits a constant growth,

and the second one possesses a clear minimum for �=��,
which is consistent with the maximum values for Z↓ ob-
served in Fig. 1�a�.

For the asymmetric multispecies case, we used the
geometric probability distribution pi=qi−1�1−q�, where
i=1,2 , . . .. This very case of probability distribution has been
chosen as an example because it easily yields the analytical
approach. Moreover, it can be transformed directly into con-
tinuous exponential distribution assuming that q=exp�−
�.
First, we shall discuss the issue of the global characteristic
time tc. It can be approximately calculated by assuming that
the total number of blocked species at time t is equal to
Z�t�=
iZ

�i�=1. Thus, the global characteristic time can be
expressed as

tc = � N2d

�1 − q�2d

1 − q2d −
�1 − q�2d+1

1 − q2d+1 	
1/�1+2d�

. �9�

Figure 2 presents the characteristic time versus parameter q
given for different values of d and N. In each case the curve
has a similar shape, exceeding tc=N for both small and large
values of q �horizontal lines in Fig. 2� with a well-defined
minimum in between. Moreover, for a specific value of N,
the curves, regardless of the dimensionality of the system,

FIG. 1. �Color online� �a� Number of blocked nodes Z↑ and Z↓
versus symmetry-breaking parameter � on a chain �open symbols,
simulations performed for t=N /4� and on a square lattice �filled
symbols, simulations performed for t=N /2�; circles �Z↑� and tri-
angles �Z↓� correspond to simulation results and lines are calculated
using Eq. �3�. �b� Logarithmic-linear plots of the characteristic
times tc

�↑� �circles� and tc
�↓� �squares� for d=1 �filled symbols� and

d=2 �open symbols�. Data points are taken from numerical simula-
tions, while solid lines come from Eq. �4�. For d=1 simulations
were performed for N=5�104 nodes, averaged over 105 runs,
while for d=2 it was N=104 nodes, averaged over 103 runs.
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seem to intersect at one point. In fact, a closer analysis
reveals that for q�1, Eq. �9� takes a form of
tc= �N2d /q�1/�2d+1�, which results in the intersection point
qmin=1 /N, shown as vertical lines in Fig. 2. A heuristic ex-
planation of this fact can be also derived in the following
way: as long as the probability of drawing the second species
�i=2� is above 1 /N, there is a statistical chance of it appear-
ing in the system and thus being blocked by the overwhelm-
ing first species �i=1�. As soon as the probability drops be-
low that value, there is only one species and so the blocking
is impossible. On the other hand, when q approaches 1, the
number of different species is relatively high, and all the
probabilities pi are close to p1. After crossing a certain value
qmax, the number of the individuals of the first species is too
low to make blocking on the lattice possible. The obvious

necessary condition preventing this scenario is that
Np1

2d�p2+ p3+ p4+¯�=1, which leads to Np1
2d�1 and even-

tually gives qmax�1−N−1/2d. Finally, Fig. 2 suggests that
there is some specific value of q for which the characteristic
time is the lowest; assuming that q2d�1, one can estimate
this value with

q� =
1

2d + 1
. �10�

We stress that the critical value of q� given by Eq. �10� is
independent of the system size N, which is similar to the
critical value of the �� parameter given by Eq. �8�.

One can also focus directly on the question of character-
istic times tc

�i� of various species. Substituting Eq. �7� with
the geometric distribution, one gets the general formula for
the characteristic time of the ith species being blocked in the
topology of the d-dimensional lattice:

tc
�i� = � N2d�1 − q2d�q1−i

�1 − q�2d+1�1 − q2d�i−1� + q2di��1/�2d+1�

. �11�

The comparison of the characteristic times tc
�i� versus param-

eter q obtained in numerical simulations and the theoretical
expectations given by Eq. �11� is presented in Fig. 3. The
plots for tc

�i� bear close resemblance to those obtained for tc.
Following a similar line of thought as in the case of the
global characteristic time, it is possible to estimate the cru-
cial points of these curves. First of all, Eq. �11� can be ap-
proximated as

tc
�1� �

�N2dq−2d�1/�2d+1�

1 − q
,

tc
�i� �

�N2dq1−i�1/�2d+1�

1 − q
, i = 2,3, . . . , �12�

which is valid for all q� �0,1�. However, in order to esti-
mate q�1 when the above function intersects with tc

�i�=N,

FIG. 2. �Color online� Log-log plot of the global characteristic
times tc versus parameter q of the geometric distribution for
N1=15 625 �empty symbols� and N2=65 536 �filled symbols�. Data
points are taken from numerical simulations: squares are d=1,
circles are d=2, triangles are d=3, and diamonds are d=4; all data
points are averaged over 1000 runs. Solid lines come from Eq. �9�
and the horizontal solid line is drawn for tc=N1, whereas the hori-
zontal dotted one is for tc=N2. The vertical solid line marks
qmin=1 /N1, while the vertical dotted line is drawn for qmin=1 /N2

�see description in text�.

FIG. 3. �Color online� �a� and �b� Log-log plots of characteristic times tc
�i� versus parameter q of the geometric distribution for �a�

d=1 and �b� d=2. Data points are taken from numerical simulations: squares represent species i=1, circles: i=2, upward triangles: i=3,
downward triangles: i=4, diamonds: i=5, and stars: i=6; solid lines come from Eq. �11�. Theoretical curves for i=1 and i=3 in one-
dimensional case, as well as i=1 and i=5 in two-dimensional case overlap. In both cases N=15 625 and the horizontal dotted line is drawn
for tc

�i�=N. Numerical data are averaged over 1000 runs. �c� Log-log plot of the characteristic time tc
�i� calculated from Eqs. �12� for q=qi

�

against species number i. Squares are d=1, circles are d=2, triangles are d=3, and diamonds are d=4; in each case N=15 625. Solid lines
are for visual guidance and the horizontal dotted line is drawn for tc

�i�=N.
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one uses a further approximation, i.e., tc
�i�=N2dq�1−i�/�2d+1�. It

gives a straightforward formula for the intersection point
qmin=N1/�1−i�, which suggests that the intersection point
should be dependent only on the number of nodes in the
lattice, while its dimension d is irrelevant. Figure 3 also
gives clear evidence that the characteristic times for the first
species behave differently from those for i�2. In both cases,
it is the species i=2 which gets blocked first for smaller
values of q. Moreover, in the case of d=1, the results from
tc
�1� cover with tc

�3� and in the case of d=2 with tc
�5�. This last

fact is fully comprehensible after comparing both equations
in Eqs. �12� where, after short algebra, one finds that the
characteristic time for the first and �2d+1�th species are the
same. One can also notice by comparing Eqs. �9� and �11�
that it is, in fact, tc

�2� that plays the dominant role in creating
the shape of the global characteristic time tc and may be used
as its good approximation.

Taking into account Eq. �12�, it is possible to estimate the
maximal species number that gets blocked in the environ-
ment for a fixed value of the system size N. The curves
presented in Figs. 3�a� and 3�b� indicate that for each i there
is a specific value qi

� for which the function tc
�i� takes its

minimum. It follows that as long as tc
�i��qi

��	N, the species
will be blocked, at least for q=qi

�. Closer analysis of Eq. �12�
leads to

q1
� =

2d

4d + 1
,

qi
� =

i − 1

i + 2d
, i = 2,3, . . . , �13�

After substituting Eqs. �12� with the above values of qi
�, one

gets the value of characteristic time in the minimum. A cor-

responding plot for different values of dimension d is shown
in Fig. 3�c�. It immediately gives the idea of the fast restric-
tion of the blocked species number with a system’s dimen-
sion: whereas for d=1 the value of i can be as large as 70, in
the case of d=4, it substantially drops down to 6. Further-
more, Fig. 3�c� underscores the specific role of the first spe-
cies discussed in the previous paragraph.

In conclusion, we have extended the simple model of
community isolation to the case with the symmetry breaking.
Our calculation and numerical simulations show that even a
simple way of introducing the external bias between species
can lead to interesting and nontrivial results. We have found
that in both the two-species case where a parameter � gov-
erns the symmetry breaking and the multispecies case where
the numbers of each entity are given by the geometric distri-
bution, there exists some specific and well-defined value of
the control parameter giving a minimum of the characteristic
time tc. In general the value of this parameter is dependent
only on the dimensionality of the lattice. We have also shown
that the requirement of a nonblocked system in the multispe-
cies case leads to two somehow opposite conditions: either
there has to be a strictly dominant species, outnumbering the
others, or the diversity should be very large. In the end, we
have also given evidence that the number of blocked species
of different kinds decreases with the dimension of the sys-
tem. The presented results can be easily further generalized
to the cases of other topologies �e.g., complex networks� and
other kinds of biases.
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