
The JFreeChart Class Library

Version 0.9.18

Developer Guide

Written by David Gilbert

April 28, 2004

c© 2000-2004, Object Refinery Limited. All rights reserved.

IMPORTANT NOTICE:
If you choose to use this document you do so entirely at your own

risk.

Contents

1 Introduction 13
1.1 What is JFreeChart? . 13
1.2 This Document . 15
1.3 Acknowledgements . 15
1.4 Comments and Suggestions . 15

2 Sample Charts 16
2.1 Introduction . 16
2.2 Pie Charts . 16
2.3 Bar Charts . 18
2.4 Line Chart . 20
2.5 XY Plots . 21
2.6 Time Series Charts . 22
2.7 Histograms . 23
2.8 Area Charts . 24
2.9 Difference Chart . 24
2.10 Step Chart . 26
2.11 Gantt Chart . 27
2.12 Multiple Axis Charts . 28
2.13 Combined and Overlaid Charts 29
2.14 Future Development . 30

3 Downloading and Installing JFreeChart 31
3.1 Introduction . 31
3.2 Download . 31
3.3 Unpacking the Files . 32
3.4 Running the Demonstration Applications 33
3.5 Compiling the Source . 33
3.6 Generating the Javadoc Documentation 33

4 Using JFreeChart 34
4.1 Overview . 34
4.2 Creating Your First Chart . 34

5 Bar Charts 37
5.1 Introduction . 37
5.2 A Bar Chart . 37
5.3 Customising Bar Charts . 42

1

CONTENTS 2

6 Line Charts 44
6.1 Introduction . 44
6.2 A Line Chart Based On A Category Dataset 44

7 Time Series Charts 55
7.1 Introduction . 55
7.2 Time Series Charts . 55

8 Customising Charts 61
8.1 Introduction . 61
8.2 Chart Attributes . 61
8.3 Plot Attributes . 63
8.4 Axis Attributes . 64

9 Dynamic Charts 67
9.1 Overview . 67
9.2 Background . 67
9.3 The Demo Application . 68

10 Tooltips 72
10.1 Overview . 72
10.2 Generating Tool Tips . 72
10.3 Collecting Tool Tips . 73
10.4 Displaying Tool Tips . 73
10.5 Disabling Tool Tips . 74
10.6 Customising Tool Tips . 74

11 Item Labels 75
11.1 Introduction . 75
11.2 Displaying Item Labels . 76
11.3 Item Label Appearance . 78
11.4 Item Label Positioning . 79
11.5 Customising the Item Label Text 80
11.6 Example 1 - Values Above a Threshold 80
11.7 Example 2 - Displaying Percentages 83

12 Using Multiple Axes 88
12.1 Introduction . 88
12.2 An Example . 89
12.3 Hints and Tips . 90

13 Combined Charts 91
13.1 Introduction . 91
13.2 Combined Domain Category Plot 91
13.3 Combined Range Category Plot 92
13.4 Combined Domain XY Plot . 94
13.5 Combined Range XY Plot . 95

CONTENTS 3

14 Datasets and JDBC 97
14.1 Introduction . 97
14.2 About JDBC . 97
14.3 Sample Data . 97
14.4 PostgreSQL . 98
14.5 The JDBC Driver . 100
14.6 The Demo Applications . 100

15 Exporting Charts to Acrobat PDF 102
15.1 Introduction . 102
15.2 What is Acrobat PDF? . 102
15.3 iText . 102
15.4 Graphics2D . 103
15.5 Getting Started . 103
15.6 The Application . 104
15.7 Viewing the PDF File . 108
15.8 Unicode Characters . 108

16 Exporting Charts to SVG Format 112
16.1 Introduction . 112
16.2 Background . 112
16.3 A Sample Application . 112

17 Applets 116
17.1 Introduction . 116
17.2 Issues . 116
17.3 A Sample Applet . 118

18 Servlets 121
18.1 Introduction . 121
18.2 A Simple Servlet . 121
18.3 Deploying the Servlet . 124
18.4 Embedding Charts in HTML Pages 124
18.5 Supporting Files . 128
18.6 Deploying Servlets . 129

19 Miscellaneous 131
19.1 Introduction . 131
19.2 X11 / Headless Java . 131
19.3 Java Server Pages . 131

20 Packages 132
20.1 Overview . 132

21 Package: org.jfree.chart 133
21.1 Overview . 133
21.2 ChartColor . 133
21.3 ChartFactory . 133
21.4 ChartFrame . 136
21.5 ChartMouseEvent . 136
21.6 ChartMouseListener . 137

CONTENTS 4

21.7 ChartPanel . 137
21.8 ChartPanelConstants . 139
21.9 ChartRenderingInfo . 139
21.10ChartUtilities . 140
21.11ClipPath . 142
21.12DrawableLegendItem . 142
21.13Effect3D . 143
21.14JFreeChart . 143
21.15JFreeChartConstants . 146
21.16Legend . 146
21.17LegendItem . 147
21.18LegendItemCollection . 147
21.19LegendItemLayout . 147
21.20MeterLegend . 148
21.21PolarChartPanel . 148
21.22StandardLegend . 148
21.23StandardLegendItemLayout . 149

22 Package: org.jfree.chart.annotations 150
22.1 Overview . 150
22.2 CategoryAnnotation . 150
22.3 CategoryTextAnnotation . 150
22.4 TextAnnotation . 151
22.5 XYAnnotation . 151
22.6 XYDrawableAnnotation . 152
22.7 XYLineAnnotation . 152
22.8 XYPointerAnnotation . 152
22.9 XYTextAnnotation . 153

23 Package: org.jfree.chart.axis 154
23.1 Overview . 154
23.2 Axis . 154
23.3 AxisCollection . 157
23.4 AxisConstants . 157
23.5 AxisLocation . 157
23.6 AxisSpace . 158
23.7 AxisState . 159
23.8 CategoryAnchor . 159
23.9 CategoryAxis . 159
23.10CategoryAxis3D . 163
23.11CategoryLabelPosition . 163
23.12CategoryLabelPositions . 164
23.13CategoryTick . 165
23.14ColorBar . 165
23.15CompassFormat . 165
23.16DateAxis . 166
23.17DateTickMarkPosition . 168
23.18DateTick . 168
23.19DateTickUnit . 168
23.20LogarithmicAxis . 170

CONTENTS 5

23.21MarkerAxisBand . 170
23.22NumberAxis . 170
23.23NumberAxis3D . 173
23.24NumberTick . 173
23.25NumberTickUnit . 173
23.26SegmentedTimeline . 174
23.27SymbolicAxis . 175
23.28SymbolicTickUnit . 175
23.29Tick . 175
23.30TickUnit . 175
23.31TickUnits . 176
23.32Timeline . 176
23.33ValueAxis . 177

24 Package: org.jfree.chart.entity 180
24.1 Introduction . 180
24.2 Background . 180
24.3 CategoryItemEntity . 180
24.4 ChartEntity . 181
24.5 ContourEntity . 182
24.6 EntityCollection . 182
24.7 PieSectionEntity . 183
24.8 StandardEntityCollection . 183
24.9 XYItemEntity . 184

25 Package: org.jfree.chart.event 185
25.1 Introduction . 185
25.2 AxisChangeEvent . 185
25.3 AxisChangeListener . 185
25.4 ChartChangeEvent . 186
25.5 ChartChangeListener . 186
25.6 ChartProgressEvent . 186
25.7 ChartProgressListener . 187
25.8 LegendChangeEvent . 187
25.9 LegendChangeListener . 187
25.10PlotChangeEvent . 187
25.11PlotChangeListener . 188
25.12RendererChangeEvent . 188
25.13RendererChangeListener . 189
25.14TitleChangeEvent . 189
25.15TitleChangeListener . 189

26 Package: org.jfree.chart.imagemap 191
26.1 Overview . 191
26.2 DynamicDriveToolTipTagFragmentGenerator 191
26.3 OverLIBToolTipTagFragmentGenerator 191
26.4 StandardToolTipTagFragmentGenerator 191
26.5 StandardURLTagFragmentGenerator 192
26.6 ToolTipTagFragmentGenerator 192
26.7 URLTagFragmentGenerator . 192

CONTENTS 6

27 Package: org.jfree.chart.labels 193
27.1 Introduction . 193
27.2 BoxAndWhiskerItemLabelGenerator 193
27.3 CategoryItemLabelGenerator . 193
27.4 CategoryToolTipGenerator . 194
27.5 ContourToolTipGenerator . 194
27.6 CustomXYItemLabelGenerator 195
27.7 HighLowItemLabelGenerator . 195
27.8 IntervalCategoryItemLabelGenerator 196
27.9 ItemLabelAnchor . 196
27.10ItemLabelPosition . 197
27.11PieSectionLabelGenerator . 198
27.12PieToolTipGenerator . 198
27.13StandardCategoryItemLabelGenerator 199
27.14StandardContourToolTipGenerator 201
27.15StandardPieItemLabelGenerator 201
27.16StandardXYItemLabelGenerator 202
27.17StandardXYZItemLabelGenerator 202
27.18SymbolicXYItemLabelGenerator 202
27.19XYItemLabelGenerator . 202
27.20XYToolTipGenerator . 203
27.21XYZItemLabelGenerator . 203

28 Package: org.jfree.chart.needle 204
28.1 Overview . 204
28.2 ArrowNeedle . 205
28.3 LineNeedle . 205
28.4 LongNeedle . 206
28.5 MeterNeedle . 206
28.6 PinNeedle . 207
28.7 PlumNeedle . 207
28.8 PointerNeedle . 208
28.9 ShipNeedle . 208
28.10WindNeedle . 209

29 Package: org.jfree.chart.plot 210
29.1 Overview . 210
29.2 CategoryPlot . 210
29.3 CombinedDomainCategoryPlot 213
29.4 CombinedDomainXYPlot . 213
29.5 CombinedRangeCategoryPlot . 214
29.6 CombinedRangeXYPlot . 215
29.7 CompassPlot . 216
29.8 ContourPlot . 216
29.9 ContourPlotUtilities . 216
29.10ContourValuePlot . 217
29.11CrosshairState . 217
29.12DefaultDrawingSupplier . 217
29.13DrawingSupplier . 218
29.14FastScatterPlot . 218

CONTENTS 7

29.15IntervalMarker . 220
29.16Marker . 220
29.17MeterPlot . 221
29.18MultiplePiePlot . 223
29.19PiePlot . 224
29.20PiePlot3D . 228
29.21Plot . 229
29.22PlotOrientation . 231
29.23PlotRenderingInfo . 232
29.24PolarPlot . 232
29.25ThermometerPlot . 233
29.26ValueMarker . 235
29.27XYPlot . 236

30 Package: org.jfree.chart.renderer 240
30.1 Overview . 240
30.2 AbstractCategoryItemRenderer 240
30.3 AbstractRenderer . 243
30.4 AbstractXYItemRenderer . 246
30.5 AreaRenderer . 247
30.6 BarRenderer . 248
30.7 BarRenderer3D . 251
30.8 BoxAndWhiskerRenderer . 252
30.9 CandlestickRenderer . 253
30.10CategoryItemRenderer . 254
30.11CategoryItemRendererState . 257
30.12ClusteredXYBarRenderer . 258
30.13DefaultPolarItemRenderer . 258
30.14GanttRenderer . 258
30.15HighLow . 260
30.16HighLowRenderer . 260
30.17IntervalBarRenderer . 261
30.18LevelRenderer . 261
30.19LineAndShapeRenderer . 262
30.20MinMaxCategoryRenderer . 263
30.21NoOutlierException . 264
30.22Outlier . 264
30.23OutlierList . 264
30.24OutlierListCollection . 264
30.25PolarItemRenderer . 264
30.26RangeType . 265
30.27StackedAreaRenderer . 265
30.28StackedBarRenderer . 266
30.29StackedBarRenderer3D . 267
30.30StackedXYAreaRenderer . 267
30.31StandardXYItemRenderer . 268
30.32StatisticalBarRenderer . 269
30.33WindItemRenderer . 269
30.34XYAreaRenderer . 270
30.35XYBarRenderer . 271

CONTENTS 8

30.36XYBoxAndWhiskerRenderer . 272
30.37XYBubbleRenderer . 272
30.38XYDifferenceRenderer . 273
30.39XYDotRenderer . 273
30.40XYItemRenderer . 274
30.41XYLineAndShapeRenderer . 276
30.42XYStepRenderer . 277
30.43YIntervalRenderer . 278

31 Package: org.jfree.chart.servlet 279
31.1 Overview . 279
31.2 ChartDeleter . 279
31.3 DisplayChart . 279
31.4 ServletUtilities . 279

32 Package: org.jfree.chart.title 281
32.1 Overview . 281
32.2 Events . 281
32.3 DateTitle . 281
32.4 ImageTitle . 282
32.5 LegendTitle . 282
32.6 TextTitle . 282
32.7 Title . 283

33 Package: org.jfree.chart.ui 285
33.1 Introduction . 285
33.2 ChartPropertyEditPanel . 286
33.3 ColorBarPropertyEditPanel . 286
33.4 ColorPalette . 286
33.5 GreyPalette . 286
33.6 LegendPropertyEditPanel . 286
33.7 NumberAxisPropertyEditPanel 287
33.8 PaletteChooserPanel . 287
33.9 PlotPropertyEditPanel . 287
33.10RainbowPalette . 288
33.11TitlePropertyEditPanel . 288

34 Package: org.jfree.chart.urls 289
34.1 Overview . 289
34.2 CategoryURLGenerator . 289
34.3 CustomXYURLGenerator . 290
34.4 PieURLGenerator . 290
34.5 StandardCategoryURLGenerator 290
34.6 StandardPieURLGenerator . 291
34.7 StandardXYURLGenerator . 292
34.8 StandardXYZURLGenerator . 292
34.9 TimeSeriesURLGenerator . 292
34.10XYURLGenerator . 292
34.11XYZURLGenerator . 292

CONTENTS 9

35 Package: org.jfree.data 294
35.1 Introduction . 294
35.2 AbstractDataset . 294
35.3 AbstractSeriesDataset . 295
35.4 CategoryDataset . 295
35.5 CategoryToPieDataset . 296
35.6 CombinationDataset . 297
35.7 CombinedDataset . 297
35.8 ContourDataset . 297
35.9 Dataset . 298
35.10DatasetChangeEvent . 298
35.11DatasetChangeListener . 299
35.12DatasetGroup . 299
35.13DatasetUtilities . 300
35.14DataUtilities . 301
35.15DateRange . 301
35.16DefaultCategoryDataset . 302
35.17DefaultContourDataset . 302
35.18DefaultHighLowDataset . 303
35.19DefaultIntervalCategoryDataset 303
35.20DefaultKeyedValue . 303
35.21DefaultKeyedValueDataset . 304
35.22DefaultKeyedValues . 304
35.23DefaultKeyedValuesDataset . 304
35.24DefaultKeyedValues2D . 305
35.25DefaultKeyedValues2DDataset 305
35.26DefaultMeterDataset . 305
35.27DefaultPieDataset . 305
35.28DefaultValueDataset . 306
35.29DefaultWindDataset . 306
35.30DomainInfo . 306
35.31Function2D . 307
35.32HighLowDataset . 307
35.33IntervalCategoryDataset . 308
35.34IntervalXYDataset . 309
35.35IntervalXYZDataset . 310
35.36JDBCCategoryDataset . 310
35.37JDBCPieDataset . 311
35.38JDBCXYDataset . 312
35.39KeyedObject . 313
35.40KeyedObjects . 313
35.41KeyedObjects2D . 313
35.42KeyedValue . 313
35.43KeyedValueComparator . 314
35.44KeyedValueComparatorType . 314
35.45KeyedValueDataset . 314
35.46KeyedValues . 314
35.47KeyedValuesDataset . 315
35.48KeyedValues2D . 315
35.49KeyedValues2DDataset . 316

CONTENTS 10

35.50LineFunction2D . 316
35.51MeanAndStandardDeviation . 317
35.52MeterDataset . 317
35.53MovingAverage . 319
35.54MultiIntervalCategoryDataset . 320
35.55NonGridContourDataset . 321
35.56PieDataset . 321
35.57PowerFunction2D . 321
35.58Range . 322
35.59RangeInfo . 323
35.60Regression . 323
35.61Series . 324
35.62SeriesChangeEvent . 325
35.63SeriesChangeListener . 325
35.64SeriesDataset . 325
35.65SeriesException . 326
35.66SignalsDataset . 326
35.67SubseriesDataset . 326
35.68TableXYDataset . 326
35.69TimeSeriesTableModel . 326
35.70Value . 326
35.71ValueDataset . 327
35.72Values . 327
35.73Values2D . 328
35.74WindDataset . 328
35.75XisSymbolic . 328
35.76XYBarDataset . 329
35.77XYDataItem . 329
35.78XYDataset . 329
35.79XYSeries . 330
35.80XYSeriesCollection . 331
35.81XYZDataset . 332
35.82YisSymbolic . 333

36 Package: org.jfree.data.gantt 334
36.1 Introduction . 334
36.2 GanttCategoryDataset . 334
36.3 Task . 335
36.4 TaskSeries . 336
36.5 TaskSeriesCollection . 336

37 Package: org.jfree.data.statistics 337
37.1 Introduction . 337
37.2 BoxAndWhiskerCalculator . 337
37.3 BoxAndWhiskerCategoryDataset 338
37.4 BoxAndWhiskerItem . 339
37.5 BoxAndWhiskerXYDataset . 340
37.6 DefaultBoxAndWhiskerCategoryDataset 341
37.7 DefaultBoxAndWhiskerXYDataset 341
37.8 DefaultStatisticalCategoryDataset 342

CONTENTS 11

37.9 HistogramBin . 342
37.10HistogramDataset . 342
37.11HistogramType . 343
37.12StatisticalCategoryDataset . 343
37.13Statistics . 344

38 Package: org.jfree.data.time 346
38.1 Introduction . 346
38.2 Day . 346
38.3 FixedMillisecond . 348
38.4 Hour . 349
38.5 Millisecond . 350
38.6 Minute . 351
38.7 Month . 352
38.8 Quarter . 353
38.9 RegularTimePeriod . 355
38.10Second . 357
38.11SimpleTimePeriod . 358
38.12TimePeriod . 358
38.13TimePeriodAnchor . 359
38.14TimePeriodFormatException . 359
38.15TimePeriodValue . 359
38.16TimePeriodValues . 360
38.17TimePeriodValuesCollection . 360
38.18TimeSeries . 360
38.19TimeSeriesCollection . 363
38.20TimeSeriesDataItem . 365
38.21Week . 365
38.22Year . 366

39 Package: org.jfree.data.xml 369
39.1 Introduction . 369
39.2 Usage . 369
39.3 CategoryDatasetHandler . 369
39.4 CategorySeriesHandler . 370
39.5 DatasetReader . 371
39.6 DatasetTags . 371
39.7 ItemHandler . 371
39.8 KeyHandler . 371
39.9 PieDatasetHandler . 372
39.10RootHandler . 373
39.11ValueHandler . 373

A JCommon 374
A.1 Introduction . 374
A.2 PublicCloneable . 374
A.3 RectangleAnchor . 374
A.4 RectangleEdge . 375
A.5 Spacer . 375
A.6 TextAnchor . 376

CONTENTS 12

B The GNU Lesser General Public License 378
B.1 Introduction . 378
B.2 The License . 378
B.3 Frequently Asked Questions . 385

Chapter 1

Introduction

1.1 What is JFreeChart?

1.1.1 Overview

JFreeChart is a free chart library for the Java(tm) platform. It is designed for
use in applications, applets, servlets and JSP. JFreeChart is distributed with

Figure 1.1: A sample chart

complete source code subject to the terms of the GNU Lesser General Public
Licence (see Appendix B for details).

1.1.2 Features

JFreeChart can generate pie charts, bar charts (regular and stacked, with an
optional 3D-effect), line charts, scatter plots, time series charts (including mov-
ing averages, high-low-open-close charts and candlestick plots), Gantt charts,
meter charts (dial, compass and thermometer), symbol charts, wind plots, com-
bination charts and more.

Additional features include:

13

CHAPTER 1. INTRODUCTION 14

• data is accessible from any implementation of the defined interfaces;

• export to PNG and JPEG;

• export to any format with a Graphics2D implementation including:

– PDF via iText (http://www.lowagie.com/iText/);

– SVG via Batik (http://xml.apache.org/batik/);

• tool tips;

• interactive zooming;

• chart mouse events;

• annotations;

• HTML image map generation;

• works in applications, servlets, JSP (thanks to the Cewolf project1) and
applets;

• distributed with complete source code subject to the terms of the GNU
Lesser General Public License (LGPL);

JFreeChart is written entirely in Java, and should run on any implementation
of the Java 2 platform (JDK 1.2.2 or later).

1.1.3 Home Page

The JFreeChart home page can be found at:

http://www.jfree.org/jfreechart/index.html

Here you will find all the latest information about JFreeChart, including sample
charts, download links, Javadocs, a discussion forum and more.

1See http://cewolf.sourceforge.net for details.

CHAPTER 1. INTRODUCTION 15

1.2 This Document

1.2.1 Versions

Two versions of this document are available:

• a free version, the “JFreeChart Installation Guide”, is available from the
JFreeChart home page, and contains chapters up to and including the
instructions for installing JFreeChart and running the demos.

• a premium version, the “JFreeChart Developer Guide”, is available only
to those that have paid for it, and includes additional tutorial chapters
and reference documentation for the JFreeChart classes.

1.2.2 Disclaimer

Please note that I have put in considerable effort to ensure that the information
in this document is up-to-date and accurate, but I cannot guarantee that it does
not contain errors. You must use this document at your own risk or not use it
at all.

1.3 Acknowledgements

JFreeChart contains code and ideas from many people. At the risk of missing
someone out, I would like to thank the following people for contributing to the
project:

Richard Atkinson, David Berry, Anthony Boulestreau, Jeremy Bow-
man, Daniel Bridenbecker, Nicolas Brodu, David Browning, Søren
Caspersen, Chuanhao Chiu, Pascal Collet, Martin Cordova, Paolo
Cova, Michael Duffy, Jonathan Gabbai, Serge V. Grachov, Hans-
Jurgen Greiner, Joao Guilherme Del Valle, Aiman Han, Jon Iles,
Wolfgang Irler, Xun Kang, Bill Kelemen, Norbert Kiesel, Gideon
Krause, Arnaud Lelievre, David Li, Tin Luu, Craig MacFarlane,
Achilleus Mantzios, Thomas Meier, Aaron Metzger, Jim Moore,
Jonathan Nash, Barak Naveh, David M. O’Donnell, Krzysztof Paz,
Tomer Peretz, Andrzej Porebski, Luke Quinane, Viktor Rajewski,
Eduardo Ramalho, Michael Rauch, Cameron Riley, Dan Rivett,
Michel Santos, Thierry Saura, Andreas Schneider, Jean-Luc Schwab,
Bryan Scott, Roger Studner, Irv Thomae, Eric Thomas, Rich Unger,
Daniel van Enckevort, Laurence Vanhelsuwé, Sylvain Vieujot, Jelai
Wang, Mark Watson, Alex Weber, Matthew Wright, Christian W.
Zuckschwerdt, Hari and Sam (oldman).

1.4 Comments and Suggestions

If you have any comments or suggestions regarding this document, please send
e-mail to: david.gilbert@object-refinery.com

Chapter 2

Sample Charts

2.1 Introduction

This section shows some sample charts created using JFreeChart. It is in-
tended to give a reasonable overview of the types of charts that JFreeChart can
generate. For other examples, please try the demo applications included in the
JFreeChart distribution (source code is included in the src/org/jfree/chart/demo
directory).

2.2 Pie Charts

JFreeChart can create pie charts using any data that conforms to the PieDataset

interface. Figure 2.1 shows a simple pie chart.

Figure 2.1: A simple pie chart

Individual pie sections can be “exploded”, as shown in figure 2.2.
You can also display pie charts with a 3D effect, as shown in figure 2.3.
At the current time it is not possible to explode sections of the 3D pie chart.

16

CHAPTER 2. SAMPLE CHARTS 17

Figure 2.2: A pie chart with an “exploded” section

Figure 2.3: A pie chart drawn with a 3D effect

CHAPTER 2. SAMPLE CHARTS 18

2.3 Bar Charts

A range of bar charts can be created with JFreeChart, using any data. that
conforms to the CategoryDataset interface. Figure 2.4 shows a bar chart with a
vertical orientation.

Figure 2.4: A vertical bar chart

Bar charts can be displayed with a 3D effect as shown in figure 2.5.

Figure 2.5: A bar chart with 3D effect

Another variation, the waterfall chart, is shown in figure 2.6.

CHAPTER 2. SAMPLE CHARTS 19

Figure 2.6: A waterfall chart

CHAPTER 2. SAMPLE CHARTS 20

2.4 Line Chart

The line chart can be generated using the same CategoryDataset that is used
for the bar charts—figure 2.7 shows an example.

Figure 2.7: A line chart

CHAPTER 2. SAMPLE CHARTS 21

2.5 XY Plots

A third type of dataset, the XYDataset, is used to generate a range of chart
types.

The standard XY plot has numerical x and y axes. By default, lines are drawn
between each data point—see figure 2.8.

Figure 2.8: A line chart

Scatter plots can be drawn by drawing a shape at each data point, rather than
connecting the points with lines—an example is shown in figure 2.9.

Figure 2.9: A scatter plot

CHAPTER 2. SAMPLE CHARTS 22

2.6 Time Series Charts

JFreeChart supports time series charts, as shown in figure 2.10.

Figure 2.10: A time series chart

It is straightforward to add a moving average line to a time series chart—see
figure 2.11 for an example.

Figure 2.11: A time series chart with a moving average

CHAPTER 2. SAMPLE CHARTS 23

Using a HighLowDataset (an extension of XYDataset) you can display high-low-
open-close data, see figure 2.12 for an example.

Figure 2.12: A high-low-open-close chart

2.7 Histograms

Histograms can be generated using an IntervalXYDataset (another extension of
XYDataset), see figure 2.13 for an example.

Figure 2.13: A histogram

CHAPTER 2. SAMPLE CHARTS 24

2.8 Area Charts

You can generate an area chart for data in a CategoryDataset or an XYDataset.
Figure 2.14 shows an example.

Figure 2.14: An area chart

JFreeChart also supports the creation of stacked area charts as shown in figure
2.15.

Figure 2.15: A stacked area chart

2.9 Difference Chart

A difference chart highlights the difference between two series (see figure 2.16).
A second example, shown in figure 2.17 shows how a date axis can be used for
the range values.

CHAPTER 2. SAMPLE CHARTS 25

Figure 2.16: A difference chart

Figure 2.17: A difference chart with times on the range axis

CHAPTER 2. SAMPLE CHARTS 26

2.10 Step Chart

A step chart displays numerical data as a sequence of “steps”—an example is
shown in figure 2.18.

Figure 2.18: A step chart

Step charts are generated from data in an XYDataset.

CHAPTER 2. SAMPLE CHARTS 27

2.11 Gantt Chart

Gantt charts can be generated using data from an IntervalCategoryDataset, as
shown in figure 2.19.

Figure 2.19: A Gantt chart

Another example, showing subtasks and progress indicators, is shown in figure
2.20.

Figure 2.20: A Gantt chart with progress indicators

CHAPTER 2. SAMPLE CHARTS 28

2.12 Multiple Axis Charts

JFreeChart has support for charts with multiple axes. Figure 2.21 shows a
price-volume chart that demonstrates this feature.

Figure 2.21: A price-volume chart

This feature is supported by the CategoryPlot and XYPlot classes. Figure 2.22
shows an example with four range axes.

Figure 2.22: A chart with multiple axes

CHAPTER 2. SAMPLE CHARTS 29

2.13 Combined and Overlaid Charts

JFreeChart supports combined and overlaid charts. Figure 2.23 shows a line
chart overlaid on top of a bar chart.

Figure 2.23: An overlaid chart

It is possible to combine several charts that share a common domain axis, as
shown in figure 2.24.

Figure 2.24: A chart with a combined domain

In a similar way, JFreeChart can combine several charts that share a common
range axis, see figure 2.25.

CHAPTER 2. SAMPLE CHARTS 30

Figure 2.25: A chart with a combined range

2.14 Future Development

JFreeChart is free software,1 so anyone can extend it and add new features to
it. Already, more than 50 developers from around the world have contributed
code back to the JFreeChart project. It is likely that many more chart types
will be developed in the future as developers modify JFreeChart to meet their
requirements. Check the JFreeChart home page regularly for announcements
and other updates:

http://www.jfree.org/jfreechart/index.html

And if you would like to contribute code to the project, please join in...

1See http://www.fsf.org

Chapter 3

Downloading and Installing
JFreeChart

3.1 Introduction

This section contains instructions for downloading, unpacking, and (option-
ally) recompiling JFreeChart. Also included are instructions for running the
JFreeChart demonstration application, and generating the Javadoc HTML files
from the JFreeChart source code.

3.2 Download

You can download the latest version of JFreeChart from:

http://www.jfree.org/jfreechart/index.html

There are two versions of the JFreeChart download:

File: Description:

jfreechart-0.9.18.tar.gz JFreeChart for Linux/Unix.
jfreechart-0.9.18.zip JFreeChart for Windows.

The two files contain the same source code. The main difference is that all the
text files in the zip download have been recoded to have both carriage return
and line-feed characters at the end of each line.

JFreeChart uses the JCommon class library (currently version 0.9.3). The
JCommon runtime jar file is included in the JFreeChart download, but if you
require the source code (recommended) then you should also download JCom-
mon from:

http://www.jfree.org/jcommon/index.html

There is a separate PDF document for JCommon, which includes full instruc-
tions for downloading and unpacking the files.

31

CHAPTER 3. DOWNLOADING AND INSTALLING JFREECHART 32

3.3 Unpacking the Files

After downloading JFreeChart, you need to unpack the files. You should move
the download file to a convenient directory—when you unpack JFreeChart, a
new subdirectory (jfreechart-0.9.18) will be created in the same location as
the zip or tar.gz archive file.

3.3.1 Unpacking on Linux/Unix

To extract the files from the download on Linux/Unix, enter the following com-
mand:

tar xvzf jfreechart-0.9.18.tar.gz

This will extract all the source, run-time and documentation files for JFreeChart
into a new directory called jfreechart-0.9.18.

3.3.2 Unpacking on Windows

To extract the files from the download on Windows, enter the following com-
mand:

jar -xvf jfreechart-0.9.18.zip

This will extract all the source, run-time and documentation files for JFreeChart
into a new directory called jfreechart-0.9.18.

3.3.3 The Files

The top-level directory (jfreechart-0.9.18) contains the files and directories
listed in the following table:

File/Directory: Description:

ant A directory containing an Ant build.xml

script. You can use this script to rebuild
JFreeChart from the source code included in
the distribution.

CHANGELOG.txt A log of changes made to JFreeChart since the
previous release.

checkstyle A directory containing several Checkstyle
property files. These define the coding con-
ventions used in the JFreeChart source code.

jfreechart-0.9.18.jar The JFreeChart runtime jar file.
jfreechart-0.9.18-demo.jar A runnable jar file containing demo applica-

tions.
junit A directory containing JUnit testing code.
lib A directory containing libraries used by

JFreeChart.
licence-LGPL.txt The GNU LGPL.
README.txt Important information - read this first!
src A directory containing the source code for

JFreeChart.

You should spend some time familiarising yourself with the files included in the
download. In particular, you should always read the README.txt file.

CHAPTER 3. DOWNLOADING AND INSTALLING JFREECHART 33

3.4 Running the Demonstration Applications

A range of demonstration applications are included with JFreeChart, to give you
some idea of what the class library can do. It is not necessary to recompile the
library to run the demonstration applications. All the classes are precompiled
in the jar files.

To run the main demo (JFreeChartDemo), type the following command:

java -jar jfreechart-0.9.18-demo.jar

Alternatively, you can specify the classpath manually:

java -classpath lib/jcommon-0.9.3.jar:jfreechart-0.9.18.jar:

lib/log4j-1.2.8.jar:jfreechart-0.9.18-demo.jar

org.jfree.chart.demo.JFreeChartDemo

Windows users should use a semi-colon rather than a colon to separate items
on the classpath.

3.5 Compiling the Source

To recompile the JFreeChart classes, you can use the Ant build.xml file included
in the distribution. Change to the ant directory and type:

ant compile

This will recompile all the necessary source files and recreate the JFreeChart
run-time jar file.

To run the script requires that you have Ant 1.5.1 (or later) installed on your
system, to find out more about Ant visit:

http://ant.apache.org/

3.6 Generating the Javadoc Documentation

The JFreeChart source code contains extensive Javadoc comments. You can use
the javadoc tool to generate HTML documentation files directly from the source
code—there is a link to the Javadoc HTML pages on the JFreeChart web page.

To generate the documentation, use the javadoc target in the Ant build.xml

script:
ant javadoc

This will create a javadoc directory containing all the Javadoc HTML files,
inside the main jfreechart-0.9.18 directory.

Chapter 4

Using JFreeChart

4.1 Overview

This section presents a simple introduction to JFreeChart, intended for new
users of JFreeChart.

4.2 Creating Your First Chart

4.2.1 Overview

Creating charts with JFreeChart is a three step process. You need to:

• create a dataset containing the data to be displayed in the chart;

• create a JFreeChart object that will be responsible for drawing the chart;

• draw the chart to some output target (often, but not always, a panel on
the screen);

To illustrate the process, we describe a sample application (First.java, included
in the JFreeChart distribution) that produces the pie chart shown in figure ??.
Each of the three steps outlined above is described, along with sample code, in
the following sections.

4.2.2 The Data

Step one requires us to create a dataset for our chart. This can be done easily
using the DefaultPieDataset class, as follows:

// create a dataset...
DefaultPieDataset dataset = new DefaultPieDataset();
dataset.setValue("Category 1", 43.2);
dataset.setValue("Category 2", 27.9);
dataset.setValue("Category 3", 79.5);

Note that JFreeChart can create pie charts using data from any class that im-
plements the PieDataset interface. The DefaultPieDataset class (used above)

34

CHAPTER 4. USING JFREECHART 35

Figure 4.1: A pie chart created using First.java

provides a convenient implementation of this interface, but you are free to de-
velop an alternative dataset implementation if you want to.1

4.2.3 Creating a Pie Chart

Step two concerns how we will present the dataset created in the previous sec-
tion. We need to create a JFreeChart object that can draw a chart using the
data from our pie dataset. We will use the ChartFactory class, as follows:

// create a chart...
JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",
dataset,
true, // legend?
true, // tooltips?
false // URLs?

);

Notice how we have passed a reference to the dataset to the factory method.
JFreeChart keeps a reference to this dataset so that it can obtain data later on
when it is drawing the chart.

The chart that we have created uses default settings for most attributes. There
are many ways to customise the appearance of charts created with JFreeChart,
but in this example we will just accept the defaults.

4.2.4 Displaying the Chart

The final step is to display the chart somewhere. JFreeChart is very flexible
about where it draws charts, thanks to its use of the Graphics2D class.

For now, let’s display the chart in a frame on the screen. The ChartFrame class
contains the machinery (a ChartPanel) required to display charts:

1This is similar in concept to the way that Swing’s JTable class obtains data via the
TableModel interface. In fact, this was the inspiration for using interfaces to define the datasets
for JFreeChart.

CHAPTER 4. USING JFREECHART 36

// create and display a frame...
ChartFrame frame = new ChartFrame("Test", chart);
frame.pack();
frame.setVisible(true);

And that’s all there is to it...

4.2.5 The Complete Program

Here is the complete program, so that you can see which packages you need to
import and the order of the code fragments given in the preceding sections:

package org.jfree.chart.demo;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartFrame;
import org.jfree.chart.JFreeChart;
import org.jfree.data.DefaultPieDataset;

public class First {

/**
* The starting point for the demo.
*
* @param args ignored.
*/

public static void main(String[] args) {

// create a dataset...
DefaultPieDataset dataset = new DefaultPieDataset();
dataset.setValue("Category 1", 43.2);
dataset.setValue("Category 2", 27.9);
dataset.setValue("Category 3", 79.5);

// create a chart...
JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",
dataset,
true, // legend?
true, // tooltips?
false // URLs?

);

// create and display a frame...
ChartFrame frame = new ChartFrame("First", chart);
frame.pack();
frame.setVisible(true);

}

}

Hopefully this has convinced you that it is not difficult to create and display
charts with JFreeChart. Of course, there is much more to learn...

Chapter 5

Bar Charts

5.1 Introduction

This section describes the bar charts that can be created with JFreeChart. Most
bar charts are created using data obtained via the CategoryDataset interface (it
is also possible to use the IntervalXYDataset interface, but more on that later).

5.2 A Bar Chart

5.2.1 Overview

A bar chart is created using data from a CategoryDataset, and represents each
data item as a bar where the length of the bar is equal to the data value. This
section presents a sample application that generates the chart shown in figure
5.1.

Figure 5.1: A sample bar chart

The full source code (BarChartDemo.java) is included in the JFreeChart distri-
bution, in the src/org/jfree/chart/demo directory.

37

CHAPTER 5. BAR CHARTS 38

5.2.2 The Dataset

The first step in generating the chart is to create a dataset. You can use any class
that implements the CategoryDataset interface—for the example, we have used
the DefaultCategoryDataset class (included in the JFreeChart distribution):

/**
* Returns a sample dataset.
*
* @return The dataset.
*/

private CategoryDataset createDataset() {

// row keys...
String series1 = "First";
String series2 = "Second";
String series3 = "Third";

// column keys...
String category1 = "Category 1";
String category2 = "Category 2";
String category3 = "Category 3";
String category4 = "Category 4";
String category5 = "Category 5";

// create the dataset...
DefaultCategoryDataset dataset = new DefaultCategoryDataset();

dataset.addValue(1.0, series1, category1);
dataset.addValue(4.0, series1, category2);
dataset.addValue(3.0, series1, category3);
dataset.addValue(5.0, series1, category4);
dataset.addValue(5.0, series1, category5);

dataset.addValue(5.0, series2, category1);
dataset.addValue(7.0, series2, category2);
dataset.addValue(6.0, series2, category3);
dataset.addValue(8.0, series2, category4);
dataset.addValue(4.0, series2, category5);

dataset.addValue(4.0, series3, category1);
dataset.addValue(3.0, series3, category2);
dataset.addValue(2.0, series3, category3);
dataset.addValue(3.0, series3, category4);
dataset.addValue(6.0, series3, category5);

return dataset;

}

Notice that we have used String objects as the row and column keys for the
data values. You can use any class that implements the Comparable interface as
the keys for your data values.

5.2.3 Constructing the Chart

The createBarChart() method in the ChartFactory class provides a convenient
way to create the chart:1

// create the chart...
JFreeChart chart = ChartFactory.createBarChart(

"Bar Chart Demo", // chart title
"Category", // domain axis label
"Value", // range axis label

1Take a look at the source code for this method, if you are interested to know how the
bar chart is constructed from the components (axes, plots, renderers etc.) in the JFreeChart
library.

CHAPTER 5. BAR CHARTS 39

dataset, // data
PlotOrientation.VERTICAL,
true, // include legend
true, // tooltips?
false // URLs?

);

This method constructs a JFreeChart object with a title, legend, and plot with
appropriate axes, renderer and tooltip generator. The dataset is the one created
in the previous section.

5.2.4 Customising the Chart

The chart will be initialised using default settings for most attributes. You are,
of course, free to modify any of the settings to change the appearance of your
chart. In this example, several attributes are modified:

• the chart background color;

• the “auto tick units” on the range axis (so that the tick labels always
display integer values);

• gradient paint is used for the series colors;

Changing the chart’s background color is simple, because this is an attribute
maintained by the JFreeChart class:

// set the background color for the chart...
chart.setBackgroundPaint(new Color(0xBBBBDD));

To change other attributes, we first need to obtain a reference to the CategoryPlot
object used by the chart:

CategoryPlot plot = chart.getCategoryPlot();

The range axis is modified so that the tick units are always integers:
// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(TickUnits.createIntegerTickUnits());

The bar renderer is modified so that bar outlines are not drawn, and GradientPaint

instances are used for the series colors:
// disable bar outlines...
BarRenderer renderer = (BarRenderer) plot.getRenderer();
renderer.setDrawBarOutline(false);

// set up gradient paints for series...
GradientPaint gp0 = new GradientPaint(

0.0f, 0.0f, Color.blue,
0.0f, 0.0f, Color.lightGray

);
GradientPaint gp1 = new GradientPaint(

0.0f, 0.0f, Color.green,
0.0f, 0.0f, Color.lightGray

);
GradientPaint gp2 = new GradientPaint(

0.0f, 0.0f, Color.red,
0.0f, 0.0f, Color.lightGray

);
renderer.setSeriesPaint(0, gp0);
renderer.setSeriesPaint(1, gp1);
renderer.setSeriesPaint(2, gp2);

Refer to the source code, Javadoc API documentation or elsewhere in this doc-
ument for details of the other customisations that you can make to a bar plot.

CHAPTER 5. BAR CHARTS 40

5.2.5 The Complete Program

The code for the demonstration application is presented in full, complete with
the import statements. You should find this code included in the JFreeChart
distribution.

package org.jfree.chart.demo;

import java.awt.Color;
import java.awt.GradientPaint;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.CategoryPlot;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.renderer.BarRenderer;
import org.jfree.data.CategoryDataset;
import org.jfree.data.DefaultCategoryDataset;
import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.RefineryUtilities;

/**
* A simple demonstration application showing how to create a bar chart.
*
* @author David Gilbert
*/

public class BarChartDemo extends ApplicationFrame {

/**
* Creates a new demo instance.
*
* @param title the frame title.
*/

public BarChartDemo(String title) {

super(title);

CategoryDataset dataset = createDataset();
JFreeChart chart = createChart(dataset);

// add the chart to a panel...
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new java.awt.Dimension(500, 270));
setContentPane(chartPanel);

}

/**
* Returns a sample dataset.
*
* @return The dataset.
*/

private CategoryDataset createDataset() {

// row keys...
String series1 = "First";
String series2 = "Second";
String series3 = "Third";

// column keys...
String category1 = "Category 1";
String category2 = "Category 2";
String category3 = "Category 3";
String category4 = "Category 4";
String category5 = "Category 5";

// create the dataset...
DefaultCategoryDataset dataset = new DefaultCategoryDataset();

dataset.addValue(1.0, series1, category1);
dataset.addValue(4.0, series1, category2);

CHAPTER 5. BAR CHARTS 41

dataset.addValue(3.0, series1, category3);
dataset.addValue(5.0, series1, category4);
dataset.addValue(5.0, series1, category5);

dataset.addValue(5.0, series2, category1);
dataset.addValue(7.0, series2, category2);
dataset.addValue(6.0, series2, category3);
dataset.addValue(8.0, series2, category4);
dataset.addValue(4.0, series2, category5);

dataset.addValue(4.0, series3, category1);
dataset.addValue(3.0, series3, category2);
dataset.addValue(2.0, series3, category3);
dataset.addValue(3.0, series3, category4);
dataset.addValue(6.0, series3, category5);

return dataset;

}

/**
* Creates a sample chart.
*
* @param dataset the dataset.
*
* @return The chart.
*/

private JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createBarChart(

"Bar Chart Demo", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.VERTICAL,
true, // include legend
true, // tooltips?
false // URLs?

);

// NOW DO SOME OPTIONAL CUSTOMISATION OF THE CHART...

// set the background color for the chart...
chart.setBackgroundPaint(new Color(0xBBBBDD));

// get a reference to the plot for further customisation...
CategoryPlot plot = chart.getCategoryPlot();

// set the range axis to display integers only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

// disable bar outlines...
BarRenderer renderer = (BarRenderer) plot.getRenderer();
renderer.setDrawBarOutline(false);

// set up gradient paints for series...
GradientPaint gp0 = new GradientPaint(

0.0f, 0.0f, Color.blue,
0.0f, 0.0f, Color.lightGray

);
GradientPaint gp1 = new GradientPaint(

0.0f, 0.0f, Color.green,
0.0f, 0.0f, Color.lightGray

);
GradientPaint gp2 = new GradientPaint(

0.0f, 0.0f, Color.red,
0.0f, 0.0f, Color.lightGray

);
renderer.setSeriesPaint(0, gp0);
renderer.setSeriesPaint(1, gp1);
renderer.setSeriesPaint(2, gp2);

CHAPTER 5. BAR CHARTS 42

// OPTIONAL CUSTOMISATION COMPLETED.

return chart;

}

/**
* Starting point for the demonstration application.
*
* @param args ignored.
*/

public static void main(String[] args) {

BarChartDemo demo = new BarChartDemo("Bar Chart Demo");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

5.3 Customising Bar Charts

This section describes some of the methods you can use to customise the ap-
pearance of bar charts.

5.3.1 Bar Colors

You can customise the colors used in a bar chart in the same way that you would
for most other chart types. You need to obtain a reference to the renderer (the
object responsible for drawing the bars in the chart) and set the series colors
there:

CategoryPlot plot = chart.getCategoryPlot();
BarRenderer renderer = (BarRenderer) plot.getRenderer();
renderer.setSeriesPaint(0, Color.red);
renderer.setSeriesPaint(1, Color.green);
renderer.setSeriesPaint(2, Color.blue);

The setSeriesPaint() method is defined in the AbstractRenderer class.

5.3.2 Bar Spacing

JFreeChart allows you to configure the way that bars are distributed along the
category axis. There are settings for:

• the margin before the start of the first category;

• the margin between categories;

• the margin after the end of the last category;

• the gap between bars within a category;

The first three items are configured using the CategoryAxis:

CategoryPlot plot = chart.getCategoryPlot();
CategoryAxis axis = plot.getDomainAxis();
axis.setLowerMargin(0.02); // two percent
axis.setCategoryMargin(0.10); // ten percent
axis.setUpperMargin(0.02); // two percent

CHAPTER 5. BAR CHARTS 43

All of the margins are specified as a percentage of the length of the category
axis, to allow for the fact that JFreeChart can draw charts at varying sizes.
Note that the percentage for the category margin specifies the total margin for
all the categories—if N is the number of categories, the margin is allocated over
N - 1 gaps between the categories.

The spacing between bars within a category is not controlled by the axis—
instead, it is dealt with by the BarRenderer.

BarRenderer renderer = (BarRenderer) plot.getRenderer();
renderer.setItemMargin(0.15); // fifteen percent

As with the category margin, the item margin is the total margin for all the
“intra-category” gaps in the chart. If there are M series in the chart, and N
categories, then there will be N x (M - 1) gaps.

A final point to note—the bar widths are dynamically calculated to fill the
remaining space after the various margins have been allocated. If is not possible
to specify fixed bar widths in JFreeChart.

Chapter 6

Line Charts

6.1 Introduction

This section describes the line charts that can be created with JFreeChart.
It is possible to create line charts using data from either the CategoryDataset

interface or the XYDataset interface.

6.2 A Line Chart Based On A Category Dataset

6.2.1 Overview

A line chart based on a CategoryDataset simply connects each (category, value)
data item using straight lines. This section presents a sample application that
generates the following chart shown in figure 6.1.

Figure 6.1: A sample line chart

The full source code (LineChartDemo1.java) is included in the JFreeChart dis-
tribution, in the src/org/jfree/chart/demo directory.

44

CHAPTER 6. LINE CHARTS 45

6.2.2 The Dataset

The first step in generating the chart is, as always, to create a dataset. In the
example, the DefaultCategoryDataset class is used:

/**
* Creates a sample dataset.
*
* @return The dataset.
*/

private CategoryDataset createDataset() {

// row keys...
String series1 = "First";
String series2 = "Second";
String series3 = "Third";

// column keys...
String type1 = "Type 1";
String type2 = "Type 2";
String type3 = "Type 3";
String type4 = "Type 4";
String type5 = "Type 5";
String type6 = "Type 6";
String type7 = "Type 7";
String type8 = "Type 8";

// create the dataset...
DefaultCategoryDataset dataset = new DefaultCategoryDataset();

dataset.addValue(1.0, series1, type1);
dataset.addValue(4.0, series1, type2);
dataset.addValue(3.0, series1, type3);
dataset.addValue(5.0, series1, type4);
dataset.addValue(5.0, series1, type5);
dataset.addValue(7.0, series1, type6);
dataset.addValue(7.0, series1, type7);
dataset.addValue(8.0, series1, type8);

dataset.addValue(5.0, series2, type1);
dataset.addValue(7.0, series2, type2);
dataset.addValue(6.0, series2, type3);
dataset.addValue(8.0, series2, type4);
dataset.addValue(4.0, series2, type5);
dataset.addValue(4.0, series2, type6);
dataset.addValue(2.0, series2, type7);
dataset.addValue(1.0, series2, type8);

dataset.addValue(4.0, series3, type1);
dataset.addValue(3.0, series3, type2);
dataset.addValue(2.0, series3, type3);
dataset.addValue(3.0, series3, type4);
dataset.addValue(6.0, series3, type5);
dataset.addValue(3.0, series3, type6);
dataset.addValue(4.0, series3, type7);
dataset.addValue(3.0, series3, type8);

return dataset;

}

Note that you can use any implementation of the CategoryDataset interface as
your dataset.

6.2.3 Constructing the Chart

The createLineChart() method in the ChartFactory class provides a convenient
way to create the chart:

// create the chart...

CHAPTER 6. LINE CHARTS 46

JFreeChart chart = ChartFactory.createLineChart(
"Line Chart Demo 1", // chart title
"Type", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
true, // include legend
true, // tooltips
false // urls

);

This method constructs a JFreeChart object with a title, legend, and plot with
appropriate axes, renderer and tooltip generator. The dataset is the one created
in the previous section.

6.2.4 Customising the Chart

The chart will be initialised using default settings for most attributes. You are,
of course, free to modify any of the settings to change the appearance of your
chart. In this example, several attributes are modified:

• the chart background color;

• the series stroke;

• the “auto tick units” on the range axis (so that the tick labels always
display integer values);

Changing the chart’s background color is simple, because this is an attribute
maintained by the JFreeChart class:

// set the background color for the chart...
chart.setBackgroundPaint(new Color(0xCC, 0xCC, 0xFF));

To change other attributes, we first need to obtain a reference to the CategoryPlot
object used by the chart:

CategoryPlot plot = chart.getCategoryPlot();

The plot is responsible for drawing the data and axes on the chart. Some of
this work is delegated to a renderer, which you can access via the getRenderer()

method. The renderer maintains most of the attributes that relate to the ap-
pearance of the data items within the chart. To draw shapes (as well as lines),
customise the line stroke used for each series, and display labels for each data
item:

// customise the renderer...
LineAndShapeRenderer renderer = (LineAndShapeRenderer) plot.getRenderer();
renderer.setDrawShapes(true);

renderer.setSeriesStroke(
0,
new BasicStroke(

2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,
1.0f, new float[] {10.0f, 6.0f}, 0.0f

)
);
renderer.setSeriesStroke(

1,
new BasicStroke(

2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,
1.0f, new float[] {6.0f, 6.0f}, 0.0f

CHAPTER 6. LINE CHARTS 47

)
);
renderer.setSeriesStroke(

2,
new BasicStroke(

2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,
1.0f, new float[] {2.0f, 6.0f}, 0.0f

)
);

renderer.setItemLabelsVisible(true);

The plot also manages the chart’s axes. In the example, the range axis is
modified so that it only displays integer values for the tick labels:

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(TickUnits.createIntegerTickUnits());

Refer to the source code, Javadoc API documentation or elsewhere in this doc-
ument for details of the other customisations that you can make to a line plot.

6.2.5 The Complete Program

The code for the demonstration application is presented in full, complete with
the import statements. You should find this code included in the JFreeChart
distribution.

package org.jfree.chart.demo;

import java.awt.BasicStroke;
import java.awt.Color;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.StandardLegend;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.CategoryPlot;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.renderer.ItemLabelPosition;
import org.jfree.chart.renderer.LineAndShapeRenderer;
import org.jfree.data.CategoryDataset;
import org.jfree.data.DefaultCategoryDataset;
import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.RefineryUtilities;

public class LineChartDemo1 extends ApplicationFrame {

public LineChartDemo1(String title) {

super(title);

CategoryDataset dataset = createDataset();
JFreeChart chart = createChart(dataset);

// add the chart to a panel...
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new java.awt.Dimension(500, 270));
setContentPane(chartPanel);

}

private CategoryDataset createDataset() {

// row keys...
String series1 = "First";
String series2 = "Second";
String series3 = "Third";

CHAPTER 6. LINE CHARTS 48

// column keys...
String type1 = "Type 1";
String type2 = "Type 2";
String type3 = "Type 3";
String type4 = "Type 4";
String type5 = "Type 5";
String type6 = "Type 6";
String type7 = "Type 7";
String type8 = "Type 8";

// create the dataset...
DefaultCategoryDataset dataset = new DefaultCategoryDataset();

dataset.addValue(1.0, series1, type1);
dataset.addValue(4.0, series1, type2);
dataset.addValue(3.0, series1, type3);
dataset.addValue(5.0, series1, type4);
dataset.addValue(5.0, series1, type5);
dataset.addValue(7.0, series1, type6);
dataset.addValue(7.0, series1, type7);
dataset.addValue(8.0, series1, type8);

dataset.addValue(5.0, series2, type1);
dataset.addValue(7.0, series2, type2);
dataset.addValue(6.0, series2, type3);
dataset.addValue(8.0, series2, type4);
dataset.addValue(4.0, series2, type5);
dataset.addValue(4.0, series2, type6);
dataset.addValue(2.0, series2, type7);
dataset.addValue(1.0, series2, type8);

dataset.addValue(4.0, series3, type1);
dataset.addValue(3.0, series3, type2);
dataset.addValue(2.0, series3, type3);
dataset.addValue(3.0, series3, type4);
dataset.addValue(6.0, series3, type5);
dataset.addValue(3.0, series3, type6);
dataset.addValue(4.0, series3, type7);
dataset.addValue(3.0, series3, type8);

return dataset;

}

private JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createLineChart(

"Line Chart Demo 1", // chart title
"Type", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
true, // include legend
true, // tooltips
false // urls

);

// NOW DO SOME OPTIONAL CUSTOMISATION OF THE CHART...
StandardLegend legend = (StandardLegend) chart.getLegend();
legend.setDisplaySeriesShapes(true);
legend.setDisplaySeriesLines(true);

chart.setBackgroundPaint(new Color(0xCC, 0xCC, 0xFF));

CategoryPlot plot = chart.getCategoryPlot();

// customise the range axis...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
rangeAxis.setAutoRangeIncludesZero(true);
rangeAxis.setUpperMargin(0.20);
rangeAxis.setLabelAngle(Math.PI / 2.0);

CHAPTER 6. LINE CHARTS 49

// customise the renderer...
LineAndShapeRenderer renderer = (LineAndShapeRenderer) plot.getRenderer();
renderer.setDrawShapes(true);

renderer.setSeriesStroke(
0, new BasicStroke(2.0f,

BasicStroke.CAP_ROUND,
BasicStroke.JOIN_ROUND,
1.0f,
new float[] {10.0f, 6.0f},
0.0f)

);
renderer.setSeriesStroke(

1, new BasicStroke(2.0f,
BasicStroke.CAP_ROUND,
BasicStroke.JOIN_ROUND,
1.0f,
new float[] {6.0f, 6.0f},
0.0f)

);
renderer.setSeriesStroke(

2, new BasicStroke(2.0f,
BasicStroke.CAP_ROUND,
BasicStroke.JOIN_ROUND,
1.0f,
new float[] {2.0f, 6.0f},
0.0f)

);

renderer.setItemLabelsVisible(true);
renderer.setPositiveItemLabelPosition(new ItemLabelPosition());
renderer.setNegativeItemLabelPosition(new ItemLabelPosition());
// OPTIONAL CUSTOMISATION COMPLETED.

return chart;
}

public static void main(String[] args) {

LineChartDemo1 demo = new LineChartDemo1("Line Chart Demo");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

CHAPTER 6. LINE CHARTS 50

6.2.6 A Line Chart Based On An XYDataset

Overview

A line chart based on an XYDataset connects each (x, y) point with a straight
line. This section presents a sample application that generates the chart shown
in figure 6.2.

Figure 6.2: A sample line chart using an XYPlot

The complete source code (LineChartDemo2.java) is included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory).

The Dataset

For this chart, an XYSeriesCollection is used as the dataset (you can use any im-
plementation of the XYDataset interface). For the purposes of the self-contained
demo, we create this dataset in code, as follows:

// create a dataset...
XYSeries series1 = new XYSeries("First");
series1.add(1.0, 1.0);
series1.add(2.0, 4.0);
series1.add(3.0, 3.0);
series1.add(4.0, 5.0);
series1.add(5.0, 5.0);
series1.add(6.0, 7.0);
series1.add(7.0, 7.0);
series1.add(8.0, 8.0);

XYSeries series2 = new XYSeries("Second");
series2.add(1.0, 5.0);
series2.add(2.0, 7.0);
series2.add(3.0, 6.0);
series2.add(4.0, 8.0);
series2.add(5.0, 4.0);
series2.add(6.0, 4.0);
series2.add(7.0, 2.0);
series2.add(8.0, 1.0);

XYSeries series3 = new XYSeries("Third");
series3.add(3.0, 4.0);
series3.add(4.0, 3.0);
series3.add(5.0, 2.0);
series3.add(6.0, 3.0);
series3.add(7.0, 6.0);

CHAPTER 6. LINE CHARTS 51

series3.add(8.0, 3.0);
series3.add(9.0, 4.0);
series3.add(10.0, 3.0);

XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(series1);
dataset.addSeries(series2);
dataset.addSeries(series3);

Notice how each series has x-values (not just y-values) that are independent
from the other series. The dataset will also accept null in place of a y-value.
When a null value is encountered, no connecting line is drawn, resulting in a
discontinuous line for the series.

Constructing the Chart

The createXYLineChart() method in the ChartFactory class provides a conve-
nient way to create the chart:

JFreeChart chart = ChartFactory.createXYLineChart(
"Line Chart Demo 2", // chart title
"X", // x axis label
"Y", // y axis label
dataset, // data
PlotOrientation.VERTICAL,
true, // include legend
true, // tooltips
false // urls

);

This method constructs a JFreeChart object with a title, legend and plot with
appropriate axes and renderer. The dataset is the one created in the previous
section. The chart is created with a legend, and tooltips are enabled (URLs are
disabled—these are only used in the creation of HTML image maps).

Customising the Chart

The chart will be initialised using default settings for most attributes. You are,
of course, free to modify any of the settings to change the appearance of your
chart. In this example, several attributes are modified:

• the chart background color;

• the plot background color;

• the legend is configured to draw shapes;

• the axis offsets;

• the color of the domain and range gridlines;

• the renderer is modified to draw shapes as well as lines;

• the tick unit collection for the range axis, so that the tick values always
display integer values;

Changing the chart’s background color is simple:

// set the background color for the chart...
chart.setBackgroundPaint(Color.white);

CHAPTER 6. LINE CHARTS 52

To get the legend to display the shapes that are associated with each series, we
first obtain a reference to the legend, and then change the appropriate flag:

StandardLegend legend = (StandardLegend) chart.getLegend();
legend.setDisplaySeriesShapes(true);

Changing the plot background color, the axis offsets, and the color of the grid-
lines, requires a reference to the plot:

// get a reference to the plot for further customisation...
XYPlot plot = chart.getXYPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setAxisOffset(new Spacer(Spacer.ABSOLUTE, 5.0, 5.0, 5.0, 5.0));
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);

The renderer is modified to display filled shapes in addition to the default lines:

StandardXYItemRenderer renderer = (StandardXYItemRenderer) plot.getRenderer();
renderer.setPlotShapes(true);
renderer.setShapesFilled(true);

The final modification is a change to the range axis. We change the default col-
lection of tick units (which allow fractional values) to an integer-only collection:

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

Refer to the source code, Javadoc API documentation or elsewhere in this doc-
ument for details of the other customisations that you can make to an XYPlot.

The Complete Program

The code for the demonstration application is presented here in full, com-
plete with the import statements. You should find this code included in the
JFreeChart distribution.

package org.jfree.chart.demo;

import java.awt.Color;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.Spacer;
import org.jfree.chart.StandardLegend;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.StandardXYItemRenderer;
import org.jfree.data.XYDataset;
import org.jfree.data.XYSeries;
import org.jfree.data.XYSeriesCollection;
import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.RefineryUtilities;

public class LineChartDemo2 extends ApplicationFrame {

public LineChartDemo2(String title) {

super(title);

XYDataset dataset = createDataset();
JFreeChart chart = createChart(dataset);
ChartPanel chartPanel = new ChartPanel(chart);

CHAPTER 6. LINE CHARTS 53

chartPanel.setPreferredSize(new java.awt.Dimension(500, 270));
setContentPane(chartPanel);

}

private XYDataset createDataset() {

XYSeries series1 = new XYSeries("First");
series1.add(1.0, 1.0);
series1.add(2.0, 4.0);
series1.add(3.0, 3.0);
series1.add(4.0, 5.0);
series1.add(5.0, 5.0);
series1.add(6.0, 7.0);
series1.add(7.0, 7.0);
series1.add(8.0, 8.0);

XYSeries series2 = new XYSeries("Second");
series2.add(1.0, 5.0);
series2.add(2.0, 7.0);
series2.add(3.0, 6.0);
series2.add(4.0, 8.0);
series2.add(5.0, 4.0);
series2.add(6.0, 4.0);
series2.add(7.0, 2.0);
series2.add(8.0, 1.0);

XYSeries series3 = new XYSeries("Third");
series3.add(3.0, 4.0);
series3.add(4.0, 3.0);
series3.add(5.0, 2.0);
series3.add(6.0, 3.0);
series3.add(7.0, 6.0);
series3.add(8.0, 3.0);
series3.add(9.0, 4.0);
series3.add(10.0, 3.0);

XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(series1);
dataset.addSeries(series2);
dataset.addSeries(series3);

return dataset;

}

private JFreeChart createChart(XYDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createXYLineChart(

"Line Chart Demo 2", // chart title
"X", // x axis label
"Y", // y axis label
dataset, // data
PlotOrientation.VERTICAL,
true, // include legend
true, // tooltips
false // urls

);

// NOW DO SOME OPTIONAL CUSTOMISATION OF THE CHART...
chart.setBackgroundPaint(Color.white);

StandardLegend legend = (StandardLegend) chart.getLegend();
legend.setDisplaySeriesShapes(true);

// get a reference to the plot for further customisation...
XYPlot plot = chart.getXYPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setAxisOffset(new Spacer(Spacer.ABSOLUTE, 5.0, 5.0, 5.0, 5.0));
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);

StandardXYItemRenderer renderer = (StandardXYItemRenderer) plot.getRenderer();

CHAPTER 6. LINE CHARTS 54

renderer.setPlotShapes(true);
renderer.setShapesFilled(true);

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
// OPTIONAL CUSTOMISATION COMPLETED.

return chart;

}

public static void main(String[] args) {

LineChartDemo2 demo = new LineChartDemo2("Line Chart Demo 2");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

Chapter 7

Time Series Charts

7.1 Introduction

Time series charts are very similar to line charts, except that the values on
the domain axis are dates rather than numbers. This section describes how to
create time series charts with JFreeChart.

7.2 Time Series Charts

7.2.1 Overview

A time series chart is really just a line chart using data obtained via the
XYDataset interface (see the example in the previous section). The difference
is that the x-values are displayed as dates on the domain axis. This section
presents a sample application that generates the chart shown in figure 7.1.

Figure 7.1: A time series chart

The complete source code (TimeSeriesDemo.java) for this example is included in
the JFreeChart distribution.

55

CHAPTER 7. TIME SERIES CHARTS 56

7.2.2 Dates or Numbers?

Time series charts are created using data from an XYDataset. This interface
doesn’t have any methods that return dates, so how does JFreeChart create
time series charts?

The x-values returned by the dataset are Number objects, but the values are inter-
preted in a special way—they are assumed to represent the number of millisec-
onds since midnight, 1 January 1970 (the encoding used by the java.util.Date

class).

A special axis class (DateAxis) converts from milliseconds to dates and back
again as necessary, allowing the axis to display tick labels formatted as dates.

7.2.3 The Dataset

For the demo chart, a TimeSeriesCollection is used as the dataset (you can use
any implementation of the XYDataset interface):

TimeSeries s1 = new TimeSeries("L&G European Index Trust", Month.class);
s1.add(new Month(2, 2001), 181.8);
s1.add(new Month(3, 2001), 167.3);
s1.add(new Month(4, 2001), 153.8);
s1.add(new Month(5, 2001), 167.6);
s1.add(new Month(6, 2001), 158.8);
s1.add(new Month(7, 2001), 148.3);
s1.add(new Month(8, 2001), 153.9);
s1.add(new Month(9, 2001), 142.7);
s1.add(new Month(10, 2001), 123.2);
s1.add(new Month(11, 2001), 131.8);
s1.add(new Month(12, 2001), 139.6);
s1.add(new Month(1, 2002), 142.9);
s1.add(new Month(2, 2002), 138.7);
s1.add(new Month(3, 2002), 137.3);
s1.add(new Month(4, 2002), 143.9);
s1.add(new Month(5, 2002), 139.8);
s1.add(new Month(6, 2002), 137.0);
s1.add(new Month(7, 2002), 132.8);

TimeSeries s2 = new TimeSeries("L&G UK Index Trust", Month.class);
s2.add(new Month(2, 2001), 129.6);
s2.add(new Month(3, 2001), 123.2);
s2.add(new Month(4, 2001), 117.2);
s2.add(new Month(5, 2001), 124.1);
s2.add(new Month(6, 2001), 122.6);
s2.add(new Month(7, 2001), 119.2);
s2.add(new Month(8, 2001), 116.5);
s2.add(new Month(9, 2001), 112.7);
s2.add(new Month(10, 2001), 101.5);
s2.add(new Month(11, 2001), 106.1);
s2.add(new Month(12, 2001), 110.3);
s2.add(new Month(1, 2002), 111.7);
s2.add(new Month(2, 2002), 111.0);
s2.add(new Month(3, 2002), 109.6);
s2.add(new Month(4, 2002), 113.2);
s2.add(new Month(5, 2002), 111.6);
s2.add(new Month(6, 2002), 108.8);
s2.add(new Month(7, 2002), 101.6);

TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(s1);
dataset.addSeries(s2);

In the example, the series contain monthly data. However, the TimeSeries class
can be used to represent values observed at other intervals (annual, daily, hourly
etc).

CHAPTER 7. TIME SERIES CHARTS 57

7.2.4 Constructing the Chart

The createTimeSeriesChart() method in the ChartFactory class provides a con-
venient way to create the chart:

JFreeChart chart = ChartFactory.createTimeSeriesChart(
chartTitle,
"Date", "Price Per Unit",
dataset,
true,
true,
false

);

This method constructs a JFreeChart object with a title, legend and plot with
appropriate axes and renderer. The dataset is the one created in the previous
section.

7.2.5 Customising the Chart

The chart will be initialised using default settings for most attributes. You are,
of course, free to modify any of the settings to change the appearance of your
chart. In this example, several attributes are modified:

• the renderer is changed to display series shapes at each data point, in
addition to the lines between data points;

• the legend is set up to display the series shapes;

• a date format override is set for the domain axis;

Modifying the renderer requires a couple of steps to obtain a reference to the
renderer and then cast it to a StandardXYItemRenderer:

XYPlot plot = chart.getXYPlot();
XYItemRenderer renderer = plot.getRenderer();
if (renderer instanceof StandardXYItemRenderer) {

StandardXYItemRenderer rr = (StandardXYItemRenderer) renderer;
rr.setPlotShapes(true);
rr.setShapesFilled(true);

}

Similarly, the legend must be cast to a StandardLegend, before setting the flag
that tells the legend to display shapes as the series keys:

StandardLegend sl = (StandardLegend) chart.getLegend();
sl.setDisplaySeriesShapes(true);

In the final customisation, a date format override is set for the domain axis.

DateAxis axis = (DateAxis) plot.getDomainAxis();
axis.setDateFormatOverride(new SimpleDateFormat("MMM-yyyy"));

When this is set, the axis will continue to “auto-select” a DateTickUnit from the
collection of standard tick units, but it will ignore the formatting from the tick
unit and use the override format instead.

CHAPTER 7. TIME SERIES CHARTS 58

7.2.6 The Complete Program

The code for the demonstration application is presented in full, complete with
the import statements. You should find this code included in the JFreeChart
distribution.

package org.jfree.chart.demo;

import java.awt.Color;

import java.text.SimpleDateFormat;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartPanel;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.Spacer;

import org.jfree.chart.StandardLegend;

import org.jfree.chart.axis.DateAxis;

import org.jfree.chart.plot.XYPlot;

import org.jfree.chart.renderer.StandardXYItemRenderer;

import org.jfree.chart.renderer.XYItemRenderer;

import org.jfree.data.XYDataset;

import org.jfree.data.time.Month;

import org.jfree.data.time.TimeSeries;

import org.jfree.data.time.TimeSeriesCollection;

import org.jfree.ui.ApplicationFrame;

import org.jfree.ui.RefineryUtilities;

public class TimeSeriesDemo extends ApplicationFrame {

public TimeSeriesDemo(String title) {

super(title);

XYDataset dataset = createDataset();

JFreeChart chart = createChart(dataset);

ChartPanel chartPanel = new ChartPanel(chart);

chartPanel.setPreferredSize(new java.awt.Dimension(500, 270));

chartPanel.setMouseZoomable(true, false);

setContentPane(chartPanel);

}

private JFreeChart createChart(XYDataset dataset) {

JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Legal & General Unit Trust Prices",

"Date", "Price Per Unit",

dataset,

true,

true,

false

);

chart.setBackgroundPaint(Color.white);

StandardLegend sl = (StandardLegend) chart.getLegend();

sl.setDisplaySeriesShapes(true);

XYPlot plot = chart.getXYPlot();

plot.setBackgroundPaint(Color.lightGray);

CHAPTER 7. TIME SERIES CHARTS 59

plot.setDomainGridlinePaint(Color.white);

plot.setRangeGridlinePaint(Color.white);

plot.setAxisOffset(new Spacer(Spacer.ABSOLUTE, 5.0, 5.0, 5.0, 5.0));

plot.setDomainCrosshairVisible(true);

plot.setRangeCrosshairVisible(true);

XYItemRenderer renderer = plot.getRenderer();

if (renderer instanceof StandardXYItemRenderer) {

StandardXYItemRenderer rr = (StandardXYItemRenderer) renderer;

rr.setPlotShapes(true);

rr.setShapesFilled(true);

}

DateAxis axis = (DateAxis) plot.getDomainAxis();

axis.setDateFormatOverride(new SimpleDateFormat("MMM-yyyy"));

return chart;

}

private XYDataset createDataset() {

TimeSeries s1 = new TimeSeries("L&G European Index Trust", Month.class);

s1.add(new Month(2, 2001), 181.8);

s1.add(new Month(3, 2001), 167.3);

s1.add(new Month(4, 2001), 153.8);

s1.add(new Month(5, 2001), 167.6);

s1.add(new Month(6, 2001), 158.8);

s1.add(new Month(7, 2001), 148.3);

s1.add(new Month(8, 2001), 153.9);

s1.add(new Month(9, 2001), 142.7);

s1.add(new Month(10, 2001), 123.2);

s1.add(new Month(11, 2001), 131.8);

s1.add(new Month(12, 2001), 139.6);

s1.add(new Month(1, 2002), 142.9);

s1.add(new Month(2, 2002), 138.7);

s1.add(new Month(3, 2002), 137.3);

s1.add(new Month(4, 2002), 143.9);

s1.add(new Month(5, 2002), 139.8);

s1.add(new Month(6, 2002), 137.0);

s1.add(new Month(7, 2002), 132.8);

TimeSeries s2 = new TimeSeries("L&G UK Index Trust", Month.class);

s2.add(new Month(2, 2001), 129.6);

s2.add(new Month(3, 2001), 123.2);

s2.add(new Month(4, 2001), 117.2);

s2.add(new Month(5, 2001), 124.1);

s2.add(new Month(6, 2001), 122.6);

s2.add(new Month(7, 2001), 119.2);

s2.add(new Month(8, 2001), 116.5);

s2.add(new Month(9, 2001), 112.7);

s2.add(new Month(10, 2001), 101.5);

s2.add(new Month(11, 2001), 106.1);

s2.add(new Month(12, 2001), 110.3);

s2.add(new Month(1, 2002), 111.7);

s2.add(new Month(2, 2002), 111.0);

s2.add(new Month(3, 2002), 109.6);

s2.add(new Month(4, 2002), 113.2);

s2.add(new Month(5, 2002), 111.6);

s2.add(new Month(6, 2002), 108.8);

s2.add(new Month(7, 2002), 101.6);

CHAPTER 7. TIME SERIES CHARTS 60

TimeSeriesCollection dataset = new TimeSeriesCollection();

dataset.addSeries(s1);

dataset.addSeries(s2);

dataset.setDomainIsPointsInTime(true);

return dataset;

}

public static void main(String[] args) {

TimeSeriesDemo demo = new TimeSeriesDemo("Time Series Demo 1");

demo.pack();

RefineryUtilities.centerFrameOnScreen(demo);

demo.setVisible(true);

}

}

Chapter 8

Customising Charts

8.1 Introduction

JFreeChart has been designed to be highly customisable. There are many at-
tributes that you can set to change the default appearance of your charts. In
this section, some common techniques for customising charts are presented.

8.2 Chart Attributes

8.2.1 Overview

At the highest level, you can customise the appearance of your charts using
methods in the JFreeChart class. This allows you to control:

• the chart border;

• the chart title and sub-titles;

• the background color and/or image;

• the rendering hints that are used to draw the chart, including whether or
not anti-aliasing is used;

These items are described in the following sections.

8.2.2 The Chart Border

JFreeChart can draw a border around the outside of a chart. By default, no
border is drawn, but you can change this using the setBorderVisible() method.
The color and line-style for the border are controlled by the setBorderPaint()

and setBorderStroke() methods.

Note: if you are displaying your chart inside a ChartPanel, then you might prefer
to use the border facilities provided by Swing.

61

CHAPTER 8. CUSTOMISING CHARTS 62

8.2.3 The Chart Title

A chart has one title that can appear at the top, bottom, left or right of the chart
(you can also add subtitles—see the next section). The title is an instance of
TextTitle. You can obtain a reference to the title using the getTitle() method:

TextTitle title = chart.getTitle();

To modify the title text (without changing the font or position):

chart.setTitle("A Chart Title");

The placement of the title at the top, bottom, left or right of the chart is
controlled by a property of the title itself. To move the title to the bottom of
the chart:

chart.getTitle().setPosition(RectangleEdge.BOTTOM);

If you prefer to have no title on your chart, you can set the title to null.

8.2.4 Subtitles

A chart can have any number of subtitles. To add a sub-title to a chart, create
a subtitle (any subclass of Title) and add it to the chart. For example:

TextTitle subtitle1 = new TextTitle("A Subtitle");
chart.addSubtitle(subtitle1);

You can add as many sub-titles as you like to a chart, but keep in mind that as
you add more sub-titles there will be less and less space available for drawing
the chart.

To modify an existing sub-title, you need to get a reference to the sub-title. For
example:

Title subtitle = chart.getSubtitle(0);

You will need to cast the Title reference to an appropriate subclass before you
can change its properties.

You can check the number of sub-titles using the getSubtitleCount() method.

8.2.5 Setting the Background Color

You can use the setBackgroundPaint() method to set the background color for
a chart.1 For example:

chart.setBackgroundPaint(Color.blue);

You can use any implementation of the Paint interface, including the Java classes
Color, GradientPaint and TexturePaint. For example:

Paint p = new GradientPaint(0, 0, Color.white, 1000, 0, Color.green));
chart.setBackgroundPaint(p);

You can also set the background paint to null, which is recommended if you
have specified a background image for your chart.

1You can also set the background color for the chart’s plot area, which has a slightly
different effect—refer to the Plot class for details.

CHAPTER 8. CUSTOMISING CHARTS 63

8.2.6 Using a Background Image

You can use the setBackgroundImage() method to set a background image for a
chart.

chart.setBackgroundImage(JFreeChart.INFO.getLogo());

By default, the image will be scaled to fit the area that the chart is being drawn
into, but you can change this using the setBackgroundImageAlignment() method.

chart.setBackgroundImageAlignment(Align.TOP LEFT);

Using the setBackgroundImageAlpha() method, you can control the alpha-transparency
for the image.

If you want an image to fill only the data area of your chart (that is, the area
inside the axes), then you need to add a background image to the chart’s Plot

(described later).

Rendering Hints

JFreeChart uses the Java2D API to draw charts. Within this API, you can
specify rendering hints to fine tune aspects of the way that the rendering engine
works.

JFreeChart allows you to specify the rendering hints to be passed to the Java2D
API when charts are drawn—use the setRenderingHints() method.

As a convenience, a method is provided to turn anti-aliasing on or off. With
anti-aliasing on, charts appear to be smoother but they take longer to draw:

// turn on antialiasing...
chart.setAntiAlias(true);

By default, charts are drawn with anti-aliasing turned on.

8.3 Plot Attributes

8.3.1 Overview

The JFreeChart class delegates a lot of the work in drawing a chart to the Plot

class (or, rather, to a specific subclass of Plot). The getPlot() method in the
JFreeChart class returns a reference to the plot being used by the chart.

Plot plot = chart.getPlot();

You may need to cast this reference to a specific subclass of Plot, for example:
CategoryPlot plot = chart.getCategoryPlot();

...or:
XYPlot plot = chart.getXYPlot();

Note that these methods will throw a ClassCastException if the plot is not an
appropriate class.

CHAPTER 8. CUSTOMISING CHARTS 64

8.3.2 Which Plot Subclass?

How do you know which subclass of Plot is being used by a chart? As you gain
experience with JFreeChart, it will become clear which charts use CategoryPlot

and which charts use XYPlot. If in doubt, take a look in the ChartFactory class
source code to see how each chart type is put together.

8.3.3 Setting the Background Paint

You can use the setBackgroundPaint() method to set the background color for
a plot. For example:

Plot plot = chart.getPlot();

plot.setBackgroundPaint(Color.white);

You can use any implementation of the Paint interface, including the Java classes
Color, GradientPaint and TexturePaint. You can also set the background paint
to null.

8.3.4 Using a Background Image

You can use the setBackgroundImage() method to set a background image for a
plot:

Plot plot = chart.getPlot();

plot.setBackgroundImage(JFreeChart.INFO.getLogo());

By default, the image will be scaled to fit the area that the plot is being drawn
into. You can change this using the setBackgroundImageAlignment() method:

plot.setBackgroundImageAlignment(Align.BOTTOM RIGHT);

Use the setBackgroundAlpha() method to control the alpha-transparency used
for the image.

If you prefer your image to fill the entire chart area, then you need to add a
background image to the JFreeChart object (described previously).

8.4 Axis Attributes

Overview

The majority of charts created with JFreeChart have two axes, a domain axis
and a range axis. Of course, there are some charts (for example, pie charts)
that don’t have axes at all. For charts where axes are used, the Axis objects are
managed by the plot.

8.4.1 Obtaining an Axis Reference

Before you can change the properties of an axis, you need to obtain a refer-
ence to the axis. The plot classes CategoryPlot and XYPlot both have methods
getDomainAxis() and getRangeAxis().

These methods return a reference to a ValueAxis, except in the case of the
CategoryPlot, where the domain axis is an instance of CategoryAxis.

CHAPTER 8. CUSTOMISING CHARTS 65

// get an axis reference...

CategoryPlot plot = chart.getCategoryPlot();

CategoryAxis domainAxis = plot.getDomainAxis();

// change axis properties...

domainAxis.setLabel("Categories");

domainAxis.setLabelFont(someFont);

There are many different subclasses of the CategoryAxis and ValueAxis classes.
Sometimes you will need to cast your axis reference to a more specific subclass,
in order to access some of its attributes. For example, if you know that your
range axis is a NumberAxis (and the range axis almost always is), then you can
do the following:

XYPlot plot = chart.getXYPlot();

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();

rangeAxis.setAutoRange(false);

8.4.2 Setting the Axis Label

You can use the setLabel() method to change the axis label. If you would prefer
not to have a label for your axis, just set it to null.

You can change the font, color and insets (the space around the outside of the la-
bel) with the methods setLabelFont(), setLabelPaint(), and setLabelInsets(),
defined in the Axis class.

8.4.3 Rotating Axis Labels

When an axis is drawn at the left or right of a plot (a “vertical” axis), the label
is automatically rotated by 90 degrees to minimise the space required. If you
prefer to have the label drawn horizontally, you can change the label angle:

XYPlot plot = chart.getXYPlot();

ValueAxis axis = plot.getRangeAxis();

axis.setLabelAngle(Math.PI / 2.0);

Note that the angle is specified in radians (Math.PI = 180 degrees).

8.4.4 Hiding Tick Labels

To hide the tick labels for an axis:
CategoryPlot plot = chart.getCategoryPlot();

ValueAxis axis = plot.getRangeAxis();

axis.setTickLabelsVisible(false);

For a CategoryAxis, setTickLabelsVisible(false) will hide the category labels.

8.4.5 Hiding Tick Marks

To hide the tick marks for an axis:
XYPlot plot = chart.getXYPlot();

Axis axis = plot.getDomainAxis();

axis.setTickMarksVisible(false);

Category axes do not have tick marks.

CHAPTER 8. CUSTOMISING CHARTS 66

8.4.6 Setting the Tick Size

By default, numerical and date axes automatically select a tick size so that the
tick labels will not overlap. You can override this by setting your own tick unit
using the setTickUnit() method.

Alternatively, for a NumberAxis or a DateAxis you can specify your own set of
tick units from which the axis will automatically select an appropriate tick size.
This is described in the following sections.

8.4.7 Specifying “Standard” Number Tick Units

In the NumberAxis class, there is a method setStandardTickUnits() that allows
you to supply your own set of tick units for the “auto tick unit selection” mech-
anism.

One common application is where you have a number axis that should only
display integers. In this case, you don’t want tick units of (say) 0.5 or 0.25.
There is a (static) method in the NumberAxis class that returns a set of standard
integer tick units:

XYPlot plot = chart.getXYPlot();

NumberAxis axis = (NumberAxis) plot.getRangeAxis();

TickUnits units = NumberAxis.createIntegerTickUnits();

axis.setStandardTickUnits(units);

You are free to create your own TickUnits collection, if you want greater control
over the standard tick units.

8.4.8 Specifying “Standard” Date Tick Units

Similar to the case in the previous section, the DateAxis class has a method
setStandardTickUnits() that allows you to supply your own set of tick units for
the “auto tick unit selection” mechanism.

The createStandardDateTickUnits() method returns the default collection for a
DateAxis, but you are free to create your own TickUnits collection if you want
greater control over the standard tick units.

Chapter 9

Dynamic Charts

9.1 Overview

To illustrate the use of JFreeChart for creating “dynamic” charts, this section
presents a sample application that displays a frequently updating chart of JVM
memory usage and availability.

Figure 9.1: A dynamic chart demo

9.2 Background

9.2.1 Event notification

JFreeChart uses an event notification mechanism that allows it to respond to
changes to any component of the chart.

For example, whenever a dataset is updated, a DatasetChangeEvent is sent to
all listeners that are registered with the dataset. This triggers the following
sequence of events:

• the plot (which registers itself with the dataset as a DatasetChangeListener)
receives notification of the dataset change. It updates the axis ranges (if

67

CHAPTER 9. DYNAMIC CHARTS 68

necessary) then passes on a PlotChangeEvent to all its registered listeners;

• the chart receives notification of the plot change event, and passes on a
ChartChangeEvent to all its registered listeners;

• finally, for charts that are displayed in a ChartPanel, the panel will receive
the chart change event. It responds by redrawing the chart—a complete
redraw, not just the updated data.

A similar sequence of events happens for all changes to a chart or its subcom-
ponents.

9.2.2 Performance

Regarding performance, you need to be aware that JFreeChart wasn’t designed
specifically for generating real-time charts. Each time a dataset is updated, the
ChartPanel reacts by redrawing the entire chart. Optimisations, such as only
drawing the most recently added data point, are difficult to implement in the
general case, even more so given the Graphics2D abstraction (in the Java2D API)
employed by JFreeChart. This limits the number of “frames per second” you
will be able to achieve with JFreeChart.

Whether this will be an issue for you depends on your data, the requirements of
your application, and your operating environment. In other words, your mileage
may vary.

9.3 The Demo Application

9.3.1 Overview

The MemoryUsage.java demonstration is included in the “premium demos” down-
load available to purchasers of this document. You can obtain this from:

http://www.object-refinery.com/jfreechart/premium/index.html

You will need to enter the username and password supplied with your original
purchase of the JFreeChart Developer Guide.

9.3.2 Creating the Dataset

The dataset is created using two TimeSeries objects (one for the total mem-
ory and the other for the free memory) that are added to a single time series
collection:

// create two series that automatically discard data > 30 seconds old...
this.total = new TimeSeries("Total", Millisecond.class);
this.total.setHistoryCount(30000);
this.free = new TimeSeries("Free", Millisecond.class);
this.free.setHistoryCount(30000);
TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(total);
dataset.addSeries(free);

The history-count attribute for each time series is set to 30,000 milliseconds (or
30 seconds) so that whenever new data is added to the series, any observations
that are older that 30 seconds are automatically discarded.

CHAPTER 9. DYNAMIC CHARTS 69

9.3.3 Creating the Chart

The chart creation (and customisation) follows the standard pattern for all
charts. No special steps are required to create a dynamic chart, except that you
should ensure that the axes have their auto-range attribute set to true. It also
helps to retain a reference to the dataset used in the chart.

9.3.4 Updating the Dataset

In the demo, the dataset is updated by adding data to the two time series from
a separate thread, managed by the following timer:

class DataGenerator extends Timer implements ActionListener {

DataGenerator() {
super(100, null);
addActionListener(this);

}

public void actionPerformed(ActionEvent event) {
long f = Runtime.getRuntime().freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f);

}

}

Note that JFreeChart does not yet use thread synchronisation between the chart
drawing code and the dataset update code, so this approach is a little unsafe.
This will be addressed before version 1.0.0 is released.

One other point to note, at one point while investigating reports of a memory
leak in JFreeChart, I left this demo running on a test machine for about six days.
As the chart updates, you can see the effect of the garbage collector. Over the
six day period, the total memory used remained constant while the free memory
decreased as JFreeChart discarded temporary objects (garbage), and increased at
the points where the garbage collector did its work.

9.3.5 Source Code

For reference, here is the complete source code for the example:

package com.jrefinery.chart.demo;

import java.awt.BasicStroke;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.Timer;

import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.DateAxis;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.XYItemRenderer;
import org.jfree.data.time.Millisecond;

CHAPTER 9. DYNAMIC CHARTS 70

import org.jfree.data.time.TimeSeries;
import org.jfree.data.time.TimeSeriesCollection;

public class MemoryUsage extends JPanel {

private TimeSeries total;

private TimeSeries free;

public MemoryUsage() {

super(new BorderLayout());

// create two series that automatically discard data more than 30 seconds old...
this.total = new TimeSeries("Total", Millisecond.class);
this.total.setHistoryCount(30000);
this.free = new TimeSeries("Free", Millisecond.class);
this.free.setHistoryCount(30000);
TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(total);
dataset.addSeries(free);

DateAxis domain = new DateAxis("Time");
NumberAxis range = new NumberAxis("Memory");

XYPlot xyplot = new XYPlot(dataset, domain, range);
xyplot.setBackgroundPaint(Color.black);
XYItemRenderer renderer = xyplot.getRenderer();
renderer.setSeriesPaint(0, Color.red);
renderer.setSeriesPaint(1, Color.green);
renderer.setDefaultStroke(

new BasicStroke(2f, BasicStroke.CAP_BUTT, BasicStroke.JOIN_BEVEL)
);

domain.setAutoRange(true);
domain.setLowerMargin(0.0);
domain.setUpperMargin(0.0);
domain.setTickLabelsVisible(true);

range.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

JFreeChart chart = new JFreeChart(
"Memory Usage",
JFreeChart.DEFAULT_TITLE_FONT,
xyplot,
true

);
ChartPanel chartPanel = new ChartPanel(chart);
add(chartPanel);

}

private void addTotalObservation(double y) {
total.add(new Millisecond(), y);

}

private void addFreeObservation(double y) {
free.add(new Millisecond(), y);

}

class DataGenerator extends Timer implements ActionListener {

DataGenerator() {
super(100, null);
addActionListener(this);

}

public void actionPerformed(ActionEvent event) {
long f = Runtime.getRuntime().freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f);

}

CHAPTER 9. DYNAMIC CHARTS 71

}

public static void main(String[] args) {

JFrame frame = new JFrame("Memory Usage Demo");
MemoryUsage panel = new MemoryUsage();
frame.getContentPane().add(panel, BorderLayout.CENTER);
frame.setBounds(200, 120, 600, 280);
frame.setVisible(true);
panel.new DataGenerator().start();

frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

});
}

}

Chapter 10

Tooltips

10.1 Overview

JFreeChart includes mechanisms for generating, collecting and displaying tool
tips for individual components of a chart.

In this section, I describe:

• how to generate tool tips (including customisation of tool tips);

• how tool tips are collected;

• how to display tool tips;

• how to disable tool tips if you don’t need them;

10.2 Generating Tool Tips

If you want to use tool tips, you need to make sure they are generated as your
chart is being drawn. You do this by setting a tool tip generator for your plot
or, in many cases, the plot’s item renderer.

In the sub-sections that follow, I describe how to set a tool tip generator for the
common chart types.

10.2.1 Pie Charts

The PiePlot class generates tool tips using the PieToolTipGenerator interface.
A standard implementation (StandardPieItemLabelGenerator) is provided, and
you are free to create your own implementations.

To set the tool tip generator, use the following method in the PiePlot class:

public void setToolTipGenerator(PieToolTipGenerator generator);

Sets the tool tip generator for the pie chart. If you set this to null, no

tool tips will be generated.

72

CHAPTER 10. TOOLTIPS 73

10.2.2 Category Charts

Category charts—including most of the bar charts generated by JFreeChart—
are based on the CategoryPlot class and use a CategoryItemRenderer to draw
each data item. The CategoryToolTipGenerator interface specifies the method
via which the renderer will obtain tool tips (if required).

To set the tool tip generator for a category plot’s item renderer, use the following
method (defined in the AbstractCategoryItemRenderer class):

public void setToolTipGenerator(CategoryToolTipGenerator generator);

Sets the tool tip generator for the renderer. If you set this to null, no

tool tips will be generated.

10.2.3 XY Charts

XY charts—including scatter plots and all the time series charts generated
by JFreeChart—are based on the XYPlot class and use an XYItemRenderer to
draw each data item. The renderer generates tool tips (if required) using an
XYItemLabelGenerator.

To set the tool tip generator for an XY plot’s item renderer, use the following
method (defined in the AbstractXYItemRenderer class):

public void setToolTipGenerator(XYItemLabelGenerator generator);

Sets the tool tip generator for the renderer. If you set this to null, no

tool tips will be generated.

10.3 Collecting Tool Tips

Tool tips are collected, along with other chart entity information, using the
ChartRenderingInfo class. You need to supply an instance of this class to
JFreeChart’s draw() method, otherwise no tool tip information will be recorded
(even if a generator has been registered with the plot or the plot’s item renderer,
as described in the previous sections).

Fortunately, the ChartPanel class takes care of this automatically, so if you are
displaying your charts using the ChartPanel class you do not need to worry
about how tool tips are collected—it is done for you.

10.4 Displaying Tool Tips

Tool tips are automatically displayed by the ChartPanel class, provided that you
have set up a tool tip generator for the plot (or the plot’s renderer).

You can also enable or disable the display of tool tips in the ChartPanel class,
using this method:

public void setDisplayToolTips(boolean flag);

Switches the display of tool tips on or off.

CHAPTER 10. TOOLTIPS 74

10.5 Disabling Tool Tips

The most effective way to disable tool tips is to set the tool tip generator to
null. This ensures that no tool tip information is even generated, which can
save memory and processing time (particularly for charts with large datasets).

You can also disable the display of tool tips in the ChartPanel class, using the
method given in the previous section.

10.6 Customising Tool Tips

You can take full control of the text generated for each tool tip by providing
your own implementation of the appropriate tool tip generator interface.

Chapter 11

Item Labels

11.1 Introduction

11.1.1 Overview

For many chart types, JFreeChart will allow you to display item labels near each
data item in a chart. For example, you can display the actual value represented
by the bars in a bar chart—see figure 11.1.

Figure 11.1: A bar chart with item labels

In this chapter, I describe how to:

• make item labels visible (for the chart types that support item labels);

• change the appearance (font and color) of item labels;

• specify the location of item labels;

• customise the item label text.

75

CHAPTER 11. ITEM LABELS 76

A word of advice—charts are supposed to summarise your data, so use this
feature sparingly. If you feel it is necessary to display the actual data values all
over your chart, then you might consider presenting your data in a tabular form
instead.

11.1.2 Limitations

There are some limitations with respect to the item labels in the current release
of JFreeChart:

• some renderers do not support item labels;

• axis ranges are not automatically adjusted to take into account the item
labels—some labels may disappear off the chart if sufficient margins are
not set (use the setUpperMargin() and/or setLowerMargin() methods in
the relevant axis to adjust the settings).

In future releases, some or all of these limitations will be addressed.

11.2 Displaying Item Labels

11.2.1 Overview

Item labels are not visible by default, so you need to configure the renderer to
create and display them. This involves two steps:

• assign a CategoryItemLabelGenerator to the renderer—this is an object
that assumes responsibility for creating the labels;

• set a flag in the renderer to make the labels visible, either for all series
or, if you prefer, on a per series basis.

These steps are detailed in the following sections. In addition, you have the
option to customise the position of the item labels—this is described in section
11.4.

11.2.2 Assigning a Label Generator

Item labels are created by a CategoryItemLabelGenerator that is assigned to
the renderer (the same mechanism is also used for tooltips). To assign a new
generator, use the following code:

CategoryItemRenderer renderer = plot.getRenderer();

renderer.setLabelGenerator(new StandardCategoryItemLabelGenerator());

The StandardCategoryItemLabelGenerator is the only generator provided in the
JFreeChart distribution. You can customise the behaviour of the standard gen-
erator via settings that you can apply in the constructor, or you can create your
own generator as described in section 11.5.2.

CHAPTER 11. ITEM LABELS 77

11.2.3 Making Labels Visible For All Series

The following code will make item labels visible for the items in all series:
CategoryItemRenderer renderer = plot.getRenderer();

renderer.setItemLabelsVisible(true);

Once set, this flag takes precedence over any per series settings you may have
made elsewhere. In order for the per series settings to apply, you need to set
this flag to null (see section 11.2.4).

11.2.4 Making Labels Visible For Selected Series

If you prefer, you can set flags that control the visibility of the item labels on a
per series basis. For example, item labels are displayed only for the first series
in figure 11.2.

Figure 11.2: Item labels for selected series only

You can use code similar to the following:
CategoryItemRenderer renderer = plot.getRenderer();

renderer.setItemLabelsVisible(null); // clears the ALL series flag

renderer.setSeriesItemLabelsVisible(0, true);

renderer.setSeriesItemLabelsVisible(1, false);

Notice that the flag for “all series” has been set to null—this is important,
because the “all series” flag takes precedence over the “per series” flags.

11.2.5 Troubleshooting

If, after following the steps outlined in the previous sections, you still can’t see
any labels on your chart, there are a couple of things to consider:

• the renderer must have a CategoryItemLabelGenerator assigned to it—this
is an object that creates the text items that are used for each label.

• some renderers don’t yet support the display of item labels (refer to the
documentation for the renderer you are using).

CHAPTER 11. ITEM LABELS 78

11.3 Item Label Appearance

11.3.1 Overview

You can change the appearance of the item labels by changing the font and/or
the color used to display the labels. As for most other renderer attributes, the
settings can be made once for all series, or on a per series basis.

In the current release of JFreeChart, labels are drawn with a transparent back-
ground. You cannot set a background color for the labels, nor can you specify
that a border be drawn around the labels. This may change in the future.

11.3.2 Changing the Label Font

To change the font for the item labels in all series, you can use code similar to
the following:

CategoryItemRenderer renderer = plot.getRenderer();

renderer.setItemLabelFont(new Font("SansSerif", Font.PLAIN, 10));

Similarly, to set the font for individual series:
CategoryItemRenderer renderer = plot.getRenderer();

// clear the settings for ALL series...

renderer.setItemLabelFont(null);

// add settings for individual series...

renderer.setSeriesItemLabelFont(0, new Font("SansSerif", Font.PLAIN, 10));

renderer.setSeruesItemLabelFont(1, new Font("SansSerif", Font.BOLD, 10));

Notice how the font for all series has be set to null to prevent it from overriding
the per series settings.

11.3.3 Changing the Label Color

To change the color for the item labels in all series, you can use code similar to
the following:

CategoryItemRenderer renderer = plot.getRenderer();

renderer.setItemLabelPaint(Color.red);

Similarly, to set the color for individual series:
CategoryItemRenderer renderer = plot.getRenderer();

// clear the settings for ALL series...

renderer.setItemLabelPaint(null);

// add settings for individual series...

renderer.setSeriesItemLabelPaint(0, Color.red);

renderer.setSeriesItemLabelPaint(1, Color.blue);

Once again, notice how the paint for all series has been set to null to prevent
it from overriding the per series settings.

CHAPTER 11. ITEM LABELS 79

11.4 Item Label Positioning

11.4.1 Overview

The positioning of item labels is controlled by four attributes that are combined
into an ItemLabelPosition object. You can define label positions for items with
positive and negative values independently, via the following methods in the
CategoryItemRenderer interface:

public void setPositiveItemLabelPosition(ItemLabelPosition position);

public void setNegativeItemLabelPosition(ItemLabelPosition position);

Understanding how these attributes impact the final position of individual labels
is key to getting good results from the item label features in JFreeChart.

There are four attributes:

• the item label anchor - determines the base location for the item label;

• the text anchor - determines the point on the label that is aligned to the
base location;

• the rotation anchor - this is the point on the label text about which the
rotation (if any) is applied;

• the rotation angle - the angle through which the label is rotated.

These are described in the following sections.

11.4.2 The Item Label Anchor

The purpose of the item label anchor setting is to determine an (x, y) loca-
tion on the chart that is near to the data item that is being labelled. The
label is then aligned to this anchor point when it is being drawn. Refer to the
ItemLabelAnchor documentation for more information.

11.4.3 The Text Anchor

The text anchor determines which point on the label should be aligned with the
anchor point described in the previous section. It is possible to align the center
of the label with the anchor point, or the top-right of the label, or the bottom-
left, and so on...refer to the TextAnchor documentation for all the options.

Running the DrawStringDemo application in the org.jfree.demo package (in-
cluded in the JCommon distribution) is a good way to gain an understanding
of how the text anchor is used to align labels to a point on the screen.

11.4.4 The Rotation Anchor

The rotation anchor defines a point on the label about which the rotation (if
any) will be applied to the label. The DrawStringDemo class also demonstrates
this feature.

CHAPTER 11. ITEM LABELS 80

11.4.5 The Rotation Angle

The rotation angle defines the angle through which the label is rotated. The
angle is specified in radians, and the rotation point is defined by the rotation
anchor described in the previous section.

11.5 Customising the Item Label Text

11.5.1 Overview

Up to this point, we’ve relied on the label generator built in to JFreeChart
to create the text for the item labels. If you want to have complete con-
trol over the label text, you can write your own class that implements the
CategoryItemLabelGenerator interface.

In this section I provide a brief overview of the technique for implementing
a custom label generator, then present two examples to illustrate the type of
results you can achieve with this technique.

11.5.2 Implementing a Custom Label Generator

To develop a custom label generator, you simply need to write a class that
implements the method defined in the CategoryItemLabelGenerator interface:

public String generateItemLabel(CategoryDataset dataset,

int series, int category);

The renderer will call each method at the point that it requires a String use
for a label, and will pass in the CategoryDataset and the series and category

indices for the current item. This means that you have full access to the entire
dataset (not just the current item) for the creation of the label.

Both methods can return arbitrary String values, so you can apply any format-
ting you want to the results. It is also valid to return null if you prefer no label
to be displayed.

All this is best illustrated by way of examples, which are provided in the fol-
lowing sections.

11.6 Example 1 - Values Above a Threshold

11.6.1 Overview

In this first example, the goal is to display labels for the items that have a value
greater than some predefined threshold value (see figure 11.3).

It isn’t all that difficult to achieve, we simply need to:

• write a class that implements the CategoryItemLabelGenerator interface,
and implement the generateItemLabel() method in such a way that it
returns null for any item where the value is less than the threshold;

• create an instance of this new class, and assign it to the renderer using
the setLabelGenerator() method.

CHAPTER 11. ITEM LABELS 81

Figure 11.3: Item labels above a threshold

11.6.2 Source Code

The complete source code is presented below.

package org.jfree.chart.demo;

import java.awt.Color;
import java.awt.Dimension;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.labels.CategoryItemLabelGenerator;
import org.jfree.chart.plot.CategoryPlot;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.renderer.CategoryItemRenderer;
import org.jfree.data.CategoryDataset;
import org.jfree.data.DefaultCategoryDataset;
import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.RefineryUtilities;

/**
* A simple demo showing a label generator that only displays labels for items
* with a value that is greater than some threshold.
*/

public class ItemLabelDemo3 extends ApplicationFrame {

/**
* A custom label generator.
*/

static class LabelGenerator implements CategoryItemLabelGenerator {

/** The threshold. */
private double threshold;

/**
* Creates a new generator that only displays labels that are greater
* than or equal to the threshold value.
*
* @param threshold the threshold value.
*/

public LabelGenerator(double threshold) {
this.threshold = threshold;

}

CHAPTER 11. ITEM LABELS 82

/**
* Generates a label for the specified item. The label is typically a
* formatted version of the data value, but any text can be used.
*
* @param dataset the dataset (<code>null</code> not permitted).
* @param series the series index (zero-based).
* @param category the category index (zero-based).
*
* @return the label (possibly <code>null</code>).
*/

public String generateItemLabel(CategoryDataset dataset,
int series,
int category) {

String result = null;
Number value = dataset.getValue(series, category);
if (value != null) {

double v = value.doubleValue();
if (v > this.threshold) {

result = value.toString(); // could apply formatting here
}

}
return result;

}

}

/**
* Creates a new demo instance.
*
* @param title the frame title.
*/

public ItemLabelDemo3(String title) {

super(title);
CategoryDataset dataset = createDataset();
JFreeChart chart = createChart(dataset);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new Dimension(500, 270));
setContentPane(chartPanel);

}

/**
* Returns a sample dataset.
*
* @return the dataset.
*/

private CategoryDataset createDataset() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(11.0, "S1", "C1");
dataset.addValue(44.3, "S1", "C2");
dataset.addValue(93.0, "S1", "C3");
dataset.addValue(35.6, "S1", "C4");
dataset.addValue(75.1, "S1", "C5");
return dataset;

}

/**
* Creates a sample chart.
*
* @param dataset the dataset.
*
* @return the chart.
*/

private JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createBarChart(

"Item Label Demo 3", // chart title
"Category", // domain axis label

CHAPTER 11. ITEM LABELS 83

"Value", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
false, // include legend
true, // tooltips?
false // URLs?

);

chart.setBackgroundPaint(Color.white);

CategoryPlot plot = chart.getCategoryPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setUpperMargin(0.15);

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(true);
renderer.setLabelGenerator(new LabelGenerator(50.0));

return chart;

}

/**
* Starting point for the demonstration application.
*
* @param args ignored.
*/

public static void main(String[] args) {

ItemLabelDemo3 demo = new ItemLabelDemo3("Item Label Demo 3");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

11.7 Example 2 - Displaying Percentages

11.7.1 Overview

In this example, the requirement is to display a bar chart where each bar is
labelled with the value represented by the bar and also a percentage (where the
percentage is calculated relative to a particular bar within the series OR the
total of all the values in the series)—see figure 11.4.

In this implementation, the label generator calculates the percentage value on-
the-fly. If a category index is supplied in the constructor, the base value used to
calculate the percentage is taken from the specified category within the current
series. If no category index is available, then the total of all the values in the
current series is used as the base.

A default percentage formatter is created within the label generator—a more
sophisticated implementation would provide the ability for the formatter to be
customised via the generator’s constructor.

11.7.2 Source Code

The complete source code follows.

CHAPTER 11. ITEM LABELS 84

Figure 11.4: Percentage item labels

package org.jfree.chart.demo;

import java.awt.Color;
import java.awt.Dimension;
import java.text.NumberFormat;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.AxisLocation;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.labels.CategoryItemLabelGenerator;
import org.jfree.chart.plot.CategoryPlot;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.renderer.CategoryItemRenderer;
import org.jfree.data.CategoryDataset;
import org.jfree.data.DefaultCategoryDataset;
import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.RefineryUtilities;

/**
* A simple demo showing a label generator that displays labels that include
* a percentage calculation.
*
*/

public class ItemLabelDemo4 extends ApplicationFrame {

/**
* A custom label generator.
*/

static class LabelGenerator implements CategoryItemLabelGenerator {

/**
* The index of the category on which to base the percentage
* (null = use series total).
*/

private Integer category;

/** A percent formatter. */
private NumberFormat formatter = NumberFormat.getPercentInstance();

/**
* Creates a new label generator that displays the item value and a
* percentage relative to the value in the same series for the
* specified category.
*

CHAPTER 11. ITEM LABELS 85

* @param category the category index (zero-based).
*/

public LabelGenerator(int category) {
this(new Integer(category));

}

/**
* Creates a new label generator that displays the item value and
* a percentage relative to the value in the same series for the
* specified category. If the category index is <code>null</code>,
* the total of all items in the series is used.
*
* @param category the category index (<code>null</code> permitted).
*/

public LabelGenerator(Integer category) {
this.category = category;

}

/**
* Generates a label for the specified item. The label is typically
* a formatted version of the data value, but any text can be used.
*
* @param dataset the dataset (<code>null</code> not permitted).
* @param series the series index (zero-based).
* @param category the category index (zero-based).
*
* @return the label (possibly <code>null</code>).
*/

public String generateItemLabel(CategoryDataset dataset,
int series,
int category) {

String result = null;
double base = 0.0;
if (this.category != null) {

Number b = dataset.getValue(series, this.category.intValue());
base = b.doubleValue();

}
else {

base = calculateSeriesTotal(dataset, series);
}
Number value = dataset.getValue(series, category);
if (value != null) {

double v = value.doubleValue();
// you could apply some formatting here
result = value.toString()

+ " (" + this.formatter.format(v / base) + ")";
}
return result;

}

private double calculateSeriesTotal(CategoryDataset dataset, int series) {
double result = 0.0;
for (int i = 0; i < dataset.getColumnCount(); i++) {

Number value = dataset.getValue(series, i);
if (value != null) {

result = result + value.doubleValue();
}

}
return result;

}

}

/**
* Creates a new demo instance.
*
* @param title the frame title.
*/

public ItemLabelDemo4(String title) {

super(title);
CategoryDataset dataset = createDataset();

CHAPTER 11. ITEM LABELS 86

JFreeChart chart = createChart(dataset);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new Dimension(500, 270));
setContentPane(chartPanel);

}

/**
* Returns a sample dataset.
*
* @return the dataset.
*/

private CategoryDataset createDataset() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(100.0, "S1", "C1");
dataset.addValue(44.3, "S1", "C2");
dataset.addValue(93.0, "S1", "C3");
dataset.addValue(80.0, "S2", "C1");
dataset.addValue(75.1, "S2", "C2");
dataset.addValue(15.1, "S2", "C3");
return dataset;

}

/**
* Creates a sample chart.
*
* @param dataset the dataset.
*
* @return the chart.
*/

private JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createBarChart(

"Item Label Demo 4", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.HORIZONTAL, // orientation
true, // include legend
true, // tooltips?
false // URLs?

);

chart.setBackgroundPaint(Color.white);

CategoryPlot plot = chart.getCategoryPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);
plot.setRangeAxisLocation(AxisLocation.BOTTOM_OR_LEFT);

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setUpperMargin(0.25);

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(true);

// use one or the other of the following lines to see the different modes for
// the label generator...
renderer.setItemLabelGenerator(new LabelGenerator(null));
//renderer.setItemLabelGenerator(new LabelGenerator(0));

return chart;

}

/**
* Starting point for the demonstration application.
*
* @param args ignored.
*/

CHAPTER 11. ITEM LABELS 87

public static void main(String[] args) {

ItemLabelDemo4 demo = new ItemLabelDemo4("Item Label Demo 4");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

Chapter 12

Using Multiple Axes

12.1 Introduction

JFreeChart supports the use of multiple axes in the CategoryPlot and XYPlot

classes. You can use this feature to display two or more datasets on a single
chart, while making allowance for the fact that the datasets may contain data
of vastly different magnitudes—see figure 12.1 for an example.

Figure 12.1: A chart with multiple axes

Typical charts constructed with JFreeChart use a plot, a dataset, a renderer, a
domain axis and a range axis. To allow for multiple axis support, JFreeChart
has been extended to allow for zero, one or many:

• secondary datasets;

• secondary renderers;

• secondary domain axes;

• secondary range axes;

In this section, several examples are presented showing how to use these addi-
tional datasets, renderers and axes.

88

CHAPTER 12. USING MULTIPLE AXES 89

12.2 An Example

12.2.1 Introduction

The MultipleAxisDemo1.java application (included in the JFreeChart distribu-
tion) provides a good example of how to create a chart with multiple axes. This
section provides some notes on the steps taken within that code.

12.2.2 Create a Chart

To create a chart with multiple axes, datasets, and renderers, you should first
create a regular chart (for example, using the ChartFactory class). You can use
any chart that is constructed using a CategoryPlot or an XYPlot.

12.2.3 Add a Secondary Axis

You can create and add a secondary axis as follows:
NumberAxis axis2 = new NumberAxis("Range Axis 2");

plot.setSecondaryRangeAxis(0, axis2);

plot.setSecondaryRangeAxisLocation(0, AxisLocation.BOTTOM OR RIGHT);

In the code above, a NumberAxis with default settings has been used—you are
free to customise the axis in the usual ways.

The setSecondaryRangeAxis() method is used to add the axis to the plot. Note
that an index of 0 (zero) has been used—you can add as many secondary axes
as you require, by incrementing the index each time you add a new axis.

The setSecondaryRangeAxisLocation() method allows you to specify where the
axis will appear on the chart, using the AxisLocation class. You can have the
axis on the same side as the primary axis, or on the opposite side—the choice
is yours. In the example, BOTTOM OR RIGHT is specified, which means (for a range
axis) on the right if the plot has a vertical orientation, or at the bottom if the
plot has a horizontal orientation.

At this point, no secondary dataset has been added to the chart, so if you were
to display the chart you would see the secondary axis, but it would have no data
plotted against it.

12.2.4 Add a Secondary Dataset

Use the setSecondaryDataset() method to add a secondary dataset to the plot:
XYDataset dataset2 = ... // up to you

plot.setSecondaryDataset(0, dataset2);

By default, the dataset will be plotted against the primary range axis. To have
the dataset plotted against a secondary axis, use the mapSecondaryDatasetTo-

DomainAxis() and mapSecondaryDatasetToRangeAxis() methods. These methods
accept two arguments, the first is the index of the secondary dataset, and the
second is an Integer where:

• a null value indicates the primary range axis;

• a non-null value indicates the index of the secondary range axis against
which the dataset should be plotted.

CHAPTER 12. USING MULTIPLE AXES 90

12.2.5 Add a Secondary Renderer

Use the setSecondaryRenderer() method to add a renderer that will be used to
plot the data from a secondary dataset:

XYItemRenderer renderer2 = ... // up to you

plot.setSecondaryRenderer(0, renderer2);

The index (0 in this case) should correspond to the index of the secondary axis
and dataset added previously.

Note: if you don’t specify a secondary renderer, the primary renderer will be
used instead, but then the series colors will be shared between the primary
dataset and the secondary dataset.

12.3 Hints and Tips

When using multiple axes, you need to provide some visual cue to readers to
indicate which axis applies to a particular series. In the MultipleAxisDemo1.java

application, the color of the axis label text has been changed to match the series
color.

Additional demos included in the JFreeChart distribution include:

• DualAxisDemo.java

• DualAxisDemo2.java

• DualAxisDemo3.java

• DualAxisDemo4.java

Chapter 13

Combined Charts

13.1 Introduction

JFreeChart supports combined charts via several plot classes that can manage
any number of sub-plots:

• CombinedDomainCategoryPlot / CombinedRangeCategoryPlot;

• CombinedDomainXYPlot / CombinedRangeXYPlot;

This section presents a few examples that use the combined chart facilities
provided by JFreeChart. All the examples are included in the JFreeChart dis-
tribution (in the src/org/jfree/chart/demo directory).

13.2 Combined Domain Category Plot

13.2.1 Overview

A combined domain category plot is a plot that displays two or more subplots
(instances of CategoryPlot) that share a common domain axis. Each subplot
maintains its own range axis. An example is shown in figure 13.1.

It is possible to display this chart with a horizontal or vertical orientation—the
example shown has a vertical orientation.

13.2.2 Constructing the Chart

A demo application (CombinedCategoryPlotDemo1.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory) provides an exam-
ple of how to create this type of chart. The key step is the creation of a
CombinedDomainCategoryPlot instance, to which subplots are added:

CategoryAxis domainAxis = new CategoryAxis("Category");
CombinedDomainCategoryPlot plot = new CombinedDomainCategoryPlot(domainAxis);
plot.add(subplot1, 2);
plot.add(subplot2, 1);

JFreeChart result = new JFreeChart(
"Combined Domain Category Plot Demo",

91

CHAPTER 13. COMBINED CHARTS 92

Figure 13.1: A combined domain category plot

new Font("SansSerif", Font.BOLD, 12),
plot,
true

);

Notice how subplot1 has been added with a weight of 2 (the second argument
in the add() method, while subplot2 has been added with a weight of 1. This
controls the amount of space allocated to each plot.

The subplots are regular CategoryPlot instances that have had their domain
axis set to null. For example, in the demo application the following code is
used (it includes some customisation of the subplots):

CategoryDataset dataset1 = createDataset1();
NumberAxis rangeAxis1 = new NumberAxis("Value");
rangeAxis1.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
LineAndShapeRenderer renderer1 = new LineAndShapeRenderer();
renderer1.setBaseToolTipGenerator(new StandardCategoryItemLabelGenerator());
CategoryPlot subplot1 = new CategoryPlot(dataset1, null, rangeAxis1, renderer1);
subplot1.setDomainGridlinesVisible(true);

CategoryDataset dataset2 = createDataset2();
NumberAxis rangeAxis2 = new NumberAxis("Value");
rangeAxis2.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
BarRenderer renderer2 = new BarRenderer();
renderer2.setBaseToolTipGenerator(new StandardCategoryItemLabelGenerator());
CategoryPlot subplot2 = new CategoryPlot(dataset2, null, rangeAxis2, renderer2);
subplot2.setDomainGridlinesVisible(true);

13.3 Combined Range Category Plot

13.3.1 Overview

A combined range category plot is a plot that displays two or more subplots
(instances of CategoryPlot) that share a common range axis. Each subplot
maintains its own domain axis. An example is shown in figure 13.2.

It is possible to display this chart with a horizontal or vertical orientation (the
example above has a vertical orientation).

CHAPTER 13. COMBINED CHARTS 93

Figure 13.2: A combined range category plot.

13.3.2 Constructing the Chart

A demo application (CombinedCategoryPlotDemo2.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory) provides an exam-
ple of how to create this type of chart. The key step is the creation of a
CombinedRangeCategoryPlot instance, to which subplots are added:

ValueAxis rangeAxis = new NumberAxis("Value");
CombinedRangeCategoryPlot plot = new CombinedRangeCategoryPlot(rangeAxis);
plot.add(subplot1, 3);
plot.add(subplot2, 2);

JFreeChart result = new JFreeChart(
"Combined Range Category Plot Demo",
new Font("SansSerif", Font.BOLD, 12),
plot,
true

);

Notice how subplot1 has been added with a weight of 3 (the second argument
in the add() method), while subplot2 has been added with a weight of 2. This
controls the amount of space allocated to each plot.

The subplots are regular CategoryPlot instances that have had their range axis
set to null. For example, in the demo application the following code is used (it
includes some customisation of the subplots):

CategoryDataset dataset1 = createDataset1();
CategoryAxis domainAxis1 = new CategoryAxis("Class 1");
domainAxis1.setCategoryLabelPositions(CategoryLabelPositions.UP 45);
domainAxis1.setMaxCategoryLabelWidthRatio(5.0f);
LineAndShapeRenderer renderer1 = new LineAndShapeRenderer();
renderer1.setBaseToolTipGenerator(new StandardCategoryItemLabelGenerator());
CategoryPlot subplot1 = new CategoryPlot(dataset1, domainAxis1, null, renderer1);
subplot1.setDomainGridlinesVisible(true);

CategoryDataset dataset2 = createDataset2();
CategoryAxis domainAxis2 = new CategoryAxis("Class 2");
domainAxis2.setCategoryLabelPositions(CategoryLabelPositions.UP 45);
domainAxis2.setMaxCategoryLabelWidthRatio(5.0f);
BarRenderer renderer2 = new BarRenderer();
renderer2.setBaseToolTipGenerator(new StandardCategoryItemLabelGenerator());
CategoryPlot subplot2 = new CategoryPlot(dataset2, domainAxis2, null, renderer2);
subplot2.setDomainGridlinesVisible(true);

CHAPTER 13. COMBINED CHARTS 94

13.4 Combined Domain XY Plot

13.4.1 Overview

A combined domain XY plot is a plot that displays two or more subplots (in-
stances of XYPlot) that share a common domain axis. Each subplot maintains
its own range axis. An example is shown in figure 13.3.

Figure 13.3: A combined domain XY plot

It is possible to display this chart with a horizontal or vertical orientation (the
example shown has a vertical orientation).

13.4.2 Constructing the Chart

A demo application (CombinedXYPlotDemo1.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory) provides an exam-
ple of how to create this type of chart. The key step is the creation of a
CombinedDomainXYPlot instance, to which subplots are added:

CombinedDomainXYPlot plot = new CombinedDomainXYPlot(new NumberAxis("Domain"));
plot.setGap(10.0);

plot.add(subplot1, 1);
plot.add(subplot2, 1);
plot.setOrientation(PlotOrientation.VERTICAL);

return new JFreeChart(
"CombinedDomainXYPlot Demo",
JFreeChart.DEFAULT TITLE FONT, plot, true

);

Notice how the subplots are added with weights (both 1 in this case). This
controls the amount of space allocated to each plot.

The subplots are regular XYPlot instances that have had their domain axis set
to null. For example, in the demo application the following code is used (it
includes some customisation of the subplots):

XYDataset data1 = createDataset1();
XYItemRenderer renderer1 = new StandardXYItemRenderer();
NumberAxis rangeAxis1 = new NumberAxis("Range 1");

CHAPTER 13. COMBINED CHARTS 95

XYPlot subplot1 = new XYPlot(data1, null, rangeAxis1, renderer1);
subplot1.setRangeAxisLocation(AxisLocation.BOTTOM OR LEFT);

XYTextAnnotation annotation = new XYTextAnnotation("Hello!", 50.0, 10000.0);
annotation.setFont(new Font("SansSerif", Font.PLAIN, 9));
annotation.setRotationAngle(Math.PI / 4.0);
subplot1.addAnnotation(annotation);

// create subplot 2...
XYDataset data2 = createDataset2();
XYItemRenderer renderer2 = new StandardXYItemRenderer();
NumberAxis rangeAxis2 = new NumberAxis("Range 2");
rangeAxis2.setAutoRangeIncludesZero(false);
XYPlot subplot2 = new XYPlot(data2, null, rangeAxis2, renderer2);
subplot2.setRangeAxisLocation(AxisLocation.TOP OR LEFT);

13.5 Combined Range XY Plot

13.5.1 Overview

A combined range XY plot is a plot that displays two or more subplots (instances
of XYPlot) that share a common range axis. Each subplot maintains its own
domain axis. An example is shown in figure 13.4.

Figure 13.4: A combined range XY plot

It is possible to display this chart with a horizontal or vertical orientation (the
example shown has a vertical orientation).

13.5.2 Constructing the Chart

A demo application (CombinedXYPlotDemo2.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory) provides an exam-
ple of how to create this type of chart. The key step is the creation of a
CombinedRangeXYPlot instance, to which subplots are added:

// create the plot...
CombinedRangeXYPlot plot = new CombinedRangeXYPlot(new NumberAxis("Value"));
plot.add(subplot1, 1);
plot.add(subplot2, 1);

return new JFreeChart(

CHAPTER 13. COMBINED CHARTS 96

"Combined (Range) XY Plot",
JFreeChart.DEFAULT TITLE FONT, plot, true

);

Notice how the subplots are added with weights (both 1 in this case). This
controls the amount of space allocated to each plot.

The subplots are regular XYPlot instances that have had their range axis set
to null. For example, in the demo application the following code is used (it
includes some customisation of the subplots):

// create subplot 1...
IntervalXYDataset data1 = createDataset1();
XYItemRenderer renderer1 = new XYBarRenderer(0.20);
renderer1.setToolTipGenerator(

new StandardXYItemLabelGenerator(
new SimpleDateFormat("d-MMM-yyyy"), new DecimalFormat("0,000.0")

)
);
XYPlot subplot1 = new XYPlot(data1, new DateAxis("Date"), null, renderer1);

// create subplot 2...
XYDataset data2 = createDataset2();
XYItemRenderer renderer2 = new StandardXYItemRenderer();
renderer2.setToolTipGenerator(

new StandardXYItemLabelGenerator(
new SimpleDateFormat("d-MMM-yyyy"), new DecimalFormat("0,000.0")

)
);
XYPlot subplot2 = new XYPlot(data2, new DateAxis("Date"), null, renderer2);

Chapter 14

Datasets and JDBC

14.1 Introduction

In this section, I describe the use of several datasets that are designed to work
with JDBC to obtain data from database tables:

• JDBCPieDataset

• JDBCCategoryDataset

• JDBCXYDataset

These datasets have been developed by Bryan Scott of the Australian Antarctic
Division.

14.2 About JDBC

JDBC is a high-level Java API for working with relational databases. JDBC
does a good job of furthering Java’s platform independence, making it possible
to write portable code that will work with many different database systems.

JDBC provides a mechanism for loading a JDBC driver specific to the database
system actually being used. JDBC drivers are available for many databases, on
many different platforms.

14.3 Sample Data

To see the JDBC datasets in action, you need to create some sample data in a
test database.

Here is listed some sample data that will be used to create a pie chart, a bar
chart and a time series chart.

A pie chart will be created using this data (in a table called piedata1):

CATEGORY | VALUE

---------+------

London | 54.3

97

CHAPTER 14. DATASETS AND JDBC 98

New York | 43.4

Paris | 17.9

Similarly, a bar chart will be created using this data (in a table called category-
data1):

CATEGORY | SERIES1 | SERIES2 | SERIES3

---------+---------+---------+--------

London | 54.3 | 32.1 | 53.4

New York | 43.4 | 54.3 | 75.2

Paris | 17.9 | 34.8 | 37.1

Finally, a time series chart will be generated using this data (in a table called
xydata1):

X | SERIES1 | SERIES2 | SERIES3

-----------+---------+---------+--------

1-Aug-2002 | 54.3 | 32.1 | 53.4

2-Aug-2002 | 43.4 | 54.3 | 75.2

3-Aug-2002 | 39.6 | 55.9 | 37.1

4-Aug-2002 | 35.4 | 55.2 | 27.5

5-Aug-2002 | 33.9 | 49.8 | 22.3

6-Aug-2002 | 35.2 | 48.4 | 17.7

7-Aug-2002 | 38.9 | 49.7 | 15.3

8-Aug-2002 | 36.3 | 44.4 | 12.1

9-Aug-2002 | 31.0 | 46.3 | 11.0

You should set up a test database containing these tables...ask your database ad-
ministrator to help you if necessary. I’ve called my test database jfreechartdb,
but you can change the name if you want to.

In the next section I document the steps I used to set up this sample data
usingPostgreSQL, the database system that I have available for testing purposes.
If you are using a different system, you may need to perform a slightly different
procedure—refer to your database documentation for information.

14.4 PostgreSQL

14.4.1 About PostgreSQL

PostgreSQL is a powerful object-relational database server, distributed under
an open-source licence. You can find out more about PostgreSQL at:

http://www.postgresql.org

Note: although PostgreSQL is free, it has most of the features of large com-
mercial relational database systems. I encourage you to install it and try it
out.

14.4.2 Creating a New Database

First, while logged in as the database administrator, I create a test database
called jfreechartdb:

CHAPTER 14. DATASETS AND JDBC 99

CREATE DATABASE jfreechartdb;

Next, I create a user jfreechart:

CREATE USER jfreechart WITH PASSWORD ’password’;

This username and password will be used to connect to the database via JDBC.

14.4.3 Creating the Pie Chart Data

To create the table for the pie dataset:

CREATE TABLE piedata1 (

category VARCHAR(32),

value FLOAT

);

...and to populate it:

INSERT INTO piedata1 VALUES (’London’, 54.3);

INSERT INTO piedata1 VALUES (’New York’, 43.4);

INSERT INTO piedata1 VALUES (’Paris’, 17.9);

14.4.4 Creating the Category Chart Data

To create the table for the category dataset:

CREATE TABLE categorydata1 (

category VARCHAR(32),

series1 FLOAT,

series2 FLOAT,

series3 FLOAT

);

...and to populate it:

INSERT INTO categorydata1 VALUES (’London’, 54.3, 32.1, 53.4);

INSERT INTO categorydata1 VALUES (’New York’, 43.4, 54.3, 75.2);

INSERT INTO categorydata1 VALUES (’Paris’, 17.9, 34.8, 37.1);

14.4.5 Creating the XY Chart Data

To create the table for the XY dataset:

CREATE TABLE xydata1 (

date DATE,

series1 FLOAT,

series2 FLOAT,

series3 FLOAT

);

...and to populate it:

CHAPTER 14. DATASETS AND JDBC 100

INSERT INTO xydata1 VALUES (’1-Aug-2002’, 54.3, 32.1, 53.4);

INSERT INTO xydata1 VALUES (’2-Aug-2002’, 43.4, 54.3, 75.2);

INSERT INTO xydata1 VALUES (’3-Aug-2002’, 39.6, 55.9, 37.1);

INSERT INTO xydata1 VALUES (’4-Aug-2002’, 35.4, 55.2, 27.5);

INSERT INTO xydata1 VALUES (’5-Aug-2002’, 33.9, 49.8, 22.3);

INSERT INTO xydata1 VALUES (’6-Aug-2002’, 35.2, 48.4, 17.7);

INSERT INTO xydata1 VALUES (’7-Aug-2002’, 38.9, 49.7, 15.3);

INSERT INTO xydata1 VALUES (’8-Aug-2002’, 36.3, 44.4, 12.1);

INSERT INTO xydata1 VALUES (’9-Aug-2002’, 31.0, 46.3, 11.0);

Granting Table Permissions

The last step in setting up the sample database is to grant read access to the
new tables to the user jfreechart:

GRANT SELECT ON piedata1 TO jfreechart;

GRANT SELECT ON categorydata1 TO jfreechart;

GRANT SELECT ON xydata1 TO jfreechart;

14.5 The JDBC Driver

To access the sample data via JDBC, you need to obtain a JDBC driver for
your database. For PostgreSQL, I downloaded a free driver from:

http://jdbc.postgresql.org

In order to use this driver, I need to ensure that the jar file containing the driver
is on the classpath.

14.6 The Demo Applications

14.6.1 JDBCPieChartDemo

The JDBCPieChartDemo application will generate a pie chart using the data in
the piedata1 table, providing that you have configured your database correctly.

The code for reading the data is in the readData() method:

private PieDataset readData() {

JDBCPieDataset data = null;

String url = "jdbc:postgresql://nomad/jfreechartdb";
Connection con;

try {
Class.forName("org.postgresql.Driver");

}
catch (ClassNotFoundException e) {

System.err.print("ClassNotFoundException: ");
System.err.println(e.getMessage());

}

try {
con = DriverManager.getConnection(url, "jfreechart", "password");

data = new JDBCPieDataset(con);
String sql = "SELECT * FROM PIEDATA1;";

CHAPTER 14. DATASETS AND JDBC 101

data.executeQuery(sql);
con.close();

}

catch (SQLException e) {
System.err.print("SQLException: ");
System.err.println(e.getMessage());

}

catch (Exception e) {
System.err.print("Exception: ");
System.err.println(e.getMessage());

}

return data;

}

Important things to note in the code are:

• the url used to reference the test database includes the name of my test
server (nomad), you will need to modify this;

• a connection is made to the database using the username/password com-
bination jfreechart/password;

• the query used to pull the data from the database is a standard SELECT
query, but you can use any SQL query as long as it returns columns in
the required format (refer to the JDBCPieDataset class documentation for
details).

14.6.2 JDBCCategoryChartDemo

The JDBCCategoryChartDemo application generates a bar chart using the data
in the categorydata1 table. The code is almost identical to the JDBCPieChart-
Demo. Once again, you can use any SQL query as long as it returns columns in
the required format (refer to the JDBCCategoryDataset class documentation for
details).

14.6.3 JDBCXYChartDemo

The JDBCXYChartDemo application generates a time series chart using the data
in the xydata1 table. The code is almost identical to the JDBCPieChartDemo.
Once again, you can use any SQL query as long as it returns columns in the
required format (refer to the JDBCXYDataset class documentation for details).

Chapter 15

Exporting Charts to
Acrobat PDF

15.1 Introduction

In this section, I describe how to export a chart to an Acrobat PDF file using
JFreeChart and iText. Along with the description, I provide a small demonstra-
tion application that creates a PDF file containing a basic chart. The resulting
file can be viewed using Acrobat Reader, or any other software that is capable
of reading and displaying PDF files.

15.2 What is Acrobat PDF?

Acrobat PDF is a widely used electronic document format. Its popularity is
due, at least in part, to its ability to reproduce high quality output on a variety
of different platforms.

PDF was created by Adobe Systems Incorporated. Adobe provide a free (but
closed source) application called Acrobat Reader for reading PDF documents.
Acrobat Reader is available on most end-user computing platforms, including
GNU/Linux, Windows, Unix, Macintosh and others.

If your system doesn’t have Acrobat Reader installed, you can download a copy
from:

http://www.adobe.com/products/acrobat/readstep.html

On some platforms, there are free (in the GNU sense) software packages available
for viewing PDF files. Ghostview on Linux is one example.

15.3 iText

iText is a popular free Java class library for creating documents in PDF format.
It is developed by Bruno Lowagie, Paulo Soares and others. The home page for
iText is:

102

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 103

http://www.lowagie.com/iText

At the time of writing, the latest version of iText is 1.01.

15.4 Graphics2D

JFreeChart can work easily with iText because iText provides a Graphics2D
implementation. Before I proceed to the demonstration application, I will briefly
review the Graphics2D class.

The java.awt.Graphics2D class, part of the standard Java 2D API, defines
a range of methods for drawing text and graphics in a two dimensional space.
Particular subclasses of Graphics2D handle all the details of mapping the output
(text and graphics) to specific devices.

JFreeChart has been designed to draw charts using only the methods defined
by the Graphics2D class. This means that JFreeChart can generate output to
any target that can provide a Graphics2D subclass.

JFreeChart

+draw(Graphics2D)

PDF

Graphics2D

Figure 15.1: The JFreeChart draw(...) method

iText incorporates a PdfGraphics2D class, which means that iText is capa-
ble of generating PDF content based on calls to the methods defined by the
Graphics2D class...and this makes it easy to produce charts in PDF format, as
you will see in the following sections.

15.5 Getting Started

To compile and run the demonstration application, you will need the following
jar files:

File: Description:

jfreechart-0.9.18.jar The JFreeChart class library.
jcommon-0.9.3.jar The JCommon class library (used by JFreeChart).
iText-1.01.jar The iText class library.

The first two files are included with JFreeChart, and the third is the iText
runtime.

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 104

15.6 The Application

The first thing the sample application needs to do is create a chart. Here we
create a time series chart:

// create a chart...
XYDataset dataset = createDataset();
JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Legal & General Unit Trust Prices",
"Date",
"Price Per Unit",
dataset,
true,
true,
false

);

// some additional chart customisation here...

There is nothing special here—in fact you could replace the code above with any
other code that creates a JFreeChart object. You are encouraged to experiment.

Next, I will save a copy of the chart in a PDF file:

// write the chart to a PDF file...
File fileName = new File(System.getProperty("user.home") + "/jfreechart1.pdf");
saveChartAsPDF(fileName, chart, 400, 300, new DefaultFontMapper());

There are a couple of things to note here.

First, I have hard-coded the filename used for the PDF file. I’ve done this to
keep the sample code short. In a real application, you would provide some other
means for the user to specify the filename, perhaps by presenting a file chooser
dialog.

Second, the saveChartAsPDF(...) method hasn’t been implemented yet! To
create that method, I’ll first write another more general method, writeChartAs-
PDF(...). This method performs most of the work that will be required by the
saveChartAsPDF(...) method, but it writes data to an output stream rather
than a file.

public static void writeChartAsPDF(OutputStream out,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

Rectangle pagesize = new Rectangle(width, height);
Document document = new Document(pagesize, 50, 50, 50, 50);
try {

PdfWriter writer = PdfWriter.getInstance(document, out);
document.addAuthor("JFreeChart");
document.addSubject("Demonstration");
document.open();
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(width, height);
Graphics2D g2 = tp.createGraphics(width, height, mapper);
Rectangle2D r2D = new Rectangle2D.Double(0, 0, width, height);
chart.draw(g2, r2D);
g2.dispose();
cb.addTemplate(tp, 0, 0);

}
catch (DocumentException de) {

System.err.println(de.getMessage());
}
document.close();

}

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 105

Inside this method, you will see some code that sets up and opens an iText
document, obtains a Graphics2D instance from the document, draws the chart
using the Graphics2D object, and closes the document.

You will also notice that one of the parameters for this method is a FontMapper
object. The FontMapper interface maps Java Font objects to the BaseFont
objects used by iText.

The DefaultFontMapper class is predefined with default mappings for the Java
logical fonts. If you use only these fonts, then it is enough to create a Default-
FontMapper using the default constructor. If you want to use other fonts (for
example, a font that supports a particular character set) then you need to do
more work. I’ll give an example of this later.

In the implementation of the writeChartAsPDF(...) method, I’ve chosen to
create a PDF document with a custom page size (matching the requested size
of the chart). You can easily adapt the code to use a different page size, alter
the size and position of the chart and even draw multiple charts inside one PDF
document.

Now that I have a method to send PDF data to an output stream, it is straight-
forward to implement the saveChartAsPDF(...) method. Simply create a
FileOutputStream and pass it on to the writeChartAsPDF(...) method:

public static void saveChartAsPDF(File file,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

OutputStream out = new BufferedOutputStream(new FileOutputStream(file));
writeChartAsPDF(out, chart, width, height, mapper);
out.close();

}

This is all the code that is required. The pieces can be assembled into the
following program (reproduced in full here so that you can see all the required
import statements and the context in which the code is run):

package com.jrefinery.chart.demo;

import java.awt.Graphics2D;
import java.awt.geom.Rectangle2D;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.text.SimpleDateFormat;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.StandardLegend;
import org.jfree.chart.axis.DateAxis;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.StandardXYItemRenderer;
import org.jfree.chart.renderer.XYItemRenderer;
import org.jfree.data.XYDataset;
import org.jfree.data.time.Month;
import org.jfree.data.time.TimeSeries;
import org.jfree.data.time.TimeSeriesCollection;

import com.lowagie.text.Document;
import com.lowagie.text.DocumentException;

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 106

import com.lowagie.text.Rectangle;
import com.lowagie.text.pdf.DefaultFontMapper;
import com.lowagie.text.pdf.FontMapper;
import com.lowagie.text.pdf.PdfContentByte;
import com.lowagie.text.pdf.PdfTemplate;
import com.lowagie.text.pdf.PdfWriter;

/**
* A simple demonstration showing how to write a chart to PDF format using
* JFreeChart and iText.
* <P>
* You can download iText from http://www.lowagie.com/iText.
*/

public class ChartToPDFDemo {

/**
* Saves a chart to a PDF file.
*
* @param file the file.
* @param chart the chart.
* @param width the chart width.
* @param height the chart height.
*/

public static void saveChartAsPDF(File file,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

OutputStream out = new BufferedOutputStream(new FileOutputStream(file));
writeChartAsPDF(out, chart, width, height, mapper);
out.close();

}

/**
* Writes a chart to an output stream in PDF format.
*
* @param out the output stream.
* @param chart the chart.
* @param width the chart width.
* @param height the chart height.
*
*/

public static void writeChartAsPDF(OutputStream out,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

Rectangle pagesize = new Rectangle(width, height);
Document document = new Document(pagesize, 50, 50, 50, 50);
try {

PdfWriter writer = PdfWriter.getInstance(document, out);
document.addAuthor("JFreeChart");
document.addSubject("Demonstration");
document.open();
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(width, height);
Graphics2D g2 = tp.createGraphics(width, height, mapper);
Rectangle2D r2D = new Rectangle2D.Double(0, 0, width, height);
chart.draw(g2, r2D);
g2.dispose();
cb.addTemplate(tp, 0, 0);

}
catch (DocumentException de) {

System.err.println(de.getMessage());
}
document.close();

}

/**
* Creates a dataset, consisting of two series of monthly data. * *
*

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 107

* @return the dataset.
*/

public static XYDataset createDataset() {

TimeSeries s1 = new TimeSeries("L&G European Index Trust", Month.class);
s1.add(new Month(2, 2001), 181.8);
s1.add(new Month(3, 2001), 167.3);
s1.add(new Month(4, 2001), 153.8);
s1.add(new Month(5, 2001), 167.6);
s1.add(new Month(6, 2001), 158.8);
s1.add(new Month(7, 2001), 148.3);
s1.add(new Month(8, 2001), 153.9);
s1.add(new Month(9, 2001), 142.7);
s1.add(new Month(10, 2001), 123.2);
s1.add(new Month(11, 2001), 131.8);
s1.add(new Month(12, 2001), 139.6);
s1.add(new Month(1, 2002), 142.9);
s1.add(new Month(2, 2002), 138.7);
s1.add(new Month(3, 2002), 137.3);
s1.add(new Month(4, 2002), 143.9);
s1.add(new Month(5, 2002), 139.8);
s1.add(new Month(6, 2002), 137.0);
s1.add(new Month(7, 2002), 132.8);

TimeSeries s2 = new TimeSeries("L&G UK Index Trust", Month.class);
s2.add(new Month(2, 2001), 129.6);
s2.add(new Month(3, 2001), 123.2);
s2.add(new Month(4, 2001), 117.2);
s2.add(new Month(5, 2001), 124.1);
s2.add(new Month(6, 2001), 122.6);
s2.add(new Month(7, 2001), 119.2);
s2.add(new Month(8, 2001), 116.5);
s2.add(new Month(9, 2001), 112.7);
s2.add(new Month(10, 2001), 101.5);
s2.add(new Month(11, 2001), 106.1);
s2.add(new Month(12, 2001), 110.3);
s2.add(new Month(1, 2002), 111.7);
s2.add(new Month(2, 2002), 111.0);
s2.add(new Month(3, 2002), 109.6);
s2.add(new Month(4, 2002), 113.2);
s2.add(new Month(5, 2002), 111.6);
s2.add(new Month(6, 2002), 108.8);
s2.add(new Month(7, 2002), 101.6);

TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(s1);
dataset.addSeries(s2);

return dataset;
}

public static void main(String[] args) {
try {

// create a chart...
XYDataset dataset = createDataset();
JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Legal & General Unit Trust Prices",
"Date",
"Price Per Unit",
dataset,
true,
true,
false

);

// some additional chart customisation here...
StandardLegend sl = (StandardLegend) chart.getLegend();
sl.setDisplaySeriesShapes(true);
XYPlot plot = chart.getXYPlot();
XYItemRenderer renderer = plot.getRenderer();
if (renderer instanceof StandardXYItemRenderer) {

StandardXYItemRenderer rr = (StandardXYItemRenderer) renderer;
rr.setPlotShapes(true);
rr.setShapesFilled(true);

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 108

}
DateAxis axis = (DateAxis) plot.getDomainAxis();
axis.setDateFormatOverride(new SimpleDateFormat("MMM-yyyy"));

// write the chart to a PDF file...
File fileName = new File(System.getProperty("user.home")

+ "/jfreechart1.pdf");
saveChartAsPDF(fileName, chart, 400, 300, new DefaultFontMapper());

}
catch (IOException e) {

System.out.println(e.getMessage());
}

}

}

Before you compile and run the application, remember to change the file name
used for the PDF file to something appropriate for your system! And include
the jar files listed in section 15.5 on your classpath.

15.7 Viewing the PDF File

After compiling and running the sample application, you can view the resulting
PDF file using Acrobat Reader:

Acrobat Reader provides a zooming facility to allow you to get a close up view
of your charts.

15.8 Unicode Characters

It is possible to use the full range of Unicode characters in JFreeChart and iText,
as long as you are careful about which fonts you use. In this section, I present
some modifications to the previous example to show how to do this.

15.8.1 Background

Internally, Java uses the Unicode character encoding to represent text strings.
This encoding uses sixteen bits per character, which means there are potentially

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 109

65,536 different characters available (the Unicode standard defines something
like 38,000 characters).

You can use any of these characters in both JFreeChart and iText, subject to
one proviso: the font you use to display the text must define the characters used
or you will not be able to see them.

Many fonts are not designed to display the entire Unicode character set. The fol-
lowing website contains useful information about fonts that do support Unicode
(at least to some extent):

http://www.slovo.info/unifonts.htm

I have tried out the tahoma.ttf font with success. In fact, I will use this font
in the example that follows. The Tahoma font doesn’t support every charac-
ter defined in Unicode, so if you have specific requirements then you need to
choose an appropriate font. At one point I had the Arial Unicode MS font
(arialuni.ttf)installed on my system—this has support for the full Unicode
character set, although this means that the font definition file is quite large
(around 24 megabytes!)

15.8.2 Fonts, iText and Java

iText has to handle fonts according to the PDF specification. This deals with
document portability by allowing fonts to be (optionally) embedded in a PDF
file. This requires access to the font definition file.

Java, on the other hand, abstracts away some of the details of particular font
formats with the use of the Font class.

To support the Graphics2D implementation in iText, it is necessary to map
Font objects from Java to BaseFont objects in iText. This is the role of the
FontMapper interface.

If you create a new DefaultFontMapper instance using the default constructor,
it will already contain sensible mappings for the logical fonts defined by the
Java specification. But if you want to use additional fonts—and you must if
you want to use a wide range of Unicode characters—then you need to add
extra mappings to the DefaultFontMapper object.

15.8.3 Mapping Additional Fonts

I’ve decided to use the Tahoma font to display a chart title that incorporates
some Unicode characters. The font definition file (tahoma.ttf) is located, on
my system, in the directory:

/usr/lib/SunJava2/jre/lib/fonts

Here’s the code used to create the FontMapper for use by iText—I’ve based this
on an example written by Paulo Soares:

DefaultFontMapper mapper = new DefaultFontMapper();
mapper.insertDirectory("/usr/lib/SunJava2/jre/lib/fonts");
DefaultFontMapper.BaseFontParameters pp =

mapper.getBaseFontParameters("Tahoma");
if (pp!=null) {

pp.encoding = BaseFont.IDENTITY_H;
}

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 110

Now I can modify the code that creates the chart, in order to add a custom title
to the chart (I’ve changed the data and chart type also):

// create a chart...
TimeSeries series = new TimeSeries("Random Data");
Day current = new Day(1, 1, 2000);
double value = 100.0;
for (int i = 0; i < 1000; i++) {

try {
value = value + Math.random() - 0.5;
series.add(current, new Double(value));
current = (Day) current.next();

}
catch (SeriesException e) {

System.err.println("Error adding to series");
}

}
XYDataset data = new TimeSeriesCollection(series);
JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Test",
"Date",
"Value",
data,
true,
false,
false

);

// Unicode test...
String text = "\u278A\u20A0\u20A1\u20A2\u20A3\u20A4\u20A5\u20A6\u20A7\u20A8\u20A9";
//String text = "hi";
Font font = new Font("Tahoma", Font.PLAIN, 12);
TextTitle subtitle = new TextTitle(text, font);
chart.addSubtitle(subtitle);

Notice that the subtitle (a random collection of currency symbols) is defined
using escape sequences to specify each Unicode character. This avoids any
problems with encoding conversions when I save the Java source file.

The output from the modified sample program is shown in figure 15.2. The
example has been embedded in this document in PDF format, so it is a good
example of the type of output you can expect by following the instructions in
this document.

CHAPTER 15. EXPORTING CHARTS TO ACROBAT PDF 111

Test
₠₡₢₣₤₥₦₧₨₩

Random Data

Jan-2000 Jul-2000 Jan-2001 Jul-2001 Jan-2002 Jul-2002

Date

100.0

102.5

105.0

107.5

110.0

112.5

115.0

117.5

120.0

122.5

125.0

V
al

ue

Figure 15.2: A Unicode subtitle

Chapter 16

Exporting Charts to SVG
Format

16.1 Introduction

In this section, I present an example that shows how to export charts to SVG
format, using JFreeChart and Batik (an open source library for working with
SVG).

16.2 Background

16.2.1 What is SVG?

Scalable Vector Graphics (SVG) is a standard language for describing two-
dimensional graphics in XML format. It is a Recommendation of the World
Wide Web Consortium (W3C).

16.2.2 Batik

Batik is an open source toolkit, written in Java, that allows you to generate
SVG content. Batik is available from:

http://xml.apache.org/batik

At the time of writing, the latest stable version of Batik is 1.5.

16.3 A Sample Application

16.3.1 JFreeChart and Batik

JFreeChart and Batik can work together relatively easily because:

• JFreeChart draws all chart output using Java’s Graphics2D abstraction;
and

112

CHAPTER 16. EXPORTING CHARTS TO SVG FORMAT 113

• Batik provides a concrete implementation of Graphics2D that generates
SVG output (SVGGraphics2D).

In this section, a simple example is presented to get you started using JFreeChart
and Batik.

16.3.2 Getting Started

First, you should download Batik and install it according to the instructions
provided on the Batik web page.

To compile and run the sample program presented in the next section, you need
to ensure that the following jar files are on your classpath:

File: Description:

jcommon-0.9.3.jar Common classes from The Object Refinery.
jfreechart-0.9.18.jar The JFreeChart class library.
batik-awt-util.jar Batik runtime files.
batik-dom.jar Batik runtime files.
batik-ext.jar Batik runtime files.
batik-svggen.jar Batik runtime files.
batik-util.jar Batik runtime files.
batik-xml.jar Batik runtime files.

16.3.3 The Application

Create a project in your favourite Java development environment, add the li-
braries listed in the previous section, and type in the following program:

package com.jrefinery.chart.demo;

import java.awt.geom.Rectangle2D;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.Writer;

import org.apache.batik.dom.GenericDOMImplementation;
import org.apache.batik.svggen.SVGGraphics2D;
import org.jfree.chart.ChartFactory;
import org.jfree.chart.JFreeChart;
import org.jfree.data.DefaultPieDataset;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.Document;

/**
* A demonstration showing the export of a chart to SVG format.
*
* @author David Gilbert
*/

public class SVGExportDemo {

/**
* Starting point for the demo.
*
* @param args ignored.
*/

public static void main(String[] args) throws IOException {

// create a dataset...
DefaultPieDataset data = new DefaultPieDataset();
data.setValue("Category 1", new Double(43.2));
data.setValue("Category 2", new Double(27.9));

CHAPTER 16. EXPORTING CHARTS TO SVG FORMAT 114

data.setValue("Category 3", new Double(79.5));

// create a chart
JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",
data,
true,
false,
false

);

// THE FOLLOWING CODE BASED ON THE EXAMPLE IN THE BATIK DOCUMENTATION...
// Get a DOMImplementation
DOMImplementation domImpl = GenericDOMImplementation.getDOMImplementation();

// Create an instance of org.w3c.dom.Document
Document document = domImpl.createDocument(null, "svg", null);

// Create an instance of the SVG Generator
SVGGraphics2D svgGenerator = new SVGGraphics2D(document);

// set the precision to avoid a null pointer exception in Batik 1.5
svgGenerator.getGeneratorContext().setPrecision(6);

// Ask the chart to render into the SVG Graphics2D implementation
chart.draw(svgGenerator, new Rectangle2D.Double(0, 0, 400, 300), null);

// Finally, stream out SVG to a file using UTF-8 character to byte encoding
boolean useCSS = true;
Writer out = new OutputStreamWriter(

new FileOutputStream(new File("test.svg")), "UTF-8");
svgGenerator.stream(out, useCSS);

}

}

Running this program creates a file test.svg in SVG format.

16.3.4 Viewing the SVG

Batik includes a viewer application (“Squiggle”) which you can use to open and
view the SVG file. The Batik download includes instructions for running the
viewer, effectively all you require is:

java -jar batik-squiggle.jar

The following screen shot shows the pie chart that we created earlier, displayed
using the browser application. A transformation (rotation) has been applied to
the chart from within the browser:

CHAPTER 16. EXPORTING CHARTS TO SVG FORMAT 115

If you play about with the viewer, zooming in and out and applying various
transformations to the chart, you will begin to appreciate the power of the SVG
format.

Chapter 17

Applets

17.1 Introduction

Subject to a couple of provisos, using JFreeChart in an applet is relatively
straightforward. This section provides a brief overview of the important issues
and describes a working example that should be sufficient to get you started.

Figure 17.1: An applet using JFreeChart

Figure 17.1 shows a sample applet that uses JFreeChart. This applet is available
online at:

http://www.object-refinery.com/jfreechart/applet.html

The source code for this applet appears later in this section.

17.2 Issues

The main issues to consider when developing applets (whether with or without
JFreeChart) are:

116

CHAPTER 17. APPLETS 117

• browser support;

• security restrictions;

• code size.

Be sure that you understand these issues before you commit significant resources
to writing applets.

17.2.1 Browser Support

The vast majority of web browsers provide support for the latest version of
Java (JDK 1.4) and will therefore have no problems running applets that use
JFreeChart (recall that JFreeChart will run on any version of the JDK from
1.2.2 onwards).

However, the vast majority of users on the web use (by default in most cases) the
one web browser—Microsoft Internet Explorer (MSIE)—that only supports a
version of Java (JDK 1.1) that is now hopelessly out-of-date. This is a problem,
because applets that use JFreeChart will not work on a default installation
of MSIE. There is a workaround—users can download and install Sun’s Java
plugin—but, like many workarounds, it is too much effort and inconvenience
for many people. The end result is a deployment problem for developers who
choose to write applets.

This single issue has caused many developers to abandon their plans to develop
applets1 and instead choose an easier-to-deploy technology such as Java Servlets
(see the next chapter).

17.2.2 Security

Applets (and Java more generally) have been designed with security in mind.
When an applet runs in your web browser, it is restricted in the operations that
it is permitted to perform. For example, an applet typically will not be allowed
to read or write to the local filesystem. Describing the details of Java’s security
mechanism is beyond the scope of this text, but you should be aware that some
functions provided by JFreeChart (for example, the option to save charts to
PNG format via the pop-up menu) will not work in applets that are subject to
the default security policy. If you need these functions to work, then you will
need to study Java’s security mechanism in more detail.

17.2.3 Code Size

A final issue to consider is the size of the “runtime” code required for your
applet. Before an applet can run, the code (typically packed into jar files) has
to be downloaded to the end user’s computer. Clearly, for users with limited
bandwidth connections, the size of the code can be an issue.

1For some people this issue won’t be a concern. For example, you may be developing applets
for internal corporate use, and your standard desktop configuration includes a browser that
supports JDK 1.4. Alternatively, you may be providing an applet for public use via the World
Wide Web, but it is not critical that every user be able to run the applet.

CHAPTER 17. APPLETS 118

The JFreeChart code is distributed in a jar file that is around 500KB in size.
That isn’t large—especially when you consider the number and variety of charts
that JFreeChart supports—but, at the same time, it isn’t exactly optimal for a
user on a dial-up modem connection. And you need to add to that the JCommon
jar file (around 170KB) plus whatever code you have for your applet.

As always with JFreeChart, you have the source code so you could improve this
by repackaging the JFreeChart jar file to include only those classes that are used
by your applet (directly or indirectly).

17.3 A Sample Applet

As mentioned in the introduction, a sample applet that uses JFreeChart can be
seen at the following URL:2

http://www.object-refinery.com/jfreechart/applet.html

Two aspects of the sample applet are interesting, the source code that is used
to create the applet and the HTML file that is used to invoke the applet.

17.3.1 The HTML

The HTML used to invoke the applet is important, since it needs to reference
the necessary jar files. The HTML applet tag used is:

<APPLET ARCHIVE="jfreechart-0.9.4-premium-demo-applets.jar,jfreechart-0.9.4.jar,
jcommon-0.7.1.jar" CODE="com.jrefinery.chart.premium.demo.applet.Applet1"
width=640 height=260 ALT="You should see an applet, not this text.">
</APPLET>

Notice that three jar files are referenced. The first contains the applet class
(source code in the next section) only, while the remaining two jar files are the
standard JFreeChart and JCommon class libraries (the version numbers reflect
the age of the demo rather than the current releases).

You can place the applet tag anywhere in your HTML file that you might place
some other element (such as an image).

17.3.2 The Source Code

The sample applet is created using the following source code (which is included
in the “support demos” package). There is very little applet-specific code here—
we just extend JApplet:

package com.jrefinery.chart.demo.applet;

import java.awt.Color;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JApplet;
import javax.swing.Timer;

import org.jfree.chart.ChartPanel;

2If the applet does not work for you, please check that your web browser is configured
correctly and supports JDK 1.2.2 or later.

CHAPTER 17. APPLETS 119

import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.DateAxis;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.DefaultXYItemRenderer;
import org.jfree.data.time.Millisecond;
import org.jfree.data.time.TimeSeries;
import org.jfree.data.time.TimeSeriesCollection;

public class Applet1 extends JApplet {

/** Time series for total memory used. */
private TimeSeries total;

/** Time series for free memory. */
private TimeSeries free;

public Applet1() {

// create two series that automatically discard data more than 30 seconds old...
this.total = new TimeSeries("Total", Millisecond.class);
this.total.setHistoryCount(30000);
this.free = new TimeSeries("Free", Millisecond.class);
this.free.setHistoryCount(30000);
TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(total);
dataset.addSeries(free);

DateAxis domain = new DateAxis("Time");
NumberAxis range = new NumberAxis("Memory");

XYPlot xyplot = new XYPlot(dataset, domain, range, new DefaultXYItemRenderer());
xyplot.setBackgroundPaint(Color.black);
xyplot.getRenderer().setSeriesPaint(0, Color.red);
xyplot.getRenderer().setSeriesPaint(1, Color.blue);

domain.setAutoRange(true);
domain.setLowerMargin(0.0);
domain.setUpperMargin(0.0);
domain.setTickLabelsVisible(true);

range.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

JFreeChart chart = new JFreeChart("Memory Usage", JFreeChart.DEFAULT_TITLE_FONT,
xyplot, true);

ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPopupMenu(null);

getContentPane().add(chartPanel);
new Applet1.DataGenerator().start();

}

/**
* Adds an observation to the ’total memory’ time series.
*
* @param y the total memory used.
*/

private void addTotalObservation(double y) {
total.add(new Millisecond(), y);

}

/**
* Adds an observation to the ’free memory’ time series.
*
* @param y the free memory.
*/

private void addFreeObservation(double y) {
free.add(new Millisecond(), y);

}

/**
* The data generator.
*/

CHAPTER 17. APPLETS 120

class DataGenerator extends Timer implements ActionListener {

/**
* Constructor.
*/

DataGenerator() {
super(100, null);
addActionListener(this);

}

/**
* Adds a new free/total memory reading to the dataset.
*
* @param event the action event.
*/

public void actionPerformed(ActionEvent event) {
long f = Runtime.getRuntime().freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f);

}

}

}

Chapter 18

Servlets

18.1 Introduction

The Java Servlets API is a very popular technology for creating web applica-
tions. JFreeChart is well suited for use in a servlet environment and, in this
section, some examples are presented to help those developers that are interested
in using JFreeChart for web applications.

All the sample code in this section is available for download from the same page
as the JFreeChart Developer Guide:

http://www.object-refinery.com/jfreechart/premium/index.html

The file to download is jfreechart-0.9.18-premium-demos.zip.1

18.2 A Simple Servlet

The ServletDemo1 class implements a very simple servlet that returns a PNG
image of a bar chart generated using JFreeChart. When it is run, the servlet
will return a raw image to the client (web browser) which will display the image
without any surrounding HTML, like this:
Typically, you will not present raw output in this way, so this servlet is not
especially useful on its own, but the example is:

• a good illustration of the request-response nature of servlets;

• useful as a test case if you are configuring a server environment and want
to check that everything is working.

We will move on to a more complex example later, showing how to request
different charts using HTML forms, and embedding the generated charts within
HTML output.

Here is the code for the basic servlet (stripped of comments):

1To access this page you need to enter the username and password provided to you in
the confirmation e-mail you received when you purchased the JFreeChart Priority Support
package.

121

CHAPTER 18. SERVLETS 122

Figure 18.1: ServletDemo1 in a browser

package com.jrefinery.chart.demo;

import java.io.IOException;
import java.io.OutputStream;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartUtilities;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.data.DefaultCategoryDataset;

public class ServletDemo1 extends HttpServlet {

public ServletDemo1() {
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

OutputStream out = response.getOutputStream();
try {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(10.0, "S1", "C1");
dataset.addValue(4.0, "S1", "C2");
dataset.addValue(15.0, "S1", "C3");
dataset.addValue(14.0, "S1", "C4");
dataset.addValue(-5.0, "S2", "C1");
dataset.addValue(-7.0, "S2", "C2");
dataset.addValue(14.0, "S2", "C3");
dataset.addValue(-3.0, "S2", "C4");
dataset.addValue(6.0, "S3", "C1");
dataset.addValue(17.0, "S3", "C2");
dataset.addValue(-12.0, "S3", "C3");
dataset.addValue(7.0, "S3", "C4");
dataset.addValue(7.0, "S4", "C1");
dataset.addValue(15.0, "S4", "C2");
dataset.addValue(11.0, "S4", "C3");
dataset.addValue(0.0, "S4", "C4");
dataset.addValue(-8.0, "S5", "C1");
dataset.addValue(-6.0, "S5", "C2");
dataset.addValue(10.0, "S5", "C3");
dataset.addValue(-9.0, "S5", "C4");
dataset.addValue(9.0, "S6", "C1");

CHAPTER 18. SERVLETS 123

dataset.addValue(8.0, "S6", "C2");
dataset.addValue(null, "S6", "C3");
dataset.addValue(6.0, "S6", "C4");
dataset.addValue(-10.0, "S7", "C1");
dataset.addValue(9.0, "S7", "C2");
dataset.addValue(7.0, "S7", "C3");
dataset.addValue(7.0, "S7", "C4");
dataset.addValue(11.0, "S8", "C1");
dataset.addValue(13.0, "S8", "C2");
dataset.addValue(9.0, "S8", "C3");
dataset.addValue(9.0, "S8", "C4");
dataset.addValue(-3.0, "S9", "C1");
dataset.addValue(7.0, "S9", "C2");
dataset.addValue(11.0, "S9", "C3");
dataset.addValue(-10.0, "S9", "C4");

JFreeChart chart = ChartFactory.createBarChart(
"Bar Chart",
"Category",
"Value",
dataset,
PlotOrientation.VERTICAL,
true, true, false

);
response.setContentType("image/png");
ChartUtilities.writeChartAsPNG(out, chart, 400, 300);

}
catch (Exception e) {

System.err.println(e.toString());
}
finally {

out.close();
}

}
}

The doGet(...) method is called by the servlet engine when a request is made
by a client (usually a web browser). In response to the request, the servlet
performs several steps:

• an OutputStream reference is obtained for returning output to the client;

• a chart is created;

• the content type for the response is set to image/png. This tells the client
what type of data it is receiving;

• a PNG image of the chart is written to the output stream;

• the output stream is closed.

Note that the classes in the javax.servlet.* package (and sub-packages), used
by the demo servlet, are not part of the Java 2 Standard Edition (J2SE). In order
to compile the above code using J2SE, you will need to obtain a servlet.jar
file...I’ve used the one that is redistributed with Tomcat (an open source servlet
engine written using Java). You can find out more about Tomcat at:

http://jakarta.apache.org/tomcat

You will also require the JFreeChart and JCommon jar files to compile the above
servlet.

CHAPTER 18. SERVLETS 124

18.3 Deploying the Servlet

Servlets are deployed in the webapps directory provided by your servlet engine.
In my case, I am using Tomcat 4.1.18 on SUSE Linux 8.2, and the directory is:2

/opt/jakarta/tomcat/webapps

Within the webapps directory, create a jfreechart1 directory to hold the first
servlet demo, then create the following structure within the directory:

.../jfreechart1/WEB-INF/web.xml

.../jfreechart1/WEB-INF/lib/jfreechart-0.9.13.jar

.../jfreechart1/WEB-INF/lib/jcommon-0.8.8.jar

.../jfreechart1/WEB-INF/classes/com/jrefinery/chart/demo/ServletDemo1.class

You need to create the web.xml file—it provides information about the servlet:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet>

<servlet-name>
ServletDemo1

</servlet-name>
<servlet-class>

com.jrefinery.chart.demo.ServletDemo1
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>ServletDemo1</servlet-name>
<url-pattern>/servlet/ServletDemo1</url-pattern>

</servlet-mapping>
</web-app>

Once you have all these files in place, restart your servlet engine and type in
the following URL using your favourite web browser:

http://localhost:8080/jfreechart1/servlet/ServletDemo1

If all is well, you will see the chart image displayed in your browser, as shown
in figure 18.1.

18.4 Embedding Charts in HTML Pages

It is possible to embed a chart image generated by a servlet inside an HTML
page generated by another servlet. This is demonstrated by ServletDemo2,
which is also available in the jfreechart-0.9.13-premium-demos.zip file.

ServletDemo2 processes a request by returning a page of HTML that, in turn,
references another servlet (ServletDemo2ChartGenerator) that returns a PNG
image of a chart. The end result is a chart embedded in an HTML page, as
shown in figure 18.2.

Here is the code for ServletDemo2:
2Servlets are portable between different servlet engines, so if you are using a different

servlet engine, consult the documentation to find the location of the webapps folder.

CHAPTER 18. SERVLETS 125

Figure 18.2: ServletDemo2 in a browser

package com.jrefinery.chart.demo;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ServletDemo2 extends HttpServlet {

public ServletDemo2() {
}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = new PrintWriter(response.getWriter());
try {

String param = request.getParameter("chart");

response.setContentType("text/html");
out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>JFreeChart Servlet Demo 2</TITLE>");
out.println("</HEAD>");
out.println("<BODY>");
out.println("<H2>JFreeChart Servlet Demo</H2>");
out.println("<P>");
out.println("Please choose a chart type:");

out.println("<FORM ACTION=\"ServletDemo2\" METHOD=POST>");
String pieChecked = (param.equals("pie") ? " CHECKED" : "");
String barChecked = (param.equals("bar") ? " CHECKED" : "");
String timeChecked = (param.equals("time") ? " CHECKED" : "");
out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"pie\""

+ pieChecked + "> Pie Chart");
out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"bar\""

+ barChecked + "> Bar Chart");
out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"time\""

CHAPTER 18. SERVLETS 126

+ timeChecked + "> Time Series Chart");
out.println("<P>");
out.println("<INPUT TYPE=\"submit\" VALUE=\"Generate Chart\">");
out.println("</FORM>");

out.println("<P>");
out.println("<IMG SRC=\"ServletDemo2ChartGenerator?type="

+ param + "\" BORDER=1 WIDTH=400 HEIGHT=300/>");
out.println("</BODY>");
out.println("</HTML>");
out.flush();
out.close();

}
catch (Exception e) {

System.err.println(e.toString());
}
finally {

out.close();
}

}

}

Notice how this code gets a reference to a Writer from the response parameter,
rather than an OutputStream as in the previous example. The reason for this is
because this servlet will be returning text (HTML), compared to the previous
servlet which returned binary data (a PNG image).3

The response type is set to text/html since this servlet returns HTML text.
An important point to note is that the tag in the HTML references
another servlet (ServletDemo2ChartGenerator), and this other servlet creates
the required chart image. The actual chart returned is controlled by the chart
parameter, which is set up in the HTML using a <FORM> element.

Here is the source code for ServletDemo2ChartGenerator:

public class ServletDemo2ChartGenerator extends HttpServlet {

public ServletDemo2ChartGenerator() {
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

OutputStream out = response.getOutputStream();
try {

String type = request.getParameter("type");
JFreeChart chart = null;
if (type.equals("pie")) {

chart = createPieChart();
}
else if (type.equals("bar")) {

chart = createBarChart();
}
else if (type.equals("time")) {

chart = createTimeSeriesChart();
}
if (chart != null) {

response.setContentType("image/png");
ChartUtilities.writeChartAsPNG(out, chart, 400, 300);

}
}
catch (Exception e) {

System.err.println(e.toString());
}

3The Writer is wrapped in a PrintWriter in order to use the more convenient methods
available in the latter class.

CHAPTER 18. SERVLETS 127

finally {
out.close();

}

}

private JFreeChart createPieChart() {

// create a dataset...
DefaultPieDataset data = new DefaultPieDataset();
data.setValue("One", new Double(43.2));
data.setValue("Two", new Double(10.0));
data.setValue("Three", new Double(27.5));
data.setValue("Four", new Double(17.5));
data.setValue("Five", new Double(11.0));
data.setValue("Six", new Double(19.4));

JFreeChart chart = ChartFactory.createPieChart(
"Pie Chart",
data,
true, true, false

);
return chart;

}

private JFreeChart createBarChart() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(10.0, "S1", "C1");
dataset.addValue(4.0, "S1", "C2");
dataset.addValue(15.0, "S1", "C3");
dataset.addValue(14.0, "S1", "C4");
dataset.addValue(-5.0, "S2", "C1");
dataset.addValue(-7.0, "S2", "C2");
dataset.addValue(14.0, "S2", "C3");
dataset.addValue(-3.0, "S2", "C4");
dataset.addValue(6.0, "S3", "C1");
dataset.addValue(17.0, "S3", "C2");
dataset.addValue(-12.0, "S3", "C3");
dataset.addValue(7.0, "S3", "C4");
dataset.addValue(7.0, "S4", "C1");
dataset.addValue(15.0, "S4", "C2");
dataset.addValue(11.0, "S4", "C3");
dataset.addValue(0.0, "S4", "C4");
dataset.addValue(-8.0, "S5", "C1");
dataset.addValue(-6.0, "S5", "C2");
dataset.addValue(10.0, "S5", "C3");
dataset.addValue(-9.0, "S5", "C4");
dataset.addValue(9.0, "S6", "C1");
dataset.addValue(8.0, "S6", "C2");
dataset.addValue(null, "S6", "C3");
dataset.addValue(6.0, "S6", "C4");
dataset.addValue(-10.0, "S7", "C1");
dataset.addValue(9.0, "S7", "C2");
dataset.addValue(7.0, "S7", "C3");
dataset.addValue(7.0, "S7", "C4");
dataset.addValue(11.0, "S8", "C1");
dataset.addValue(13.0, "S8", "C2");
dataset.addValue(9.0, "S8", "C3");
dataset.addValue(9.0, "S8", "C4");
dataset.addValue(-3.0, "S9", "C1");
dataset.addValue(7.0, "S9", "C2");
dataset.addValue(11.0, "S9", "C3");
dataset.addValue(-10.0, "S9", "C4");

JFreeChart chart = ChartFactory.createBarChart3D(
"Bar Chart",
"Category",
"Value",
dataset,
PlotOrientation.VERTICAL,
true,
true,

CHAPTER 18. SERVLETS 128

false
);
return chart;

}

private JFreeChart createTimeSeriesChart() {

// here we just populate a series with random data...
TimeSeries series = new TimeSeries("Random Data");
Day current = new Day(1, SerialDate.JANUARY, 2001);
for (int i = 0; i < 100; i++) {

series.add(current, Math.random() * 100);
current = (Day) current.next();

}
XYDataset data = new TimeSeriesCollection(series);

JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Time Series Chart",
"Date",
"Rate",
data,
true,
true,
false

);
return chart;

}
}

18.5 Supporting Files

Servlets typically generate output for clients that access the web application via
a web browser. Most web applications will include at least one HTML page
that is used as the starting point for the application.

For the demo servlets above, the following index.html page is used:

<HTML>

<HEADER>
<TITLE>JFreeChart : Basic Servlet Demo</TITLE>

</HEADER>

<BODY>
<H2>JFreeChart: Basic Servlet Demo</H2>
<P>
There are two sample servlets available:

a very basic servlet to generate a bar chart;

another servlet that allow you to select one of three sample charts. The selected chart is
displayed in an HTML page.

</BODY>

</HTML>

There are two hyperlinks in this page, the first references the first demo servlet
(ServletDemo1) and the second references another HTML page, chart.html:

<HTML>

<HEADER>
<TITLE>JFreeChart Servlet Demo 2</TITLE>

</HEADER>

CHAPTER 18. SERVLETS 129

<BODY>
<H2>JFreeChart Servlet Demo</H2>
<P>
Please choose a chart type:
<FORM ACTION="servlet/ServletDemo2" METHOD=POST>

<INPUT TYPE="radio" NAME="chart" VALUE="pie" CHECKED> Pie Chart
<INPUT TYPE="radio" NAME="chart" VALUE="bar"> Bar Chart
<INPUT TYPE="radio" NAME="chart" VALUE="time"> Time Series Chart
<P>
<INPUT TYPE="submit" VALUE="Generate Chart">

</FORM>
</BODY>

</HTML>

This second HTML page contains a <FORM> element used to specify a parameter
for the second servlet (ServletDemo2). When this servlet runs, it returns its
own HTML that is almost identical to the above but also includes an
element with a reference to the ServletDemo2ChartGenerator servlet.

18.6 Deploying Servlets

After compiling the demo servlets, they need to be deployed to a servlet en-
gine, along with the supporting files, so that they can be accessed by clients.
Fortunately, this is relatively straightforward.

The first requirement is a web.xml file to describe the web application being
deployed:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet>

<servlet-name>
ServletDemo1

</servlet-name>
<servlet-class>

com.jrefinery.chart.demo.ServletDemo1
</servlet-class>

</servlet>
<servlet>

<servlet-name>
ServletDemo2

</servlet-name>
<servlet-class>

com.jrefinery.chart.demo.ServletDemo2
</servlet-class>

</servlet>
<servlet>

<servlet-name>
ServletDemo2ChartGenerator

</servlet-name>
<servlet-class>

com.jrefinery.chart.demo.ServletDemo2ChartGenerator
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>ServletDemo1</servlet-name>
<url-pattern>/servlet/ServletDemo1</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>ServletDemo2</servlet-name>
<url-pattern>/servlet/ServletDemo2</url-pattern>

CHAPTER 18. SERVLETS 130

</servlet-mapping>
<servlet-mapping>

<servlet-name>ServletDemo2ChartGenerator</servlet-name>
<url-pattern>/servlet/ServletDemo2ChartGenerator</url-pattern>

</servlet-mapping>
</web-app>

This file lists the servlets by name, and specifies the class file that implements
the servlet. The actual class files will be placed in a directory where the servlet
engine will know to find them (the classes sub-directory within a directory
specific to the application).

The final step is copying all the files to the appropriate directory for the servlet
engine. In testing with Tomcat, I created a jfreechart2 directory within Tom-
cat’s webapps directory. The index.html and chart.html files are copied to
this directory.

webapps/jfreechart2/index.html

webapps/jfreechart2/chart.html

Next, a subdirectory WEB-INF is created within the jfreechart2 directory,
and the web.xml file is copied to here.

webapps/jfreechart2/WEB-INF/web.xml

A classes subdirectory is created within WEB-INF to hold the .class files
for the three demo servlets. These need to be saved in a directory hierarchy
matching the package hierarchy:

webapps/jfreechart2/WEB-INF/classes/com/jrefinery/chart/demo/ServletDemo1.class
webapps/jfreechart2/WEB-INF/classes/com/jrefinery/chart/demo/ServletDemo2.class
webapps/jfreechart2/WEB-INF/classes/com/jrefinery/chart/demo/ServletDemo2ChartGenerator.class

Finally, the servlets make use of classes in the JFreeChart and JCommon class
libraries. The jar files for these libraries need to be added to a lib directory
within WEB-INF. You will need:

webapps/jfreechart2/WEB-INF/lib/jcommon-0.8.8.jar
webapps/jfreechart2/WEB-INF/lib/jfreechart-0.9.13.jar

Now restart your servlet engine, and point your browser to:

http://localhost:8080/jfreechart2/index.html

If all the files have been put in the correct places, you should see the running
servlet demonstration (this has been tested using Tomcat 4.1.18 running on
SuSE Linux 8.2).

Chapter 19

Miscellaneous

19.1 Introduction

This section contains miscellaneous information about JFreeChart.

19.2 X11 / Headless Java

If you are using JFreeChart in a server environment running Unix / Linux, you
may encounter the problem that JFreeChart won’t run without X11. This is a
common problem for Java code that relies on AWT, see the following web page
for further information:

http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html#xvfb

There is also a thread in the JFreeChart forum with lots of info:
http://www.jfree.org/phpBB2/viewtopic.php?t=1012

19.3 Java Server Pages

Developers that are interested in using JFreeChart with JSP will want to check
out the Cewolf project:

http://cewolf.sourceforge.net/

Thanks to Guido Laures for leading this effort.

131

Chapter 20

Packages

20.1 Overview

The following sections contain reference information for the classes, arranged
by package, that make up the JFreeChart class library.

Package: Description:

o.j.chart The main chart classes.
o.j.chart.annotations A simple framework for annotating charts.
o.j.chart.axis Axis classes and related interfaces.
o.j.chart.entity Classes representing chart entities.
o.j.chart.event The event classes.
o.j.chart.imagemap HTML image map utility classes.
o.j.chart.labels The item label and tooltip classes.
o.j.chart.needle Needle classes for the compass plot.
o.j.chart.plot Plot classes and interfaces.
o.j.chart.renderer Plug-in renderers for use with the

CategoryPlot and XYPlot classes.
o.j.chart.servlet Servlet utility classes.
o.j.chart.title Chart title classes.
o.j.chart.urls Interfaces and classes for generating URLs

in image maps.
o.j.chart.ui User interface classes.
o.j.data Dataset interfaces and classes.
o.j.data.gantt Dataset interfaces and classes for Gantt

charts.
o.j.data.statistics Classes that are used for generating statis-

tics.
o.j.data.time Time-based dataset interfaces and classes.

Additional information can be found in the Javadoc HTML files.

132

Chapter 21

Package: org.jfree.chart

21.1 Overview

This package contains the major classes and interfaces in the JFreeChart Class
Library, including the all important JFreeChart class.

21.2 ChartColor

21.2.1 Overview

This class defines some standard colors.

21.2.2 Notes

The DefaultDrawingSupplier uses the createDefaultPaintArray() method to
generate the default paint sequence for charts.

21.3 ChartFactory

21.3.1 Overview

This class contains a range of convenient methods for creating standard types
of charts.

HINT: The use of these methods is optional. Take a look at the source code for
the method you are using to see if it might be a better option to cut-and-paste
the code into your application, and then customise it to meet your requirements.

21.3.2 Pie Charts

To create a regular pie chart:

public static JFreeChart createPieChart(String title,

PieDataset dataset, boolean legend, boolean tooltips, boolean urls);

Creates a pie chart for the specified PieDataset (null permitted). The

chart is constructed using a PiePlot.

133

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 134

To create a pie chart with a “3D effect”:

public static JFreeChart createPieChart3D(String title,

PieDataset dataset, boolean legend, boolean tooltips, boolean urls)

Creates a 3D pie chart for the specified PieDataset (null permitted).

The chart is constructed using a PiePlot3D.

To create a single chart containing multiple pie charts:

public static JFreeChart createMultiplePieChart(String title,

CategoryDataset dataset, TableOrder order, boolean legend, boolean tooltips,

boolean urls);

Creates a multiple pie chart for the specified CategoryDataset. This

chart is constructed using a MultiplePiePlot. The order argument can

be either TableOrder.BY ROW or TableOrder.BY COLUMN.

To create a single chart containing multiple pie charts with a “3D effect”:

public static JFreeChart createMultiplePieChart3D(String title,

CategoryDataset dataset, TableOrder order, boolean legend, boolean tooltips,

boolean urls);

Creates a multiple pie chart for the specified CategoryDataset. This

chart is constructed using a MultiplePiePlot. The order argument can

be either TableOrder.BY ROW or TableOrder.BY COLUMN.

21.3.3 Methods

To create a bar chart:

public static JFreeChart createBarChart(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset dataset,

PlotOrientation orientation, boolean legend, boolean tooltips, boolean

urls);

Creates a horizontal or vertical bar chart for the given CategoryDataset

(see the BarRenderer class documentation for an example).

To create a bar chart with a “3D effect”:

public static JFreeChart createBarChart3D(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset dataset,

PlotOrientation orientation, boolean legend, boolean tooltips, boolean

urls);

Creates a bar chart with 3D effect for the given CategoryDataset (see the

BarRenderer3D class documentation for an example).

To create a stacked bar chart:

public static JFreeChart createStackedBarChart(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset data,

PlotOrientation orientation, boolean legend, boolean tooltips, boolean

urls);

Creates a stacked bar chart for the given CategoryDataset.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 135

To create a stacked bar chart with a “3D effect”:

public static JFreeChart createStackedBarChart3D(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset data,

PlotOrientation orientation, boolean legend, boolean tooltips, boolean

urls);

Creates a stacked bar chart with 3D effect for the given CategoryDataset.

To create a line chart based on a CategoryDataset:

public static JFreeChart createLineChart(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset dataset,

PlotOrientation orientation, boolean legend, boolean tooltips, boolean

urls);

Creates a line chart for the given CategoryDataset.

To create a line chart based on a XYDataset:

public static JFreeChart createXYLineChart(String title, String xAxisLabel,

String yAxisLabel, XYDataset dataset, PlotOrientation orientation, boolean

legend, boolean tooltips, boolean urls)

Creates a XY line chart for the given XYDataset.

To create a scatter plot:

public static JFreeChart createScatterPlot(String title, String xAxisLabel,

String yAxisLabel, XYDataset data, PlotOrientation orientation, boolean

legend, boolean tooltips, boolean urls)

Creates a scatter plot for the given XYDataset.

To create a time series chart:

public static JFreeChart createTimeSeriesChart(String title,

String timeAxisLabel, String valueAxisLabel, XYDataset data,

boolean legend, boolean tooltips, boolean urls)

Creates a time series chart for the given XYDataset.

To create a bar chart using an IntervalXYDataset (bearing in mind that you can
use the XYBarDataset wrapper to convert any XYDataset to the required type):

public static JFreeChart createXYBarChart(String title, String xAxisLabel,

boolean dateAxis, String yAxisLabel, IntervalXYDataset dataset, PlotOrientation

orientation, boolean legend, boolean tooltips, boolean urls);

Creates an XY bar chart for the given IntervalXYDataset. The dateAxis

argument allows you to select whether the chart is created with a DateAxis

or a NumberAxis for the domain axis. The chart created with this method

uses a XYPlot and XYBarRenderer.

To create a high-low-open-close chart:

public static JFreeChart createHighLowChart(String title,

String timeAxisLabel, String valueAxisLabel, HighLowDataset dataset, Timeline

timeline, boolean legend)

Creates a high-low-open-close chart for the given HighLowDataset.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 136

To create a candlestick chart:

public static JFreeChart createCandlestickChart(String title,

String timeAxisLabel, String valueAxisLabel, HighLowDataset data, boolean

legend)

Creates a candlestick chart for the given HighLowDataset.

To create an area chart using data from a XYDataset:

public static JFreeChart createXYAreaChart(String title, String xAxisLabel,

String yAxisLabel, XYDataset dataset, PlotOrientation orientation, boolean

legend, boolean tooltips, boolean urls)

Creates an area chart for the specified dataset. The chart that is created

uses a XYPlot and a XYAreaRenderer.

To create a stacked area chart using data from a TableXYDataset:

public static JFreeChart createStackedXYAreaChart(String title, String

xAxisLabel, String yAxisLabel, TableXYDataset dataset, PlotOrientation

orientation, boolean legend, boolean tooltips, boolean urls)

Creates a stacked area chart for the specified dataset (notice that a TableXYDataset

is required to enable stacking). The chart that is created uses a XYPlot

and a StackedXYAreaRenderer.

21.4 ChartFrame

21.4.1 Overview

A frame containing chart within a ChartPanel.

21.4.2 Constructors

There are two constructors:

public ChartFrame(String title, JFreeChart chart);

Creates a new ChartFrame containing the specified chart.

The second constructor gives you the opportunity to request that the chart is
contained within a JScrollPane:

public ChartFrame(String title, JFreeChart chart, boolean scrollPane);

Creates a new ChartFrame containing the specified chart.

21.5 ChartMouseEvent

21.5.1 Overview

An event generated by the ChartPanel class for mouse clicks and mouse move-
ments over a chart.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 137

21.5.2 Notes

To receive notification of these events, an object first needs to implement the
ChartMouseListener interface and then register itself with a ChartPanel object.

21.6 ChartMouseListener

21.6.1 Overview

An interface that defines the callback method for a chart mouse listener.

21.6.2 Methods

This receives notification of mouse click events:

public void chartMouseClicked(ChartMouseEvent event);

A callback method for receiving notification of a mouse click on a chart.

This method receives notification of mouse movement events:

public void chartMouseMoved(ChartMouseEvent event);

A callback method for receiving notification of a mouse movement event

on a chart.

21.6.3 Notes

Any class that implements this interface can register with a ChartPanel object
to receive notification of chart mouse events.

21.7 ChartPanel

21.7.1 Overview

A panel that provides a convenient means to display a JFreeChart instance in a
Swing-based user-interface (extends javax.swing.JPanel).

The panel can be set up to include a popup menu providing access to:

• chart properties – the property editors are incomplete, but allow you to
customise many chart properties;

• printing – print a chart via the standard Java printing facilities;

• saving – write the chart to a PNG format file;

• zooming – zoom in or out by adjusting the axis ranges;

In addition, the panel can:

• provide offscreen buffering to improve performance when redrawing over-
lapping frames;

• display tool tips;

All of these features are used in the demonstration applications included with
the JFreeChart distribution.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 138

21.7.2 Constructors

The standard constructor accepts a JFreeChart as the only parameter, and cre-
ates a panel that displays the chart:

public ChartPanel(JFreeChart chart);

Creates a new panel for displaying the specified chart.

By default, the panel is automatically updated whenever the chart changes
(for example, if you modify the range for an axis, the chart will be redrawn
automatically).

21.7.3 Methods

You can get access to the chart that is displayed in the panel:

public JFreeChart getChart();

Returns the chart that is displayed in the panel.

You can change the chart that is displayed in the panel:

public void setChart(JFreeChart chart);

Sets the chart that is displayed in the panel. The panel registers with the

chart as a change listener, so that it can repaint the chart whenever it

changes.

As the space available for drawing a chart gets smaller and smaller, it becomes
more and more difficult to layout the components of the chart without overlaps.
One solution to this is to draw a distinction between the chart drawing size
and the chart display size. If the space on the panel is less than the minimum
drawing size, then the chart is drawn in a buffer at the minimum size, then
scaled (down) into the available space on the panel (the display size). Use the
following method to specify the minimum drawing width:

public void setMinimumDrawWidth(double width);

Sets the minimum width for drawing the chart. A scaling transformation

is used to fit the chart into spaces smaller than this, if required.

...and this method to set the minimum drawing height:

public void setMinimumDrawHeight(double height);

Sets the minimum height for drawing the chart. A scaling transformation

is used to fit the chart into spaces smaller than this, if required.

21.7.4 Tooltips

The panel includes support for displaying tool tips (assuming that tool tips have
been generated by the plot or renderer). To disable (or re-enable) the display
of tool tips, use the following method:

public void setDisplayToolTips(boolean flag);

Switches the display of tool tips on or off for this panel.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 139

The panel uses the standard Swing tool tip mechanism, which means that the
tool tip timings (initial delay, dismiss delay and reshow delay) can be controlled
application-wide using the usual Swing API calls. In addition, the panel has a
facility to temporarily override the application wide settings while the mouse
pointer is within the bounds of the panel:

public void setInitialDelay(int delay);

Sets the initial delay (in milliseconds) before tool tips are displayed.

public void setDismissDelay(int delay);

Sets the delay (in milliseconds) before tool tips are dismissed.

public void setReshowDelay(int delay);

Sets the delay (in milliseconds) before tool tips are reshown.

21.7.5 Notes

The size of the ChartPanel is determined by the layout manager used to arrange
components in your user interface. In some cases, the layout manager will
respect the preferred size of the panel, which you can set like this:

myChartPanel.setPreferredSize(new Dimension(500, 270));

This class implements the Printable interface, to provide a simple mecha-
nism for printing a chart. An option in the panel’s popup menu calls the
createPrintJob() method. The print job ends up calling the print() method to
draw the chart on a single piece of paper.

If you need greater control over the printing process—for example, you want to
display several charts on one page—you can write your own implementation of
the Printable interface (in any class that has access to the chart(s) you want to
print). The implementation incorporated with the ChartPanel class is a basic
example, provided for convenience only.

The chart panel provides a “mouse zooming” feature. A demonstration of this
is provided in the MouseZoomDemo application.

See Also
JFreeChart.

21.8 ChartPanelConstants

21.8.1 Overview

An interface that defines constants used by the ChartPanel class.

21.9 ChartRenderingInfo

21.9.1 Overview

This class can be used to collect information about a chart as it is rendered,
particularly information concerning the dimensions of various sub-components
of the chart.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 140

In the current implementation, four pieces of information are recorded for most
chart types:

• the chart area;

• the plot area (including the axes);

• the data area (”inside” the axes);

• the dimensions are other information (including tool tips) for the entities
within a chart;

You have some control over the information that is generated. For instance,
tool tips will not be generated unless you set up a generator in the renderer.

21.9.2 Constructors

The default constructor:

public ChartRenderingInfo();

Creates a ChartRenderingInfo object. Entity information will be col-

lected using an instance of StandardEntityCollection.

An alternative constructor allows you to supply a specific entity collection:

public ChartRenderingInfo(EntityCollection entities);

Creates a ChartRenderingInfo object.

21.9.3 Notes

The ChartPanel class automatically collects entity information using this class,
because it needs it to generate tool tips.

21.10 ChartUtilities

21.10.1 Overview

This class contains utility methods for:

• creating images from charts—supported formats are PNG and JPEG;

• generating HTML image maps.

All of the methods in this class are static

21.10.2 Generating PNG Images

The Portable Network Graphics (PNG) format is a good choice for creating
chart images. The format offers:

• a free and open specification;

• fast and effective compression;

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 141

• no loss of quality when images are reconstructed from the compressed
binary format;

• excellent support in most web clients;

JFreeChart provides support for writing charts in PNG format via an encoder
developed by J. David Eisenberg (published as free software under the terms of
the GNU LGPL). You can find this encoder at:

http://www.catcode.com

The most general method allows you to write the image data directly to an
output stream:

public static void writeChartAsPNG(OutputStream out, JFreeChart chart,

int width, int height) throws IOException

Writes a chart image of the specified size directly to the output stream.

If you need to retain information about the chart dimensions and content (to
create an HTML image map, for example) you can pass in a newly created
ChartRenderingInfo object using this method:

public static void writeChartAsPNG(OutputStream out, JFreeChart chart,

int width, int height, ChartRenderingInfo info)

Writes a chart image of the specified size directly to the output stream,

and collects chart information in the supplied info object.

The above methods have counterparts that write image data directly to a file:

public static void saveChartAsPNG(File file, JFreeChart chart, int width,

int height);

Saves a chart image of the specified size into the specified file, using the

PNG format.

public static void saveChartAsPNG(File file, JFreeChart chart, int width,

int height, ChartRenderingInfo info);

Saves a chart to a PNG format image file. If an info object is supplied,

it will be populated with information about the structure of the chart.

21.10.3 Generating JPEG Images

The Joint Photographic Experts Group (JPEG) image format is supported using
methods that are almost identical to those listed for PNG in the previous section.

NOTE: JPEG is not an ideal format for charts. Images lose some
definition after decompression from this format. This is most no-
ticeable in high color contrast areas, which are common in charts. It
is recommended that you use PNG format instead of JPEG, if at all
possible.

To write a chart to a file in JPEG format:

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 142

public static void saveChartAsJPEG(File file, JFreeChart chart, int width,

int height);

Saves a chart to a JPEG format image file.

As with the PNG methods, if you need to know more information about the
structure of the chart within the generated image, you will need to pass in a
ChartRenderingInfo object:

public static void saveChartAsJPEG(File file, JFreeChart chart, int width,

int height, ChartRenderingInfo info);

Saves a chart to a JPEG format image file. If an info object is supplied,

it will be populated with information about the structure of the chart.

21.10.4 HTML Image Maps

An HTML image map is an HTML fragment used to describe the characteristics
of an image file. The image map can define regions within the image, and
associate these with URLs and tooltip information.

To generate a simple HTML image map for a JFreeChart instance, first generate
an image for the chart and be sure to retain the ChartRenderingInfo object from
the image drawing. Then, generate the image map using the following method:

public static void writeImageMap(PrintWriter writer, String name,

String hrefPrefix, ChartRenderingInfo info);

Writes a <MAP> element containing the region definitions for a chart that

has been converted to an image. The info object should be the structure

returned from the method call that wrote the chart to an image file.

There are two demonstration applications in the JFreeChart download that
illustrate how this works: ImageMapDemo1 and ImageMapDemo2.

21.10.5 Notes

PNG tends to be a better format for charts than JPEG since the compression
is ”lossless” for PNG.

21.11 ClipPath

21.11.1 Overview

Not yet documented.

21.12 DrawableLegendItem

21.12.1 Overview

Used to represent a LegendItem plus it’s physical drawing characteristics (posi-
tion, label location etc.) as it is being laid out on the chart.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 143

21.13 Effect3D

21.13.1 Overview

An interface that should be implemented by renderers that use a “3D effect”.
This allows the 3D axis classes to synchronise their own “3D effect” with that
of the renderer and plot.

See Also
BarRenderer3D, CategoryAxis3D, NumberAxis3D.

21.14 JFreeChart

21.14.1 Overview

The JFreeChart class coordinates the entire process of drawing charts. One
method:

public void draw(Graphics2D g2, Rectangle2D area);

...instructs the JFreeChart object to draw a chart onto a specific area on some
graphics device.

Java supports several graphics devices—including the screen, the printer, and
buffered images—via different implementations of the abstract class java.awt.-

Graphics2D. Thanks to this abstraction, JFreeChart can generate charts on any
of these target devices, as well as others implemented by third parties (for
example, the SVG Generator implemented by the Batik Project).

In broad terms, the JFreeChart class sets up a context for drawing a Plot. The
plot obtains data from a Dataset, and may delegate the drawing of individual
data items to a CategoryItemRenderer or an XYItemRenderer, depending on the
plot type (not all plot types use renderers).

The JFreeChart class can work with many different Plot subclasses. Depending
on the type of plot, a specific dataset will be required. The following table
summarises the combinations that are currently available:

Dataset: Compatible Plot Types:

MeterDataset CompassPlot, MeterPlot and ThermometerPlot.
PieDataset PiePlot.
CategoryDataset CategoryPlot subclasses with various renderers.
XYDataset XYPlot with various renderers.
IntervalXYDataset XYPlot with a XYBarRenderer.
HighLowDataset XYPlot with a HighLowRenderer.
HighLowDataset XYPlot with a CandlestickRenderer.

21.14.2 Constructors

All constructors require you to supply a Plot instance (the Plot maintains a
reference to the dataset used for the chart).

The simplest constructor is:

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 144

public JFreeChart(Plot plot);

Creates a new JFreeChart instance. The chart will have no title, and no

legend.

For greater control, a more complete constructor is available:

public JFreeChart(Plot plot, String title, Font titleFont, boolean createLegend);

Creates a new JFreeChart instance. This constructor allows you to spec-

ify a single title (you can add additional titles, later, if necessary).

The ChartFactory class provides some utility methods that can make the process
of constructing charts simpler.

21.14.3 Attributes

The attributes maintained by the JFreeChart class are listed in Table 21.1.

Attribute: Description:

title The chart title (an instance of TextTitle).
sub-titles A list of subtitles.
legend The chart legend.
plot The plot.
antialias A flag that indicates whether or not the chart

should be drawn with anti-aliasing.
background-paint The background paint for the chart.
background-image An optional background image for the chart.
background-image-alignment The alignment of the background image (if

there is one).
background-image-alpha The alpha transparency for the background

image.

Table 21.1: Attributes for the JFreeChart class

21.14.4 Methods

The most important method for a chart is the draw() method:

public void draw(Graphics2D g2, Rectangle2D chartArea);

Draws the chart on the Graphics2D device, within the specified area.

The chart does not retain any information about the location or dimensions
of the items it draws. Callers that require such information should use the
alternative method:

public void draw(Graphics2D g2, Rectangle2D chartArea, ChartRenderingInfo

info);

Draws the chart on the Graphics2D device, within the specified area. If

info is not null, it will be populated with information about the items

drawn within the chart (to be returned to the caller).

To set the title for a chart:

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 145

public void setTitle(String title);

Sets the title for a chart and sends a ChartChangeEvent to all registered

listeners.

An alternative method for setting the chart title is:

public void setTitle(TextTitle title);

Sets the title for a chart and sends a ChartChangeEvent to all registered

listeners.

Although a chart can have only one title, it can have any number of subtitles:

public void addSubtitle(Title title);

Adds a title to the chart.

The legend shows the names of the series (or sometimes categories) in a chart,
next to a small color indicator. To set the legend for a chart:

public void setLegend(Legend legend);

Sets the legend for a chart.

You can control whether or not the chart is drawn with anti-aliasing (switching
anti-aliasing on can improve the on-screen appearance of charts):

public void setAntiAlias(boolean flag);

Sets a flag controlling whether or not anti-aliasing is used when drawing

the chart.

To set the background paint for the chart:

public void setBackgroundPaint(Paint paint);

Sets the background paint for the chart and sends a ChartChangeEvent

to all registered listeners. If this is set to null, the chart background will

be transparent.

You can set an optional background image for the chart:1

public void setBackgroundImage(Image image);

Sets the background image for the chart (null permitted) and sends a

ChartChangeEvent to all registered listeners.

You need to ensure that the image supplied to the above method is fully loaded,
see this link for more details:

http://java.sun.com/docs/books/tutorial/uiswing/painting/loadingImages.html

To receive notification of any change to a chart, a listener object should register
via this method:

public void addChangeListener(ChartChangeListener listener);

Register to receive chart change events.

To stop receiving change notifications, a listener object should deregister via
this method:

public void removeChangeListener(ChartChangeListener listener);

Deregister to stop receiving chart change events.

1As an alternative to this method, note that you can set a background image for the chart’s
Plot. This will be positioned within the plot area only rather than the entire chart area.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 146

21.14.5 Creating Images

The JFreeChart class includes utility methods for creating a BufferedImage con-
taining the chart:

public BufferedImage createBufferedImage(int width, int height);

Creates a buffered image containing the chart. The size of the image is

specified by the width and height arguments.

public BufferedImage createBufferedImage(int width, int height,

ChartRenderingInfo info);

Creates a buffered image containing the chart. The size of the image is

specified by the width and height arguments. The info argument is used

to collect information about the chart as it is being drawn (required if you

want to create an HTML image map for the image).

One other variation draws the chart at one size then scales it (up or down) to
fit a different image size:

public BufferedImage createBufferedImage(int imageWidth, int imageHeight,

double drawWidth, double drawHeight, ChartRenderingInfo info)

Creates an image containing a chart that has been drawn at one size then

scaled (up or down) to fit the image size.

21.14.6 Notes

Some points to note:

• the ChartFactory class provides a large number of methods for creating
“ready-made” charts.

• the Java2D API is used throughout JFreeChart, so JFreeChart does not
work with JDK1.1 (a common question from applet developers, although
hopefully less of an issue as browser support for Java 2 improves).

21.15 JFreeChartConstants

21.15.1 Overview

A collection of constants used by the JFreeChart class.

21.16 Legend

21.16.1 Overview

The base class for a chart legend (displays the series names and colors used in
a chart). The legend can appear at the top, bottom, left or right of a chart.
StandardLegend is the only subclass available.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 147

21.16.2 Usage

If you create charts using the ChartFactory class, a legend will often be cre-
ated for you. You can access the legend using the getLegend() method in the
JFreeChart class.

To change the position of the legend relative to the chart to one of the positions
NORTH, SOUTH, EAST or WEST, use the following code:

Legend legend = myChart.getLegend();

legend.setAnchor(Legend.WEST);

If you don’t want a legend to appear on your chart, you can set it to null:

myChart.setLegend(null);

21.16.3 Constructor

This is an abstract class, so the constructor is protected.

21.16.4 Notes

This class implements a listener mechanism which can be used by subclasses.

See Also
StandardLegend.

21.17 LegendItem

21.17.1 Overview

An item within a legend.

21.18 LegendItemCollection

21.18.1 Overview

A collection of legend items.

See Also
Legend.

21.19 LegendItemLayout

21.19.1 Overview

An interface for laying out a collection of legend items.

Notes

This code is incomplete.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 148

See Also
Legend.

21.20 MeterLegend

21.20.1 Overview

To be documented.

21.21 PolarChartPanel

21.21.1 Overview

An extension of the ChartPanel class with a pop-up menu that applies to polar
charts.

21.22 StandardLegend

21.22.1 Overview

A chart legend displays the names of the series in a chart.

21.22.2 Methods

The legend position is controlled using methods inherited from the Legend class.

To set the color and thickness of the legend outline, use the following methods:

public void setOutlineStroke(Stroke stroke);

Sets the Stroke used to draw the outline for the legend and sends a

LegendChangeEvent to all registered listeners.

public void setOutlinePaint(Paint paint);

Sets the Paint used to draw the outline for the legend and sends a

LegendChangeEvent to all registered listeners.

To set the background color for the legend:

public void setBackgroundPaint(Paint paint);

Sets the Paint used to fill the background of the legend and sends a

LegendChangeEvent to all registered listeners.

To set the title (optional) and title font for the legend:

public void setTitle(String title);

Sets the title for the legend.

public void setTitleFont(Font font);

Sets the title font for the legend and sends a LegendChangeEvent to all

registered listeners.

CHAPTER 21. PACKAGE: ORG.JFREE.CHART 149

To set the color and font used for the legend item text:

public void setItemFont(Font font);

Sets the font used to display the text for the legend items.

public void setItemPaint(Paint paint);

Sets the paint used to display the text for the legend items.

21.22.3 Legend Item Shapes

If your chart displays shapes to represent the items in a series, you can get the
legend to reflect this using the following method:

public void setDisplaySeriesShapes(boolean flag);

Sets the flag that controls whether shapes are displayed for the legend

items.

A range of methods are available to change the appearance of the shapes in the
legend. The fill color is obtained from the chart’s renderer, but the outline paint
and stroke is set in the legend:

public void setShapeOutlinePaint(Paint paint);

Sets the Paint used to outline shapes in the legend.

public void setShapeOutlineStroke(Stroke stroke);

Sets the Stroke used to outline shapes in the legend.

You can also scale the size of the shapes displayed in the legend:

public void setShapeScaleX(double factor);

Sets the x scale factor for the shapes displayed in the legend.

public void setShapeScaleY(double factor);

Sets the y scale factor for the shapes displayed in the legend.

21.22.4 Notes

Some points to note:

• the legend does not have methods to get or set the items that will be
displayed. At the time a chart is drawn, the legend items are obtained via
a call to the getLegendItems() method in the Plot class;

• it is planned that this class should be replaced by a LegendTitle class, so
that the legend can be treated (for layout purposes) as if it were a chart
title.

21.23 StandardLegendItemLayout

21.23.1 Overview

This class is not currently used.

Chapter 22

Package:
org.jfree.chart.annotations

22.1 Overview

The annotations framework provides a mechanism for adding small text and
graphics items to charts, usually to highlight a particular data item. In the cur-
rent release, annotations can be added to the CategoryPlot and XYPlot classes.
This framework is relatively basic at present, additional features are likely to
be added in the future.

22.2 CategoryAnnotation

22.2.1 Overview

The interface that must be supported by annotations that are to be added to a
CategoryPlot.

The CategoryTextAnnotation class is the only implementation of this interface
that is included in the JFreeChart distribution.

22.2.2 Methods

This interface defines a single method:

public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

CategoryAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation.

22.3 CategoryTextAnnotation

22.3.1 Overview

An annotation that can be used to display an item of text at some location
(defined by a (category, value) pair) on a CategoryPlot.

150

CHAPTER 22. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 151

22.4 TextAnnotation

22.4.1 Overview

The base class for a text annotation. The class includes font, paint, alignment
and rotation settings. Subclasses will add location information to the content
represented by this class.

22.4.2 Constructor

The constructor for this class is protected since you won’t create an instance
of this class directly (use a subclass):

protected TextAnnotation(String text);

Creates a new text annotation with the specified attributes.

22.4.3 Methods

There are methods for accessing the text, font, paint, anchor and rotation

attributes.

22.4.4 Notes

CategoryTextAnnotation and XYTextAnnotation are the two subclasses included
in the JFreeChart distribution.

22.5 XYAnnotation

22.5.1 Overview

The interface that must be supported by annotations that are to be added to
an XYPlot.

This interface is implemented by:

• XYDrawableAnnotation;

• XYLineAnnotation;

• XYPointerAnnotation;

• XYTextAnnotation;

You can, of course, provide your own implementations of the interface.

22.5.2 Methods

This class defines one method for drawing the annotation:

public void draw(Graphics2D g2, Rectangle2D dataArea,

XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation. The dataArea is the space defined by (within) the

two axes. If the annotation defines its location in terms of data values,

the axes can be used to convert these values to Java2D coordinates.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 152

22.6 XYDrawableAnnotation

22.6.1 Overview

An annotation that draws an object at some (x, y) location on an XYPlot. The
object can be any implementation of the Drawable interface (defined in the
JCommon class library).

22.6.2 Notes

See the MarkerDemo1.java source file in the JFreeChart distribution for an ex-
ample.

22.7 XYLineAnnotation

22.7.1 Overview

A simple annotation that draws a line between a starting point (x0, y0) and an
ending point (x1, y1) on an XYPlot.

22.8 XYPointerAnnotation

22.8.1 Overview

An annotation that displays an arrow pointing towards a specific (x, y) location
on an XYPlot. The arrow can have a label at one end. For example:

Figure 22.1: An XYPointerAnnotation example

22.8.2 Usage

To add a pointer annotation to an XYPlot:

XYPlot plot = myChart.getXYPlot();

XYPointerAnnotation pointer = new XYPointerAnnotation(

"Best Bid", millis, 163.0, 3.0 * Math.PI / 4.0

);

pointer.setTipRadius(10.0);

pointer.setBaseRadius(35.0);

pointer.setFont(new Font("SansSerif", Font.PLAIN, 9));

CHAPTER 22. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 153

pointer.setPaint(Color.blue);

pointer.setTextAnchor(TextAnchor.HALF_ASCENT_RIGHT);

plot.addAnnotation(pointer);

22.9 XYTextAnnotation

22.9.1 Overview

A text annotation that can be added to an XYPlot. You can use this class to
add a small text label at some (x, y) location on a chart.

The annotation inherits font, paint, alignment and rotation settings from the
TextAnnotation class.

22.9.2 Usage

To add a simple annotation to an XYPlot:

XYPlot plot = myChart.getXYPlot();

XYAnnotation annotation = new XYTextAnnotation("Hello World!", 10.0, 25.0);

plot.addAnnotation(annotation);

22.9.3 Methods

This class defines methods to get and set the x and y values (defining the location
of the annotation against the domain and range axes).

22.9.4 Notes

Some points to note:

• the XYPointerAnnotation subclass can be used to display a label with an
arrow pointing to some (x, y) value.

Chapter 23

Package: org.jfree.chart.axis

23.1 Overview

This package contains all the axis classes plus a few assorted support classes
and interfaces:

• the CategoryPlot and XYPlot classes maintain references to two axes (by
default), which we refer to as the domain axis and range axis. These terms
are based on the idea that these plots are providing a visual representation
of a function that maps a set of domain values onto a set of range values.
For most purposes, you can think of the domain axis as the X-axis and
the range axis as the Y-axis, but we prefer the more generic terms.

• the default settings provided by the axis classes should work well for a
wide range of applications. However, there are many ways to customise
the behaviour of the axes by modifying attributes via the JFreeChart API.
Be sure to read through the API documentation to become familiar with
the options that are available.

• a powerful feature of JFreeChart is the support for multiple domain and
range axes on a single plot. If you plan to make use of this feature, you
should refer to section 12 for more information.

The axis classes are Cloneable and Serializable.

23.2 Axis

23.2.1 Overview

An abstract base class representing an axis. Some subclasses of Plot, including
CategoryPlot and XYPlot, will use axes to display data.

Figure 23.1 illustrates the axis class hierarchy.

23.2.2 Constructors

The constructors for this class are protected, you cannot create an instance of
this class directly—you must use a subclass.

154

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 155

Axis

ValueAxisCategoryAxis

DateAxisNumberAxis

NumberAxis3DLogarithmicAxis SymbolicAxis

CategoryAxis3D

Figure 23.1: Axis classes

23.2.3 Attributes

The attributes maintained by the Axis class are listed in Table 23.1. There are
methods to read and update most of these attributes. In most cases, updating
an axis attribute will result in an AxisChangeEvent being sent to all (or any)
registered listeners.

Attribute: Description:

plot The plot to which the axis belongs.
visible A flag that controls whether or not the axis is

visible.
label The axis label.
label-font The font for the axis label.
label-paint The foreground color for the axis label.
label-insets The space to leave around the outside of the

axis label.
axisLineVisible A flag that controls whether or not a line is

drawn for the axis.
axisLinePaint The paint used to draw the axis line if it is

visible.
axisLineStroke The stroke used to draw the axis line if it is

visible.
tick-labels-visible A flag controlling the visibility of tick labels.
tick-label-font The font for the tick labels.
tick-label-paint The color for the tick labels.
tick-label-insets The space to leave around the outside of the

tick labels.
tick-marks-visible A flag controlling the visibility of tick marks.
tick-mark-stroke The stroke used to draw the tick marks.
tick-mark-paint The paint used to draw the tick marks.
tick-mark-inside-length The amount by which the tick marks extend

into the plot area.
tick-mark-outside-length The amount by which the tick marks extend

outside the plot area.

Table 23.1: Attributes for the Axis class

The default values used to initialise the axis attributes are listed in Table 23.2.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 156

Name: Value:

DEFAULT AXIS LABEL FONT new Font("SansSerif", Font.PLAIN, 14);

DEFAULT AXIS LABEL PAINT Color.black;

DEFAULT AXIS LABEL INSETS new Insets(2, 2, 2, 2);

DEFAULT TICK LABEL FONT new Font("SansSerif", Font.PLAIN, 10);

DEFAULT TICK LABEL PAINT Color.black;

DEFAULT TICK LABEL INSETS new Insets(2, 1, 2, 1);

DEFAULT TICK STROKE new BasicStroke(1);

Table 23.2: Axis class default attribute values

23.2.4 Usage

To change the attributes of an axis, you must first obtain a reference to the
axis. Usually, you will obtain the reference from the plot that uses the axis. For
example:

CategoryPlot plot = (CategoryPlot) chart.getPlot();

CategoryAxis axis = plot.getDomainAxis();

// change axis attributes here...

Notice that the getDomainAxis() method returns a particular subclass of Axis

(CategoryAxis in this case). That’s okay, because the subclass inherits all the
attributes defined by Axis anyway.

23.2.5 Methods

All axes are drawn by the plot that owns the axis, using this method:

public abstract AxisState draw(Graphics2D g2, double cursor,

Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);

Draws the axis along the specified edge of the data area. Given that there

may be more than one axis on a particular edge, the cursor value specifies

the distance from the edge that the axis should be drawn (to take account

of other axes that have already been drawn). An AxisState object is

returned which provides information about the axis (for example, the tick

values which the plot will use to draw gridlines if they are visible).

All axes are given the opportunity to refresh the axis ticks during the drawing
process, which allows for dynamic adjustment depending on the amount of space
available for drawing the axis:

public abstract List refreshTicks(Graphics2D g2, AxisState state,

Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);

Creates a list of ticks for the axis and updates the axis state.

23.2.6 Change Notification

This class implements a change notification mechanism that is used to no-
tify other objects whenever an axis is changed in some way. This is part of
a JFreeChart-wide mechanism that makes it possible to receive notifications
whenever a component of a chart is changed. Most often, such notifications
result in the chart being redrawn.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 157

The following methods are used:

public void addChangeListener(AxisChangeListener listener);

Registers an object to receive notification whenever the axis changes.

public void removeChangeListener(AxisChangeListener listener);

Deregisters an object, so that it no longer receives notification when the

axis changes.

public void notifyListeners(AxisChangeEvent event);

Notifies all registered listeners that a change has been made to the axis.

See Also
AxisConstants, AxisChangeEvent, AxisChangeListener.

23.3 AxisCollection

23.3.1 Overview

A storage structure that is used to record the axes that have been assigned to
the top, bottom, left and right sides of a plot.

23.3.2 Notes

Axis collections are maintained only temporarily during the process of drawing
a chart.

23.4 AxisConstants

23.4.1 Overview

An interface that defines the constants used by the Axis class.

23.4.2 Notes

The Plot class also implements this interface, so that it has convenient access
to the constants for internal use.

23.5 AxisLocation

23.5.1 Overview

This class is used to represent the possible axis locations for a 2D chart:

• AxisLocation.TOP OR LEFT;

• AxisLocation.TOP OR RIGHT;

• AxisLocation.BOTTOM OR LEFT;

• AxisLocation.BOTTOM OR RIGHT;

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 158

The final position of the axis is dependent on the orientation of the plot (hor-
izontal or vertical) and whether the axis is being used as a domain or a range
axis.

23.5.2 Notes

The axis location is set using methods in the CategoryPlot and XYPlot classes.

23.6 AxisSpace

23.6.1 Overview

This class is used to record the amount of space (in Java2D units) required to
display the axes around the edges of a plot. Since the plot may contain many
axes (or, in the most complex case, many subplots containing many axes) this
class is used to collate the space requirements for all the axes.

dataArea

plotArea
top

bottom

rightleft

Figure 23.2: AxisSpace Attributes

Axes are always drawn around the edges of the data area but should never
extend outside the plot area.

23.6.2 Methods

There are methods to get and set each of the attributes top, bottom, left and
right maintained by this class.

To add space to a particular edge:

public void add(double space, RectangleEdge edge);

Adds the specified amount of space (in Java2D units) to one edge.

Sometimes you want to ensure that there is at least a specified amount of space
for the axis along a particular edge (this is used to ensure that the data areas
in combined plots are aligned). The following methods achieve this:

public void ensureAtLeast(double space, RectangleEdge edge);

Ensures that there is at least the specified amount of space for the axes

along the specified edge.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 159

public void ensureAtLeast(AxisSpace space);

As above, but applied to all the edges.

Given a rectangle and an instance of AxisSpace, you can calculate the size of an
inner rectangle (essentially this is how the data area is computed from the plot
area):

public Rectangle2D shrink(Rectangle2D area, Rectangle2D result);

Calculates an inner rectangle based on the current space settings. If

result is null a new Rectangle2D is created for the result, otherwise

the supplied rectangle is recycled.

23.7 AxisState

23.7.1 Overview

Instances of this class are used to record state information for an axis during
the process of drawing the axis to some output target.

23.7.2 Notes

By recording state information per drawing of an axis, it should be possible for
separate threads to draw the same axis to different output targets simultaneously
without interfering with one another. This is part of an effort to (eventually)
make JFreeChart thread-safe.

23.8 CategoryAnchor

23.8.1 Overview

An enumeration of the anchor points within the space allocated for a single
category on a CategoryAxis:

Default: Value:

CategoryAnchor.START The start of the category.
CategoryAnchor.MIDDLE The middle of the category.
CategoryAnchor.END The end of the category.

23.8.2 Usage

This class is used to control the position of the domain axis gridlines drawn in
a CategoryPlot (see the setDomainGridlinePosition() method).

23.9 CategoryAxis

23.9.1 Overview

A category axis is used as the domain axis in a CategoryPlot. Categories are
displayed at regular intervals along the axis, with a gap before the first category
(the lower margin), a gap after the last category (the upper margin) and a gap
between each category (the category margin).

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 160

lowerMargin
CATEGORY 1

upperMargin
categoryMargin

Category Axis
CATEGORY 2 CATEGORY N

Figure 23.3: The CategoryAxis margins

The axis will usually display a label for each category. There are a range of
options for controlling the position, alignment and rotation of the labels—these
are described in section 23.9.5.

23.9.2 Constructor

There is a single constructor:

public CategoryAxis(String label);

Creates a new category axis with the specified label. If you prefer no axis

label, you can use null for the label argument.

23.9.3 Attributes

The attributes maintained by the CategoryAxis class are listed in Table 23.3.
These attributes are in addition to those inherited from the Axis class (see
section 23.2.3 for details).

Attribute: Description:

lowerMargin The margin that appears before the first category, ex-
pressed as a percentage of the overall axis length (defaults
to 0.05 or five percent).

upperMargin The margin that appears after the last category, expressed
as a percentage of the overall axis length (defaults to 0.05

or five percent).
categoryMargin The margin between categories, expressed as a percentage

of the overall axis length (to be distributed between N-1
gaps, where N is the number of categories). The default
value is 0.20 (twenty percent).

categoryLabelPositionOffset The offset between the axis line and the category labels.
categoryLabelPositions A structure that defines label positioning information for

each possible axis location (the axis may be located at the
top, bottom, left or right of the plot).

Table 23.3: Attributes for the CategoryAxis class

The following default values are used:

Default: Value:

DEFAULT AXIS MARGIN 0.05 (5 percent).
DEFAULT CATEGORY MARGIN 0.20 (20 percent).

23.9.4 Setting Axis Margins

To set the lower margin for the axis:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 161

public void setLowerMargin(double margin);

Sets the lower margin for the axis and sends an AxisChangeEvent to all

registered listeners. The margin is a percentage of the axis length (for

example, 0.05 for a five percent margin).

To set the upper margin for the axis:

public void setUpperMargin(double margin);

Sets the upper margin for the axis and sends an AxisChangeEvent to all

registered listeners. The margin is a percentage of the axis length (for

example, 0.05 for a five percent margin).

To set the margin between categories:

public void setCategoryMargin(double margin);

Sets the category margin for the axis and sends an AxisChangeEvent to

all registered listeners. The margin is a percentage of the axis length

(for example, 0.20 for a twenty percent margin). The overall margin is

distributed over N-1 gaps where N is the number of categories displayed

on the axis.

23.9.5 Category Label Positions

To set the position of the category labels:

public void setCategoryLabelPositions(CategoryLabelPositions positions);

Sets the attribute that controls the position, alignment and rotation of the

category labels along the axis.

The CategoryLabelPositions class is just a structure containing four instances of
the CategoryLabelPosition class. When the axis needs to determine where it is
going to draw the category labels, it will select one of those instances depending
on the current location of the axis (at the top, bottom, left or right of the
plot). It is the attributes of the CategoryLabelPosition object that ultimately
determine where the labels are drawn.

• the first attribute is an anchor point relative to a notional category rect-
angle that is computed by the axis (see figure 23.4).Within this rectangle,
an anchor point is specified using the RectangleAnchor class.

Category Axis
CATEGORY 2 CATEGORY N

Category 1 Label Rectangle

Figure 23.4: A category label rectangle

• the second attribute is a text anchor, which defines a point on the category
label which is aligned with the anchor point on within the category rect-
angle mentioned previously. This is specified using the TextBlockAnchor

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 162

class. Try running the DrawStringDemo class in the JFreeChart distribution
to see how the anchor is used to align text to a point on the screen.

• the final two attributes are a rotation anchor point and a rotation an-
gle. These are applied once the label text has been positioned using the
previous two attributes.

23.9.6 Category Label Tool Tips

It is possible to specify tooltips for the labels along the category axis. This can
be useful if you want to use short category names, but have the opportunity to
display a longer description. To add a tool tip:

public void addCategoryLabelToolTip(Comparable category, String tooltip);

Adds a tooltip for the specified category.

To remove a tool tip:

public void removeCategoryLabelToolTip(Comparable category);

Removes the tooltip for the specified category.

To remove all tool tips:

public void clearCategoryLabelToolTips();

Removes all category label tool tips.

This feature is not supported by other axis types yet.

23.9.7 Other Methods

To control whether or not a line is drawn for the axis:

public void setAxisLineVisible(boolean visible);

Sets the flag that controls whether or not a line is drawn for the axis. Of-

ten, this isn’t required because the CategoryPlot draws an outline around

itself by default. However, sometimes the plot will have no outline OR

the axis may be offset from the plot.

23.9.8 Internals

In JFreeChart, axes are owned/managed by a plot. The plot is responsible for
assigning drawing space to all of the axes in a plot, which it does by first asking
the axes to estimate the space they require (primarily for the axis labels). The
following method is used:

public AxisSpace reserveSpace(Graphics2D g2, Plot plot, Rectangle2D plotArea,

RectangleEdge edge, AxisSpace space);

Updates the axis space to allow room for this axis to be drawn.

When reserving space, the axis needs to determine the tick marks along the
axis, which it does via the following method:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 163

public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge);

Returns a list of the ticks along the axis.

After the plot has estimated the space required for each axis, it then computes
the “data area” and draws all the axes around the edges of this area:

public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge);

Draws the axis along a specific edge of the data area. The cursor is a mea-

sure of how far from the edge of the data area the axis should be drawn

(another axis may have been drawn along the same edge already, for ex-

ample) and the plot area is the region inside which all the axes should fit

(it contains the data area).

For a given rectangular region in Java2D space, the axis can be used to calculate
an x-coordinate or a y-coordinate (depending on which edge of the rectangle the
axis is aligned) for the start, middle or end of a particular category on the axis:

public double getCategoryJava2DCoordinate(CategoryAnchor anchor, int category,

int categoryCount, Rectangle2D area, RectangleEdge edge);

Returns the x- or y-coordinate (in Java2D space) of the specified category.

23.9.9 Cloning and Serialization

This class is Cloneable and Serializable.

23.9.10 Notes

Some points to note:

• tick marks are not supported by this axis (yet).

23.10 CategoryAxis3D

23.10.1 Overview

An extension of the CategoryAxis class that adds a 3D effect. If you use a
CategoryItemRenderer that draws items with a 3D effect, then you need to ensure
that you are using this class rather than a regular CategoryAxis. Eventually,
the aim is to combine this class into the CategoryAxis class.

23.11 CategoryLabelPosition

23.11.1 Overview

This class records the four attributes that control the position, alignment and
rotation of category labels along a CategoryAxis.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 164

• the category anchor - a RectangleAnchor that is used to determine the
point on the axis against which the category label is aligned. This is
specified relative to a rectangular area that the CategoryAxis allocates for
the category;

• the label anchor - a TextBlockAnchor that determines the point on the
category label (a TextBlock) that is aligned with the category anchor;

• the rotation anchor - the point on the category label about which the
label is rotated (there may be no rotation);

• the rotation angle - the angle of the rotation, specified in radians.

23.11.2 Notes

The following points should be noted:

• instances of this class are immutable, a fact that is relied upon by code
elsewhere in the JFreeChart library.

23.12 CategoryLabelPositions

23.12.1 Overview

This class is used to specify the positions of category labels on a CategoryAxis.
To account for the fact that an axis can appear in one of four different locations
(the top, bottom, left or right of the plot) this class contains four instances of
the CategoryLabelPosition class—the axis will choose the appropriate one when
the labels are being drawn.

23.12.2 Usage

For example, to change the category axis labels to a 45 degree angle:

CategoryAxis domainAxis = plot.getDomainAxis();
domainAxis.setCategoryLabelPositions(CategoryLabelPositions.UP 45);

The above example makes use of the fact that several static instances of this
class have been predefined in order to simplify general usage of the CategoryAxis

class:

Value: Description:

STANDARD The default label positions.
UP 90 The labels are rotated 90 degrees, with the text running from

the bottom to the top of the chart.
DOWN 90 The labels are rotated 90 degrees, with the text running from

the top to the bottom of the chart.
UP 45 The labels are rotated 45 degrees, with the text running to-

wards the top of the chart.
DOWN 45 The labels are rotated 45 degrees, with the text running to-

wards the bottom of the chart.

Table 23.4: Static instances of the CategoryLabelPositions class

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 165

However, you can also experiment with creating your own instances of this class,
to fully customise the category label positions.

23.13 CategoryTick

23.13.1 Overview

A class used to represent a single tick on a CategoryAxis. This class is used
internally and it is unlikely that you should ever need to use it directly.

23.14 ColorBar

23.14.1 Overview

A color bar is used with a ContourPlot.

23.15 CompassFormat

23.15.1 Overview

A custom NumberFormat class that can be used to display numerical values as
compass directions—see figure 23.5 for an example. In the example, the range

Figure 23.5: A chart that uses the CompassFormat class

axis on the left side of the chart displays compass directions in place of numerical
values.

23.15.2 Usage

There is a demo (CompassFormatDemo.java) included in the JFreeChart distribu-
tion (in the src/org/jfree/chart/demo directory).

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 166

23.16 DateAxis

23.16.1 Overview

An axis that displays date/time values—extends ValueAxis. This class is de-
signed to be flexible about the range of dates/times that it can display—
anything from a few milliseconds to several centuries can be handled.

A date axis can be used for the domain and/or range axis in an XYPlot. In a
CategoryPlot, a date axis can only be used for the range axis.

23.16.2 Constructors

To create a new axis:

public DateAxis(String label);

Creates a new axis with the specified label (null permitted).

23.16.3 Attributes

The following attributes are defined, in addition to those inherited from the
ValueAxis class:

Attribute: Description:

date-format-override A date formatter that, if set, overrides the format of
the tick labels displayed on the axis.

tick-unit Controls the size and formatting of the tick labels on
the axis (an instance of DateTickUnit).

minimum-date The minimum date/time visible on the axis.
maximum-date The maximum date/time visible on the axis.
vertical-tick-labels A flag that controls whether or not the tick labels on

the axis are displayed “vertically” (that is, rotated 90
degrees from horizontal).

Refer to section 23.33.3 for information about the attributes inherited by this
class.

23.16.4 Usage

To change the attributes of the axis, you need to obtain a DateAxis reference—
because of the way JFreeChart is designed, this usually involves a “cast”:

XYPlot plot = myChart.getXYPlot();

ValueAxis domainAxis = plot.getDomainAxis();

if (domainAxis instanceof DateAxis) {

DateAxis axis = (DateAxis) domainAxis;

// customise axis here...

}

Given a DateAxis reference, you can change:

• the axis range, see section 23.16.5;

• the size and formatting of the tick labels, see section 23.16.6;

• other inherited attributes, see section 23.33.4.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 167

23.16.5 The Axis Range

To set the axis range:1

// start and end are instances of java.util.Date

axis.setRange(start, end);

23.16.6 Tick Units

The tick units on the date axis are controlled by a similar “auto tick unit
selection” mechanism to that used in the NumberAxis class. This mechanism
relies on a collection of “standard” tick units (stored in an instance of TickUnits).
The axis will try to select the smallest tick unit that doesn’t cause the tick labels
to overlap.

If you want to specify a fixed tick size and format, you can use code similar to
this:

// set the tick size to one week, with formatting...

DateFormat formatter = new SimpleDateFormat("d-MMM-yyyy");

DateTickUnit unit = new DateTickUnit(DateTickUnit.DAY, 7, formatter);

axis.setTickUnit(unit);

Note that setting a tick unit manually in this way disables the “auto” tick unit
selection mechanism. You may find that the tick size you have requested results
in overlapping labels.

If you just want to control the tick label format, one option is to specify an
override format :

// specify an override format...

DateFormat formatter = new SimpleDateFormat("d-MMM");

axis.setDateFormatOverride(formatter);

This is a simple and effective approach in some situations, but has the limitation
that the same format is applied to all tick sizes.

A final approach to controlling the formatting of tick labels is to create your own
TickUnits collection. The collection can contain any number of DateTickUnit

objects, and should be registered with the axis as follows:

// supply a new tick unit collection...

axis.setStandardTickUnits(myCollection);

23.16.7 Tick Label Orientation

To control the orientation of the tick labels on the axis:

axis.setVerticalTickLabels(true);

This code survives from the HorizontalDateAxis class...it needs to be changed to
be more generic for axes that could have either a horizontal or vertical orienta-
tion.

1Note that when you set the axis range in this way, the auto-range attribute is set to false.
It is assumed that by setting a range manually, you do not want that subsequently overridden
by the auto-range calculation.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 168

23.16.8 Notes

Although the axis displays dates for tick labels, at the lowest level it is still
working with double primitives obtained from the Number objects supplied by
the plot’s dataset. The values are interpreted as the number of milliseconds
since 1 January 1970 (that is, the same encoding used by java.util.Date).

23.17 DateTickMarkPosition

23.17.1 Overview

A simple enumeration of the possible tick mark positions for a DateAxis. The
positions are:

• DateTickMarkPosition.START;

• DateTickMarkPosition.MIDDLE;

• DateTickMarkPosition.END.

Use the setTickMarkPosition() method in the DateAxis class to change this
setting.

23.18 DateTick

23.18.1 Overview

A class used to represent a single tick on a DateAxis.

23.18.2 Usage

This class is used internally and it is unlikely that you should ever need to use
it directly.

23.19 DateTickUnit

23.19.1 Overview

A date tick unit for use by subclasses of DateAxis (extends the TickUnit class).

The unit size can be specified as a multiple of one of the following time units:

Time Unit: Constant:

Year DateTickUnit.YEAR

Month DateTickUnit.MONTH

Day DateTickUnit.DAY

Hour DateTickUnit.HOUR

Minute DateTickUnit.MINUTE

Second DateTickUnit.SECOND

Millisecond DateTickUnit.MILLISECOND

Note that these constants are not the same as those defined by Java’s Calendar

class.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 169

23.19.2 Usage

There are two ways to make use of this class. The first is where you know the
exact tick size that you want for your axis. In this case, you create a new date
tick unit then call the setTickUnit() method in the DateAxis class. For example,
to set the tick unit size on the axis to one week:

XYPlot plot = myChart.getXYPlot();

ValueAxis axis = plot.getDomainAxis();

axis.setTickUnit(new DateTickUnit(DateTickUnit.DAY, 7));

The second usage is to create a collection of tick units using the TickUnits class,
and then allow the DateAxis to automatically select an appropriate unit. See
the setStandardTickUnits() method for more details.

23.19.3 Constructors

To create a new date tick unit:

public DateTickUnit(int unit, int count);

Creates a new tick unit with a default date formatter for the current

locale.

Alternatively, you can supply your own date formatter:

public DateTickUnit(int unit, int count, DateFormat formatter);

Creates a new date tick unit with the specified date formatter.

For both constructors, the unit argument should be defined using one of the
constants listed in section 23.19.1. The count argument specifies the multiplier
(often just 1).

23.19.4 Methods

To get the units used to specify the tick size:

public int getUnit();

Returns a constant representing the units used to specify the tick size.

The constants are listed in section 23.19.1.

To get the number of units:

public int getCount();

Returns the number of units.

To format a date using the tick unit’s internal formatter:

public String dateToString(Date date);

Formats the date as a String.

The following method is used for simple date addition:

public Date addToDate(Date base);

Creates a new Date that is calculated by adding this DateTickUnit to the

base date.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 170

23.19.5 Notes

This class is immutable, a requirement for all subclasses of TickUnit.

See Also
NumberTickUnit.

23.20 LogarithmicAxis

23.20.1 Overview

A numerical axis that displays values using a logarithmic scale. Extends NumberAxis.

23.21 MarkerAxisBand

23.21.1 Overview

A band that can be added to a NumberAxis to highlight certain value ranges.

23.21.2 Usage

To use this class, first create a new band:

MarkerAxisBand band = new MarkerAxisBand(

axis, 2.0, 2.0, 2.0, 2.0,

new Font("SansSerif", Font.PLAIN, 9));

Next, add as many ranges as you require to be displayed on the axis:

IntervalMarker m1 = new IntervalMarker(0.0, 33.0,

"Low", Color.gray,

new BasicStroke(0.5f),

Color.green, 0.75f);

band.addMarker(m1);

IntervalMarker m2 = new IntervalMarker(33.0, 66.0,

"Medium", Color.gray,

new BasicStroke(0.5f),

Color.orange, 0.75f);

band.addMarker(m2);

IntervalMarker m3 = new IntervalMarker(66.0, 100.0,

"High", Color.gray,

new BasicStroke(0.5f),

Color.red, 0.75f);

band.addMarker(m3);

23.22 NumberAxis

23.22.1 Overview

An axis that displays numerical data along a linear scale. This class extends
ValueAxis. You can create your own subclasses if you have special requirements.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 171

23.22.2 Constructors

To create a new axis:

public NumberAxis(String label);

Creates a new axis with the specified label (null permitted).

23.22.3 Usage

A NumberAxis can be used for the domain and/or range axes in an XYPlot, and
for the range axis in a CategoryPlot.

The methods for obtaining a reference to the axis typically return a ValueAxis,
so you will need to “cast” the reference to a NumberAxis before using any of the
methods specific to this class. For example:

ValueAxis rangeAxis = myPlot.getRangeAxis();

if (rangeAxis instanceof NumberAxis) {

NumberAxis axis = (NumberAxis) rangeAxis;

axis.setAutoRangeIncludesZero(true);

}

This casting technique is used often in JFreeChart.

23.22.4 The Axis Range

You can control most aspects of the axis range using methods inherited from
the ValueAxis class—see section 23.33.5 for details.

Two additional controls are added by this class. First, you can specify whether
or not zero must be included in the axis range:

axis.setAutoRangeIncludesZero(true);

If the auto-range-includes-zero flag is set to true, then you can further control
how the axis margin is calculated when zero falls within the axis margin. By
setting the auto-range-sticky-zero flag to true:

axis.setAutoRangeStickyZero(true);

...you can truncate the margin at zero.

23.22.5 Auto Tick Unit Selection

The NumberAxis class contains a mechanism for automatically selecting a tick
unit from a collection of “standard” tick units. The aim is to display as many
ticks as possible, without the tick labels overlapping. The appropriate tick unit
will depend on the axis range (which is often a function of the available data)
and the amount of space available for displaying the chart.

The default standard tick unit collection contains about 50 tick units ranging
in size from 0.0000001 to 1,000,000,000. The collection is created and returned
by the createStandardTickUnits() method.

You can replace the default collection with any other collection of tick units you
care to create. One common situation where this is necessary is the case where

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 172

your data consists of integer values only. In this case, you only want the axis
to display integer tick values, but sometimes the axis will show values like 0.00,
2.50, 5.00. 7.50, 10.00, when you might prefer 0, 2, 4, 6, 8, 10. For this situation,
a set of standard integer tick units has been created. Use the following code:

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
TickUnits units = NumberAxis.createIntegerTickUnits();
rangeAxis.setStandardTickUnits(units);

For greater control over the tick sizes or formatting, create your own TickUnits

object.

23.22.6 Attributes

The following table lists the properties maintained by NumberAxis, in addition
to those inherited from ValueAxis.

Attribute: Description:

auto-range-includes-zero A flag that indicates whether or not zero is always
included when the axis range is determined automat-
ically.

auto-range-sticky-zero A flag that controls the behaviour of the auto-range
calculation when zero falls within the lower or upper
margin for the axis. If true, the margin will be trun-
cated at zero.

number-format-override A NumberFormat that, if set, overrides the formatting
of the tick labels for the axis.

vertical-tick-labels A flag that indicates whether or not the tick labels are
rotated to vertical.

marker-band An optional band that highlights ranges along the axis
(see MarkerAxisBand).

The following default values are used for attributes wherever necessary:

Name: Value:

DEFAULT MINIMUM AXIS VALUE 0.0

DEFAULT MAXIMUM AXIS VALUE 1.0

DEFAULT MINIMUM AUTO RANGE new Double(0.0000001);

DEFAULT TICK UNIT new NumberTickUnit(new Double(1.0), new

DecimalFormat("0"));

23.22.7 Methods

If you have set the auto-range flag to true (so that the axis range automatically
adjusts to fit the current data), you may also want to set the AutoRangeIncludes-

Zero flag to ensure that the axis range always includes zero:

public void setAutoRangeIncludesZero(boolean flag);

Sets the auto-range-includes-zero flag.

When the auto-tick-unit-selection flag is set to true, the axis will select a tick
unit from a set of standard tick units. You can define your own standard tick
units for an axis with the following method:

public void setStandardTickUnits(TickUnits units);

Sets the standard tick units for the axis.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 173

You don’t have to use the auto tick units mechanism. To specify a fixed tick
size (and format):

public void setTickUnit(NumberTickUnit unit);

Sets a fixed tick unit for the axis. This allows you to control the size and

format of the ticks, but you need to be sure to choose a tick size that

doesn’t cause the tick labels to overlap.

You can reverse the direction of the values on the axis:

public void setInverted(boolean flag);

An inverted axis has values that run from high to low, the reverse of the

normal case.

23.22.8 Notes

This class defines a default set of standard tick units. You can override the
default settings by calling the setStandardTickUnits() method.

See Also
ValueAxis, TickUnits.

23.23 NumberAxis3D

23.23.1 Overview

An extension of the NumberAxis class that adds a 3D effect. Eventually, this
class will be combined with the NumberAxis class.

23.24 NumberTick

23.24.1 Overview

A class used to represent a single tick on a NumberAxis.

23.24.2 Usage

This class is used internally and it is unlikely that you should ever need to use
it directly.

23.25 NumberTickUnit

23.25.1 Overview

A number tick unit for use by subclasses of NumberAxis (extends the TickUnit

class).

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 174

23.25.2 Usage

There are two ways that this class is typically used.

The first is where you know the exact tick size that you want for an axis. In
this case, you create a new tick unit then call the setTickUnit() method in the
ValueAxis class. For example:

XYPlot plot = myChart.getXYPlot();

ValueAxis axis = plot.getRangeAxis();

axis.setTickUnit(new NumberTickUnit(25.0));

The second is where you prefer to leave the axis to automatically select a tick
unit. In this case, you should create a collection of tick units (see the TickUnits

class for details).

23.25.3 Constructors

To create a new number tick unit:

public NumberTickUnit(double size);

Creates a new number tick unit with a default number formatter for the

current locale.

Alternatively, you can supply your own number formatter:

public NumberTickUnit(double size, NumberFormat formatter);

Creates a new number tick unit with the specified number formatter.

23.25.4 Methods

To format a value using the tick unit’s internal formatter:

public String valueToString(double value);

Formats the value as a String.

23.25.5 Notes

This class is immutable, a requirement for all subclasses of TickUnit.

See Also
DateTickUnit.

23.26 SegmentedTimeline

23.26.1 Overview

A segmented timeline for use with a DateAxis.

23.26.2 Usage

The SegmentedHighLowChartDemo class (included in the JFreeChart distribution)
provides an example of how to use this class.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 175

23.27 SymbolicAxis

23.27.1 Overview

An axis that displays numerical data using symbols.

23.28 SymbolicTickUnit

23.28.1 Overview

Not yet documented.

23.29 Tick

23.29.1 Overview

A utility class representing a tick on an axis. Used temporarily during the
drawing process only—you won’t normally use this class yourself.

See Also
TickUnit.

23.30 TickUnit

23.30.1 Overview

An abstract class representing a tick unit, with subclasses including:

• DateTickUnit – for use with a DateAxis;

• NumberTickUnit – for use with a NumberAxis.

23.30.2 Constructors

The standard constructor:

public TickUnit(double size);

Creates a new tick unit with the specified size.

23.30.3 Notes

Implements the Comparable interface, so that a collection of tick units can be
sorted easily using standard Java methods.

See Also
TickUnits.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 176

23.31 TickUnits

23.31.1 Overview

A collection of tick units. This class is used by the DateAxis and NumberAxis

classes to store a list of “standard” tick units. The auto-tick-unit-selection
mechanism chooses one of the standard tick units in order to maximise the
number of ticks displayed without having the tick labels overlap.

23.31.2 Constructors

The default constructor:

public TickUnits();

Creates a new collection of tick units, initially empty.

23.31.3 Methods

To add a new tick unit to the collection:

public void add(TickUnit unit);

Adds the tick unit to the collection.

To find the tick unit in the collection that is the next largest in size compared
to the specified tick unit:

public TickUnit getLargerTickUnit(TickUnit unit);

Returns the tick unit that is one size larger than the specified unit.

23.31.4 Notes

The NumberAxis class has a static method createStandardTickUnits() that gen-
erates a tick unit collection (of standard tick sizes) for use by numerical axes.

See Also
TickUnit.

23.32 Timeline

23.32.1 Overview

The interface that defines the methods for a timeline that can be used with a
DateAxis.

23.32.2 Notes

The SegmentedTimeline class implements this interface.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 177

23.33 ValueAxis

23.33.1 Overview

The base class for all axes that display “values”, with the two key subclasses
being NumberAxis and DateAxis.

At the lowest level, the axis values are manipulated as double primitives, ob-
tained from the Number objects supplied by the plot’s dataset.

23.33.2 Constructors

The constructors for this class are protected, you cannot create a ValueAxis

directly—you must use a subclass.

23.33.3 Attributes

The attributes maintained by this class, in addition to those that it inherits from
the Axis class, are listed in Table 23.5. There are methods to read and update
most of these attributes. In general, updating an axis attribute will result in an
AxisChangeEvent being sent to all (or any) registered listeners.

Attribute: Description:

anchor-value Provides a focus point for some operations (for ex-
ample, zooming).

auto-range A flag controlling whether or not the axis range
is automatically adjusted to fit the range of data
values.

auto-tick-unit-selection A flag controlling whether or not the tick units are
selected automatically.

auto-range-minimum-size The smallest axis range allowed when it is auto-
matically calculated.

lower-margin The margin to allow at the lower end of the axis
scale (expressed as a percentage of the total axis
range).

upper-margin The margin to allow at the upper end of the axis
scale (expressed as a percentage of the total axis
range).

Table 23.5: Attributes for the ValueAxis class

The default values used to initialise the axis attributes (when necessary) are
listed in Table 23.6.

Name: Value:

DEFAULT AUTO RANGE true;

DEFAULT MINIMUM AXIS VALUE 0.0;

DEFAULT MAXIMUM AXISVALUE 1.0;

DEFAULT UPPER MARGIN 0.05 (5 percent)
DEFAULT LOWER MARGIN 0.05 (5 percent)

Table 23.6: ValueAxis class default attribute values

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 178

23.33.4 Usage

To modify the attributes of a ValueAxis, you first need to obtain a reference to
the axis. For a CategoryPlot, you can use the following code:

CategoryPlot plot = myChart.getCategoryPlot();

ValueAxis rangeAxis = plot.getRangeAxis();

// modify the axis here...

The code for an XYPlot is very similar, except that the domain axis is also a
ValueAxis in this case:

XYPlot plot = myChart.getXYPlot();

ValueAxis domainAxis = plot.getDomainAxis();

ValueAxis rangeAxis = plot.getRangeAxis();

// modify the axes here...

Having obtained an axis reference, you can:

• control the axis range, see section 23.33.5;

23.33.5 The Axis Range

The axis range defines the highest and lowest values that will be displayed on
axis. On a chart, it is typically the case that data values outside the axis range
are clipped, and therefore not visible on the chart.

By default, JFreeChart is configured to automatically calculate axis ranges so
that all of the data in your dataset is visible. It does this by determining the
highest and lowest values in your dataset, adding a small margin (to prevent the
data being plotted right up to the edge of a chart), and setting the axis range.
If you want to, you can turn off this default behaviour, using:

axis.setAutoRange(false);

You can exercise some control over the auto-range calculation. To set the upper
and lower margins (a percentage of the overall axis range):

// set margins to 10 percent each...

axis.setLowerMargin(0.10);

axis.setUpperMargin(0.10);

23.33.6 Methods

A key function for a ValueAxis is to convert a data value to an output (Java2D)
coordinate for plotting purposes. The output coordinate will be dependent on
the area into which the data is being drawn:

public double valueToJava2D(double dataValue, Rectangle2D dataArea);

Converts a data value into a co-ordinate along one edge of the dataArea

(the dataArea is the rectangle inside the plot’s axes). Whether the coor-

dinate relates to the (left) vertical or (bottom) horizontal edge, depends

on the orientation of the axis subclass.

The inverse function converts a Java2D coordinate back to a data value:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.AXIS 179

public double java2DToValue(double java2DValue, Rectangle2D dataArea);

Converts a Java2D coordinate back to a data value.

To control whether or not the axis range is automatically adjusted to fit the
available data:

public void setAutoRange(boolean auto);

Sets a flag (commonly referred to as the auto-range flag) that controls

whether or not the axis range is automatically adjusted to fit the available

data.

To manually set the axis range (which automatically disables the auto-range
flag):

public void setRange(Range range);

Sets the axis range.

An alternative method that achieves the same thing:

public void setRange(double lower, double upper);

Sets the axis range.

To set the lower bound for the axis:

public void setLowerBound(double value);

Sets the lower bound for the axis. If the auto-range attribute is true it is

automatically switched to false. Registered listeners are notified of the

change.

To set the upper bound for the axis:

public void setUpperBound(double value);

Sets the upper bound for the axis. If the auto-range attribute is true it is

automatically switched to false. Registered listeners are notified of the

change.

To set a flag that controls whether or not the axis tick units are automatically
selected:

public void setAutoTickUnitSelection(boolean flag);

Sets a flag (commonly referred to as the auto-tick-unit-selection flag) that

controls whether or not the tick unit for the axis is automatically selected

from a collection of standard tick units.

23.33.7 Notes

Some points to note:

• in a CategoryPlot, the range axis is required to be a subclass of ValueAxis.

• in an XYPlot, both the domain and range axes are required to be a subclass
of ValueAxis.

See Also
Axis, DateAxis, NumberAxis.

Chapter 24

Package:
org.jfree.chart.entity

24.1 Introduction

The org.jfree.chart.entity package contains classes that represent entities in
a chart.

24.2 Background

Recall that when you render a chart to a Graphics2D using the draw() method
in the JFreeChart class, you have the option of supplying a ChartRendering-

Info object to collect information about the chart’s dimensions. Most of this
information is represented in the form of ChartEntity objects, stored in an
EntityCollection.

You can use the entity information in any way you choose. For example, the
ChartPanel class makes use of the information for:

• displaying tool tips;

• handling chart mouse events.

It is more than likely that other applications for this information will be found.

24.3 CategoryItemEntity

24.3.1 Overview

This class is used to convey information about an item within a category plot.
The information captured includes the area occupied by the item, the tool tip
and URL text (if any) generated for the item, the dataset, and the series and
category that the item represents.

180

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.ENTITY 181

24.3.2 Constructors

To construct a new instance:

public CategoryItemEntity(Shape area, String toolTipText, String urlText,

CategoryDataset dataset, int series, Object category, int categoryIndex);

Creates a new entity instance.

24.3.3 Methods

Accessor methods are implemented for the dataset, series and category at-
tributes. Other methods are inherited from the ChartEntity class.

24.3.4 Notes

Most CategoryItemRenderer implementations will generate entities using this
class, as required.

See Also
ChartEntity, CategoryPlot.

24.4 ChartEntity

24.4.1 Overview

This class is used to convey information about an entity within a chart. The
information captured includes the area occupied by the item and the tool tip
text generated for the item.

There are a number of subclasses that can be used to provide additional infor-
mation about a chart entity.

ChartEntity
#area: Shape
#toolTipText: String

PieSectionEntity
#category: Object

CategoryItemEntity
#series: int
#category: Object

XYItemEntity
#series: int
#item: int

Figure 24.1: Chart entity classes

24.4.2 Constructors

To construct a new instance:

public ChartEntity(Shape area, String toolTipText);

Creates a new chart entity object. The area is specified in Java 2D space.

Chart entities are created by other classes in the JFreeChart library, you don’t
usually need to create them yourself.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.ENTITY 182

24.4.3 Methods

Accessor methods are implemented for the area and toolTipText attributes.

To support the generation of HTML image maps, the getShapeType() method re-
turns a String containing either RECT or POLY, and the getShapeCoords() method
returns a String containing the coordinates of the shape’s outline. See the
ChartUtilities class for more information about HTML image maps.

24.4.4 Notes

The ChartEntity class records where an entity has been drawn using a Graphics-

2D instance. Changing the attributes of an entity won’t change what has already
been drawn.

See Also
CategoryItemEntity, PieSectionEntity, XYItemEntity.

24.5 ContourEntity

24.5.1 Overview

Not yet documented.

24.6 EntityCollection

24.6.1 Overview

An interface that defines the API for a collection of chart entities. This is used
by the ChartRenderingInfo class to record where items have been drawn when
a chart is rendered using a Graphics2D instance.

Each ChartEntity can also record tool tip information (for displaying tool tips in
a Swing user interface) and/or URL information (for generating HTML image
maps).

24.6.2 Methods

The interface defines three methods. To clear a collection:

public void clear();

Clears the collection. All entities in the collection are discarded.

To add an entity to a collection:

public void addEntity(ChartEntity entity);

Adds an entity to the collection.

To retrieve an entity based on Java 2D coordinates:

public ChartEntity getEntity(double x, double y);

Returns an entity whose area contains the specified coordinates. If the

coordinates fall within the area of multiple entities (the entities overlap)

then only one entity is returned.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.ENTITY 183

24.6.3 Notes

The StandardEntityCollection class provides a basic implementation of this
interface (but one that won’t scale to large numbers of entities).

See Also
ChartEntity, StandardEntityCollection.

24.7 PieSectionEntity

24.7.1 Overview

This class is used to convey information about an item within a pie plot. The
information captured includes the area occupied by the item, the dataset, pie
and section indices, and the tool tip and URL text (if any) generated for the
item.

24.7.2 Constructors

To construct a new instance:

public PieSectionEntity(Shape area, PieDataset dataset, int pieIndex, int

sectionIndex, Comparable sectionKey, String toolTipText, String urlText);

Creates a new entity object.

24.7.3 Methods

Accessor methods are implemented for the dataset, pieIndex, sectionIndex and
sectionKey attributes. Other methods are inherited from the ChartEntity class.

24.7.4 Notes

The PiePlot class generates pie section entities as required.

See Also
ChartEntity, PiePlot.

24.8 StandardEntityCollection

24.8.1 Overview

A basic implementation of the EntityCollection interface. This class can be
used (optionally, by the ChartRenderingInfo class) to store a collection of chart
entity objects from one rendering of a chart.

24.8.2 Methods

This class implements the methods in the EntityCollection interface.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.ENTITY 184

24.8.3 Notes

The getEntity() method iterates through the entities searching for one that
contains the specified coordinates. For charts with a large number of entities, a
more efficient approach will be required.1

See Also
ChartEntity, EntityCollection.

24.9 XYItemEntity

24.9.1 Overview

This class is used to convey information about an item within an XY plot. The
information captured includes the area occupied by the item, the tool tip text
generated for the item, and the series and item index.

24.9.2 Constructors

To construct a new instance:

public XYItemEntity(Shape area, XYDataset dataset, int series, int item,

String toolTipText, String urlText);

Creates a new entity object.

24.9.3 Methods

Accessor methods are implemented for the dataset, series and item attributes.
Other methods are inherited from the ChartEntity class.

24.9.4 Notes

Most XYItemRenderer implementations will generate entities using this class, as
required.

See Also
ChartEntity, XYPlot.

1This is on the to-do list but, given the size of the to-do list, I’m hopeful that someone will
contribute code to address this.

Chapter 25

Package:
org.jfree.chart.event

25.1 Introduction

This package contains classes and interfaces that are used to broadcast and
receive events relating to changes in chart properties. By default, some of the
classes in the library will automatically register themselves with other classes,
so that they receive notification of any changes and can react accordingly. For
the most part, you can simply rely on this default behaviour.

25.2 AxisChangeEvent

25.2.1 Overview

An event that can be sent to an AxisChangeListener to provide information
about a change to an axis.

25.2.2 Notes

Often, the only information provided by the event is that some change has been
made to the axis (that is, the specific change is not identified).

25.3 AxisChangeListener

25.3.1 Overview

An interface through which axis change event notifications are posted.

25.3.2 Methods

The interface defines a single method:

public void axisChanged(AxisChangeEvent event);

Receives notification of a change to an axis.

185

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.EVENT 186

25.3.3 Notes

If a class needs to receive notification of changes to an axis, then it needs to
implement this interface and register itself with the axis.

25.4 ChartChangeEvent

25.4.1 Overview

An event that is used to provide information about changes to a chart. You
can register an object with a JFreeChart instance, provided that the object
implements the ChartChangeListener interface, and it will receive a notification
whenever the chart changes.

25.4.2 Notes

The ChartPanel class automatically registers itself with the chart it is displaying.
When it receives a ChartChangeEvent, it repaints the chart.

25.5 ChartChangeListener

25.5.1 Overview

An interface through which chart change event notifications are posted.

25.5.2 Methods

The interface defines a single method:

public void chartChanged(ChartChangeEvent event);

Receives notification of a change to a chart.

25.5.3 Notes

Some points to note:

• if a class needs to receive notification of changes to a chart, then it needs
to implement this interface and register itself with the chart;

• the ChartPanel class implements this interface.

25.6 ChartProgressEvent

25.6.1 Overview

Not yet documented.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.EVENT 187

25.7 ChartProgressListener

25.7.1 Overview

Not yet documented.

25.8 LegendChangeEvent

25.8.1 Overview

An event that is used to provide information about changes to a legend.

See Also
LegendChangeListener.

25.9 LegendChangeListener

25.9.1 Overview

An interface through which legend change event notifications are posted.

25.9.2 Methods

The interface defines a single method:

public void legendChanged(LegendChangeEvent event);

Receives notification of a change to a legend.

25.9.3 Notes

If a class needs to receive notification of changes to a legend, then it needs to
implement this interface and register itself with the legend.

See Also
LegendChangeEvent.

25.10 PlotChangeEvent

25.10.1 Overview

An event that is used to provide information about changes to a plot. You can
register an object with a Plot instance, provided that the object implements
the PlotChangeListener interface, and it will receive a notification whenever the
plot changes.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.EVENT 188

25.10.2 Notes

A JFreeChart object will automatically register itself with the Plot that it man-
ages, and receive notification whenever the plot changes. The chart usually
responds by raising a ChartChangeEvent, which other listeners may respond to
(for example, the ChartPanel if the chart is displayed in a GUI).

25.11 PlotChangeListener

25.11.1 Overview

An interface through which plot change event notifications are posted.

25.11.2 Methods

The interface defines a single method:

public void plotChanged(PlotChangeEvent event);

Receives notification of a change to a plot.

25.11.3 Notes

Some points to note:

• if a class needs to receive notification of changes to a plot, then it needs
to implement this interface and register itself with the plot.

• the JFreeChart class implements this interface and automatically registers
itself with the plot it manages.

25.12 RendererChangeEvent

25.12.1 Overview

An event that is used to provide information about changes to a renderer. If an
object needs to receive notification of these events, its class should implement
the RendererChangeListener interface so the object can register itself with the
renderer via the addChangeListener() method.

In the default setup, a change to a renderer will cause the plot to receive noti-
fication of the event. The plot will usually respond by firing a PlotChangeEvent

(which usually gets passed on to the chart and results in a ChartChangeEvent

being fired).

25.12.2 Notes

In the current implementation, the event just signals a change without specifying
exactly what changed. A possible future enhancement would be to include
information about the nature of the change, so that the listener(s) can decide
what action to take in response to the event.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.EVENT 189

25.13 RendererChangeListener

25.13.1 Overview

An interface through which renderer change event notifications are posted. The
CategoryPlot and XYPlot classes implement this interface so they can receive
notification of changes to their renderer(s).

25.13.2 Methods

The interface defines a single method:

public void rendererChanged(RendererChangeEvent event);

Receives notification of a change to a renderer.

25.13.3 Notes

If an Object needs to receive notification of changes to a renderer, then its
class needs to implement this interface so the object can register itself with the
renderer.

25.14 TitleChangeEvent

25.14.1 Overview

An event that is used to provide information about changes to a chart title (any
subclass of Title).

25.14.2 Notes

This event is part of the overall mechanism that JFreeChart uses to automati-
cally update charts whenever changes are made to components of the chart.

See Also
Title, TitleChangeListener.

25.15 TitleChangeListener

25.15.1 Overview

An interface through which title change event notifications are posted.

25.15.2 Methods

The interface defines a single method:

public void titleChanged(TitleChangeEvent event);

Receives notification of a change to a title.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.EVENT 190

25.15.3 Notes

If a class needs to receive notification of changes to a title, then it needs to
implement this interface and register itself with the title.

See Also
TitleChangeEvent.

Chapter 26

Package:
org.jfree.chart.imagemap

26.1 Overview

This package contains classes and interfaces that support the creation of HTML
image maps. These image maps can be created using the ChartUtilities class,
typically from a servlet.

26.2 DynamicDriveToolTipTagFragmentGenerator

26.2.1 Overview

A tool-tip fragment generator that generates tool-tips that are designed to work
with the Dynamic Drive DHTML Tip Message library:

http://www.dynamicdrive.com

This class implements the ToolTipTagFragmentGenerator interface.

26.3 OverLIBToolTipTagFragmentGenerator

26.3.1 Overview

A tool-tip generator that generates tool-tips for use with the OverLIB library.
See this URL for details:

http://www.bosrup.com/web/overlib/

This class implements the ToolTipTagFragmentGenerator interface.

26.4 StandardToolTipTagFragmentGenerator

26.4.1 Overview

A tool-tip generator that generates tool-tips using the HTML title attribute.

191

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.IMAGEMAP 192

This class implements the ToolTipTagFragmentGenerator interface.

26.5 StandardURLTagFragmentGenerator

26.5.1 Overview

A standard implementation of the URLTagFragmentGenerator interface.

26.6 ToolTipTagFragmentGenerator

26.6.1 Overview

The interface that must be implemented by a class that generates tooltip tag
fragments for an HTML image map.

Classes that implement this interface include:

• StandardToolTipTagFragmentGenerator;

• DynamicDriveToolTipTagFragmentGenerator;

• OverLIBToolTipTagFragmentGenerator;

26.6.2 Methods

This interface defines a single method:

public String generateToolTipFragment(String toolTipText);

Returns a tooltip fragment based on the supplied tool-tip text.

26.7 URLTagFragmentGenerator

26.7.1 Overview

The interface that must be implemented by a class that generates URL tag
fragments for an HTML image map.

The StandardURLTagFragmentGenerator class provides one implementation of this
interface.

26.7.2 Methods

This interface defines a single method:

public String generateURLFragment(String urlText);

Returns a URL fragment based on the supplied URL text.

Chapter 27

Package:
org.jfree.chart.labels

27.1 Introduction

This package contains interfaces and classes for generating labels for the indi-
vidual data items in a chart. There are two label types:

• item labels – small text items displayed as part of the chart;

• tooltips – text that is displayed when the mouse pointer “hovers” over an
item.

Section 10 contains information about using tool tips with JFreeChart.

27.2 BoxAndWhiskerItemLabelGenerator

27.2.1 Overview

A label generator for a box-and-whisker chart. This is the default generator
used by the XYBoxAndWhiskerRenderer class.

27.3 CategoryItemLabelGenerator

27.3.1 Overview

A category item label generator is an object that assumes responsibility for
creating the text strings that will be used for item labels in a chart. A gen-
erator is assigned to a renderer using the setLabelGenerator() method in the
CategoryItemRenderer interface. This interface defines the API through which
the renderer will communicate with the generator.

27.3.2 Methods

The renderer will call this method to obtain an item label:

193

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 194

public String generateItemLabel(CategoryDataset data,

int series, int category);

Returns a string that will be used to label the specified item. Classes that

implement this method are permitted to return null for the result.

27.3.3 Notes

Some points to note:

• the StandardCategoryItemLabelGenerator provides one implementation of
this interface, but you can also write your own class that implements this
interface, and take complete control over the generation of item labels;

• refer to chapter 11 for information about using item labels.

27.4 CategoryToolTipGenerator

27.4.1 Overview

A category tool tip generator is an object that assumes responsibility for cre-
ating the text strings that will be used for tooltips in a chart. A genera-
tor is assigned to a renderer using the setToolTipGenerator() method in the
CategoryItemRenderer interface. This interface defines the API through which
the renderer will communicate with the generator.

27.4.2 Methods

The renderer will call this method to obtain the tooltip text for an item:

public String generateToolTip(CategoryDataset data,

int series, int category);

Returns a string that will be used as the tooltip text for the specified

item. If null is returned, no tool tip will be displayed.

27.4.3 Notes

Some points to note:

• the StandardCategoryItemLabelGenerator provides one implementation of
this interface, but you can also write your own class that implements this
interface, and take complete control over the generation of item labels and
tooltips;

• refer to chapter 10 for information about using tool tips.

27.5 ContourToolTipGenerator

27.5.1 Overview

The interface that must be implemented by all contour tool tip generators.
When a ContourPlot requires tooltip text for a data item, it will obtain it via
this interface.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 195

27.5.2 Methods

The interface defines a single method for obtaining the tooltip text for a data
item:

public String generateToolTip(ContourDataset data, int item);

Returns a string that can be used as the tooltip text for a data item.

27.6 CustomXYItemLabelGenerator

27.6.1 Overview

A tool tip generator (for use with an XYItemRenderer) that returns a predefined
tool tip for each data item.

27.6.2 Methods

To specify the text to use for the tool tips:

public void addToolTipSeries(List toolTips);

Adds the list of tool tips (for one series) to internal storage. These tool

tips will be returned (without modification) by the generator for each data

item.

27.6.3 Notes

See section 10 for information about using tool tips with JFreeChart.

27.7 HighLowItemLabelGenerator

27.7.1 Overview

A tooltip generator that is intended for use with the HighLowRenderer class. The
generator will only return tooltips for a dataset that is an implementation of
the HighLowDataset interface.

27.7.2 Methods

The key method constructs a String to be used as the tooltip text for a par-
ticular data item:

public String generateToolTip(XYDataset dataset, int series, int item);

Returns a string containing the date, value, high value, low value, open

value and close value for the data item. This method will return null if

the dataset does not implement the HighLowDataset interface.

27.7.3 Notes

See section 10 for an overview of tool tips with JFreeChart.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 196

27.8 IntervalCategoryItemLabelGenerator

27.8.1 Overview

An item label generator that can be used with any CategoryItemRenderer. This
generator will detect if the dataset supplied to the renderer is an implementation
of the IntervalCategoryDataset interface, and will generate labels that display
both the start value and the end value for each item.

27.8.2 Constructors

The default constructor will create a label generator that formats the data values
as numbers, using the platform default number format:

public IntervalCategoryItemLabelGenerator();

Creates a new label generator with a default number formatter.

If you prefer to set the number format yourself, use the following constructor:

public IntervalCategoryItemLabelGenerator(NumberFormat formatter);

Creates a new label generator with a specific number formatter.

In some cases, the data values in the dataset will represent dates (encoded as
milliseconds since midnight, 1-Jan-1970 GMT, as for java.util.Date). In this
case, you can create a label generator using the following constructor:

public IntervalCategoryItemLabelGenerator(DateFormat formatter);

Creates a new label generator that formats the start and end data values

as dates.

27.8.3 Notes

The createGanttChart() in the ChartFactory class uses this type of label gener-
ator (with date formatting).

27.9 ItemLabelAnchor

27.9.1 Overview

An item label anchor is used by a renderer to calculate a fixed point (the item
label anchor point) relative to a data item on a chart. This point becomes a
reference point that an item label can be aligned to.

This class defines 25 anchors. The numbers 1 to 12 are used and roughly cor-
respond to the positions of the hours on a clock face. In addition, positions are
defined relative to an “inside” ring and an “outside” ring - see figure 27.1 for
an illustration.
With 12 points on the inside circle, 12 points on the outside circle, plus a
“center” anchor point, in all there are 25 possible anchor points.

For some renderers, the circular arrangement of anchor points doesn’t make
sense, so the renderer is free to modify the anchor positions (see the BarRenderer

class for an example).

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 197

OUTSIDE_1

OUTSIDE_2

OUTSIDE_3

OUTSIDE_4

OUTSIDE_5

OUTSIDE_6

OUTSIDE_7

OUTSIDE_8

OUTSIDE_9

OUTSIDE_10

OUTSIDE_11

OUTSIDE_12

CENTER

INSIDE_12

INSIDE_6

Figure 27.1: The Item Label Anchors

27.9.2 Usage

The ItemLabelPosition class includes an item label anchor as one of the at-
tributes that define the location of item labels drawn by a renderer.

27.10 ItemLabelPosition

27.10.1 Overview

This class is used to specify the position of item labels on a chart. Four attributes
are used to specify the position:

• the item label anchor - the renderer will use this to calculate an (x, y)
anchor point on the chart near to the data item that the item label corre-
sponds to (see ItemLabelAnchor);

• the text anchor - this is a point relative to the item label text which will
be aligned with the item label anchor point above;

• the rotation anchor - this is another point somewhere on the item label
about which the text will be rotated (if there is a rotation);

• the rotation angle - this specifies the amount of rotation about the rotation
point.

These four attributes provide a lot of scope for placing item labels in interesting
ways.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 198

27.10.2 Usage

The AbstractRenderer class provides methods for specifying the item label po-
sition for positive and negative data values separately:

public void setPositiveItemLabelPosition(ItemLabelPosition position);

Sets the item label position for positive data values.

public void setNegativeItemLabelPosition(ItemLabelPosition position);

Sets the item label position for negative data values.

27.11 PieSectionLabelGenerator

27.11.1 Overview

The interface that must be implemented by a pie section label generator, a class
used to generate section labels for a pie chart.

27.11.2 Methods

The PiePlot class will call the following method to obtain a section label for
each section in a pie chart as it is being drawn:

public String generateSectionLabel(PieDataset dataset, Comparable key);

Returns a section label for the specified item in the dataset.

27.11.3 Notes

Some points to note:

• the StandardPieItemLabelGenerator class provides an implementation of
this interface;

• you can develop your own label generator, register it with a PiePlot, and
take full control over the labels that are generated.

27.12 PieToolTipGenerator

27.12.1 Overview

The interface that must be implemented by a pie tool tip generator, a class used
to generate tool tips for a pie chart.

27.12.2 Methods

The PiePlot class will call the following method to obtain a tooltip for each
section in a pie chart:

public String generateToolTip(PieDataset data, Comparable key);

Returns a String that will be used as the tool tip text.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 199

27.12.3 Notes

Some points to note:

• the StandardPieItemLabelGenerator class provides an implementation of
this interface;

• you can develop your own tool tip generator, register it with a PiePlot,
and take full control over the labels that are generated;

• section 10 contains information about using tool tips with JFreeChart.

27.13 StandardCategoryItemLabelGenerator

27.13.1 Overview

A generator that can be assigned to a CategoryItemRenderer for the purpose
of generating item labels and/or tooltips. This class implements the following
interfaces:

• CategoryItemLabelGenerator

• CategoryToolTipGenerator.

There is a plan to rewrite this class to make use of Java’s MessageFormat class.
This will provide greater flexibility in the label format without having to subclass.

27.13.2 Usage

Most often you will assign a generator to a renderer and then never need to
refer to it again:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
CategoryItemRenderer renderer = chart.getPlot().getRenderer();
renderer.setItemLabelGenerator(new StandardCategoryItemLabelGenerator());
renderer.setToolTipGenerator(new StandardCategoryItemLabelGenerator());

The renderer will call the generator’s methods when necessary.

27.13.3 Constructors

This class has a default constructor:

public StandardCategoryItemLabelGenerator();

Creates a new generator that formats values using the default number

format for the user’s locale.

To create a generator that formats values as numbers:

public StandardCategoryItemLabelGenerator(NumberFormat formatter);

Creates a generator that formats values using the supplied formatter.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 200

public StandardCategoryItemLabelGenerator(NumberFormat formatter,

boolean showSeriesNameInToolTips);

Creates a generator that formats values using the supplied formatter and

sets a flag that controls whether or not the series name is displayed in the

tooltips generated.

To create a generator that formats values as dates (interpreting the numerical
value as milliseconds since 1-Jan-1970, in the same way as java.util.Date):

public StandardCategoryItemLabelGenerator(DateFormat formatter);

Creates a generator that formats values as dates using the supplied for-

matter.

public StandardCategoryItemLabelGenerator(DateFormat formatter,

boolean showSeriesNamesInToolTips);

Creates a generator that formats values as dates using the supplied for-

matter and sets a flag that controls whether or not the series name is

displayed in the tooltips generated.

27.13.4 Methods

The following methods are typically called by the renderer, you won’t need to
call them directly yourself.

To generate a tooltip:

public String generateToolTip(CategoryDataset dataset,

int series, int category);

Generates a tooltip for the specified data item. This class generates

tooltips in the format <series-name>, <category-name> = <value> where

the value is formatted as a number or a date, depending on the constructor

used to create the generator.

To generate an item label:

public String generateItemLabel(CategoryDataset dataset,

int series, int category);

Generates an item label for the specified data item. For this generator,

the value returned is simply the data value formatted with the formatter

supplied in the constructor.

27.13.5 Notes

Some points to note:

• this class implements the PublicCloneable interface;

• section 10 contains information about using tool tips with JFreeChart.

• section 11 contains information about using item labels with JFreeChart.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 201

27.14 StandardContourToolTipGenerator

27.14.1 Overview

A default implementation of the ContourToolTipGenerator interface.

27.15 StandardPieItemLabelGenerator

27.15.1 Overview

A label generator (implements PieItemLabelGenerator) that can be used to gen-
erate section labels and tool tips for a PiePlot.

This class uses a MessageFormat instance to compose labels. Three items are
available for use in the labels:

• the item key (as a String);

• the item value (converted to a String using a NumberFormat instance);

• the item percentage (converted to a String using a NumberFormat instance.

The default tool tip format string is "{0}: ({1}, {2})", which displays the item
key, followed by the item value and percentage. Similarly, the default section
label format is "{0} = {1}", which displays the item key followed by the item
value (the percentage is not displayed).

27.15.2 Constructors

The default constructor uses a number formatter for the default locale:

public StandardPieItemLabelGenerator();

Creates a default label generator.

You can create a generator with a specific format string:

public StandardPieItemLabelGenerator(String labelFormat);

Creates a generator using the specified format string. The item value

and percentage (if included in the format string) will be formatted using

default formatters for the current locale.

The final constructor allows you to specify the item value and percentage for-
matters:

public StandardPieItemLabelGenerator(String labelFormat,

NumberFormat numberFormat, NumberFormat percentFormat)

Creates a generator using the specifed format string, with custom format-

ters for the item value and item percentage.

27.15.3 Notes

Section 10 contains information about using tool tips with JFreeChart.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 202

27.16 StandardXYItemLabelGenerator

27.16.1 Overview

A standard implementation of the XYItemLabelGenerator interface. This class
generates tool tips in the format:

<series-name> : x: <x-value>, y: <y-value>

27.16.2 Constructors

To create a tool tip generator:

public StandardXYItemLabelGenerator(NumberFormat xFormat,

NumberFormat yFormat);

Creates a tool tip generator that uses the supplied number formatters for

the x and y values.

27.16.3 Notes

Section 10 contains information about using tool tips with JFreeChart.

27.17 StandardXYZItemLabelGenerator

27.17.1 Overview

A default implementation of the XYZItemLabelGenerator interface. This genera-
tor is used with the XYBubbleRenderer class.

27.18 SymbolicXYItemLabelGenerator

27.18.1 Overview

An item label generator for use with symbolic plots.

27.19 XYItemLabelGenerator

27.19.1 Overview

The interface that must be implemented by an XY item label generator, a class
used to generate item labels and tool tips for an XYPlot.

27.19.2 Methods

The plot will call the following method whenever it requires an item label:

public String generateItemLabel(XYDataset dataset, int series, int item);

Creates an item label for the specified item in the dataset.

The plot will call the following method whenever it requires a tool tip for an
item:

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.LABELS 203

public String generateToolTip(XYDataset data, int series, int item);

This method is called whenever the plot needs to generate a tooltip for a

data item. It can return an arbitrary string, generally derived from the

specified item in the supplied dataset.

27.19.3 Notes

Some points to note:

• to “install” a tool tip generator, use the setToolTipGenerator() method
in the XYItemRenderer interface.

• StandardXYItemLabelGenerator implements this interface, but you are free
to write your own implementation to suit your requirements.

Section 10 contains information about using tool tips with JFreeChart.

27.20 XYToolTipGenerator

27.20.1 Overview

The interface that must be implemented by an XY tool tip generator, a class
used to generate tool tips for an XYPlot.

27.20.2 Methods

The plot will call the following method whenever it requires a tool tip for an
item:

public String generateToolTip(XYDataset data, int series, int item);

This method is called whenever the plot needs to generate a tooltip for a

data item. It can return an arbitrary string, generally derived from the

specified item in the supplied dataset.

27.20.3 Notes

Some points to note:

• to “install” a tool tip generator, use the setToolTipGenerator() method
in the XYItemRenderer interface.

• StandardXYItemLabelGenerator implements this interface, but you are free
to write your own implementation to suit your requirements.

Section 10 contains information about using tool tips with JFreeChart.

27.21 XYZItemLabelGenerator

27.21.1 Overview

A label generator that creates labels for items in an XYZDataset.

Chapter 28

Package:
org.jfree.chart.needle

28.1 Overview

This package contains classes for drawing needles in a compass plot:

• ArrowNeedle – an arrow needle;

• LineNeedle – a line needle;

• LongNeedle – a long needle;

• PinNeedle – a pin needle;

• PlumNeedle – a plum needle;

• PointerNeedle – a pointer needle;

• ShipNeedle – a ship needle;

• WindNeedle – a wind needle;

204

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.NEEDLE 205

28.2 ArrowNeedle

28.2.1 Overview

A class that draws an arrow needle for the CompassPlot class (see figure 28.1).

Figure 28.1: An arrow needle

28.3 LineNeedle

28.3.1 Overview

A class that draws a line needle for the CompassPlot class (see figure 28.2).

Figure 28.2: A line needle

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.NEEDLE 206

28.4 LongNeedle

28.4.1 Overview

A class that draws a long needle for the CompassPlot class (see figure 28.3).

Figure 28.3: A long needle

28.5 MeterNeedle

28.5.1 Overview

A base class that draws a needle for the CompassPlot class. A range of different
subclasses implement different types of needles:

• ArrowNeedle – an arrow needle;

• LineNeedle – a line needle;

• LongNeedle – a long needle;

• PinNeedle – a pin needle;

• PlumNeedle – a plum needle;

• PointerNeedle – a pointer needle;

• ShipNeedle – a ship needle;

• WindNeedle – a wind needle;

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.NEEDLE 207

28.6 PinNeedle

28.6.1 Overview

A class that draws a pin needle for the CompassPlot class (see figure 28.4).

Figure 28.4: A pin needle

28.7 PlumNeedle

28.7.1 Overview

A class that draws a plum needle for the CompassPlot class (see figure 28.5).

Figure 28.5: A plum needle

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.NEEDLE 208

28.8 PointerNeedle

28.8.1 Overview

A class that draws a pointer needle for the CompassPlot class (see figure 28.6).

Figure 28.6: A pointer needle

28.9 ShipNeedle

28.9.1 Overview

A class that draws a ship needle for the CompassPlot class (see figure 28.7).

Figure 28.7: A ship needle

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.NEEDLE 209

28.10 WindNeedle

28.10.1 Overview

A class that draws a wind needle for the CompassPlot class (see figure 28.8).

Figure 28.8: A wind needle

Chapter 29

Package:
org.jfree.chart.plot

29.1 Overview

The org.jfree.chart.plot package contains:

• the Plot base class;

• a range of plot subclasses;

• various support classes and interfaces.

This is an important package, because the Plot classes play a key role in con-
trolling the presentation of data with JFreeChart.

29.2 CategoryPlot

29.2.1 Overview

A general plotting class that is most commonly used to display bar charts, but
also supports line charts, area charts, stacked area charts and more. A category
plot has:

• a domain axis (a CategoryAxis);

• a range axis (a ValueAxis);

• a dataset (any instance of the CategoryDataset interface);

• a renderer (any instance of the CategoryItemRenderer interface);

• any number of secondary datasets, secondary range axes and secondary
renderers;

The plot can be displayed with a horizontal or vertical orientation.

210

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 211

29.2.2 Attributes

The attributes maintained by the CategoryPlot class, which are in addition to
those inherited from the Plot class, are listed in Table 29.1.

Attribute: Description:

orientation The plot orientation (horizontal or vertical).
axisOffset The offset between the data area and the axes.
domainAxis The domain axis (used to display categories).
domainAxisLocation The location of the domain axis.
secondaryDomain-
Axes

A list of (optional) secondary domain axes.

secondaryDomain-
AxisLocations

A list of secondary domain axis locations.

rangeAxis The range axis (used to display values).
rangeAxisLocation The location of the range axis.
secondaryRangeAxes A list of (optional) secondary range axes.
secondaryRangeAxis-
Locations

A list of secondary range axis locations.

dataset The dataset.
secondaryDatasets A list of (optional) secondary datasets.
renderer The plot’s renderer (a “pluggable” object responsible

for drawing individual data items within the plot).
secondaryRenderers A list of (optional) secondary renderers.
renderingOrder The order for rendering data items.
domainGridlines-
Visible

A flag that controls whether gridlines are drawn
against the domain axis.

domainGridline-
Position

The position of the gridlines against the domain axis.

domainGridlinePaint The paint used to draw the domain gridlines.
domainGridlineStroke The stroke used to draw the domain gridlines.
rangeGridlinesVisible A flag that controls whether gridlines are drawn

against the range axis.
rangeGridlinePaint The paint used to draw the range gridlines.
rangeGridlineStroke The stroke used to draw the range gridlines.
rangeMarkers A list of markers (constants) to be highlighted on the

plot.

Table 29.1: Attributes for the CategoryPlot class

29.2.3 Axes

The plot’s domain axis is an instance of CategoryAxis. You can obtain a refer-
ence to the axis with:

CategoryAxis domainAxis = myPlot.getDomainAxis();

The plot’s range axis is an instance of ValueAxis. You can obtain a reference to
the axis with:

ValueAxis rangeAxis = myPlot.getRangeAxis();

The axis classes have many attributes that can be customised to control the
appearance of your charts.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 212

29.2.4 Series Colors

The colors used for the series within the chart are controlled by the plot’s
renderer. You can obtain a reference to the renderer and set the series colors
using code similar to the following:

CategoryPlot plot = myChart.getCategoryPlot();

CategoryItemRenderer renderer = plot.getRenderer();

renderer.setSeriesPaint(0, new Color(0, 0, 255));

renderer.setSeriesPaint(1, new Color(75, 75, 255));

renderer.setSeriesPaint(2, new Color(150, 150, 255));

29.2.5 Gridlines

By default, the CategoryPlot class will display gridlines against the range axis,
but not the domain axis. However, it is simple to override the default behaviour:

CategoryPlot plot = myChart.getCategoryPlot();

plot.setDomainGridlinesVisible(true);

plot.setRangeGridlinesVisible(true);

Note that the domain and range gridlines are controlled independently.

29.2.6 Methods

You can control the appearance of the plot by setting a renderer for the plot.
The renderer is responsible for drawing a visual representation of each data
item:

public void setRenderer(CategoryItemRenderer renderer);

Sets the renderer for the plot. A range of different renderers are available.

If you set the renderer to null, an empty chart is drawn.

A zoom method is provided to support the zooming function provided by the
ChartPanel class:

public void zoom(double percent);

Increases or decreases the axis range (about the anchor value) by the spec-

ified percentage. If the percentage is zero, then the auto-range calculation

is restored for the value axis.

The category axis remains fixed during zooming, only the value axis changes.

To add a range marker to a plot:

public void addRangeMarker(Marker marker);

Adds a marker which will be drawn against the range axis.

To add an annotation to a plot:

public void addAnnotation(CategoryAnnotation annotation);

Adds an annotation to the plot.

To set the weight for a plot:

public void setWeight(int weight);

Sets the weight for a plot. This is used to determine how much space is

allocated to the plot when it is used as a subplot within a combined plot.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 213

29.2.7 Notes

A number of CategoryItemRenderer implementations are included in the JFree-
Chart distribution.

See Also
CombinedDomainCategoryPlot, CombinedRangeCategoryPlot.

29.3 CombinedDomainCategoryPlot

29.3.1 Overview

A category plot that allows multiple subplots to be displayed together using a
shared domain axis.

29.3.2 Notes

The CombinedCategoryPlotDemo1.java file (included in the JFreeChart distribu-
tion) provides an example of this type of plot.

See Also
CombinedRangeCategoryPlot.

29.4 CombinedDomainXYPlot

29.4.1 Overview

A subclass of XYPlot that allows you to combined multiple plots on one chart,
where the subplots share the domain axis, and maintain their own range axes.

Figure 29.1 illustrates the relationship between the CombinedDomainXYPlot and
its subplots).

The CombinedXYPlotDemo1 class (included in the JFreeChart distribution) pro-
vides an example of this type of plot.

29.4.2 Methods

There are two methods for adding a subplot to a combined plot:

public void add(XYPlot subplot);

Adds a subplot to the combined plot, with a weight of 1.

public void add(XYPlot subplot, int weight);

Adds a subplot to the combined plot, with the specified weight.

The subplot being added to the CombinedDomainXYPlot can be any instance of
XYPlot and should have its domain axis set to null.

The weight determines how much of the plot area is assigned to the subplot.
For example, if you add three subplots with weights of 1, 2 and 4, the relative

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 214

independent range axes

Subplot 1

Subplot 2

Subplot 3

CombinedDomainXYPlot

domain axes = null

shared domain axis

shared range axis = null

Figure 29.1: CombinedDomainXYPlot axes

amount of space assigned to each plot is 1/7, 2/7 and 4/7 (where the 7 is the
sum of the individual weights).

To control the amount of space between the subplots:

public void setGap(double gap);

Sets the gap (in points) between the subplots.

29.4.3 Notes

Some points to note:

• the dataset for this class should be set to null (only the subplots display
data);

• the subplots managed by this class should have one axis set to null (the
shared axis is maintained by this class);

• you do not need to set a renderer for the plot, since each subplot maintains
its own renderer;

• a demonstration of this type of plot is described in section ??.

See Also
XYPlot.

29.5 CombinedRangeCategoryPlot

29.5.1 Overview

A category plot that allows multiple subplots to be displayed together using a
shared range axis.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 215

29.5.2 Notes

The CombinedCategoryPlotDemo2.java file (included in the JFreeChart distribu-
tion) provides an example of this type of plot.

29.6 CombinedRangeXYPlot

29.6.1 Overview

A subclass of XYPlot that allows you to combined multiple plots on one chart,
where the subplots share a single range axis, and maintain their own domain
axes.

Figure 29.2 illustrates the relationship between the CombinedRangeXYPlot and its
subplots).

independent range axes

Subplot 1

Subplot 2

Subplot 3

CombinedXYPlot (VERTICAL)

domain axes = null

shared domain axis

shared range axis = null

Figure 29.2: CombinedRangeXYPlot axes

The CombinedRangeXYPlotDemo class provides an example of this type of plot.

29.6.2 Methods

There are two methods for adding a subplot to a combined plot:

public void add(XYPlot subplot);

Adds a subplot to the combined plot, with a weight of 1.

public void add(XYPlot subplot, int weight);

Adds a subplot to the combined plot, with the specified weight.

The subplot being added to the CombinedRangeXYPlot can be any instance of
XYPlot and should have one of its axes (the shared axis) set to null.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 216

The weight determines how much of the plot area is assigned to the subplot.
For example, if you add three subplots with weights of 1, 2 and 4, the relative
amount of space assigned to each plot is 1/7, 2/7 and 4/7 (where the 7 is the
sum of the individual weights).

To control the amount of space between the subplots:

public void setGap(double gap);

Sets the gap (in points) between the subplots.

29.6.3 Notes

Some points to note:

• the dataset for this class should be set to null (only the subplots display
data);

• the subplots managed by this class should have one axis set to null (the
shared axis is maintained by this class);.

• you do not need to set a renderer for the plot, since each subplot maintains
its own renderer;

• each subplot uses its own series colors. You should modify the default
colors to ensure that the items for each subplot are uniquely colored;

• a demonstration of this type of plot is described in section ??.

29.7 CompassPlot

29.7.1 Overview

A compass plot presents directional data in the form of a compass dial.

29.7.2 Notes

There is a demonstration CompassDemo.java application included in the JFreeChart
distribution.

29.8 ContourPlot

29.8.1 Overview

A custom plot that displays (x, y, z) data in the form of a 2D contour plot.

29.9 ContourPlotUtilities

29.9.1 Overview

A class that contains static utility methods used by the contour plot implemen-
tation.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 217

29.10 ContourValuePlot

29.10.1 Overview

An interface used by the contour plot implementation.

29.11 CrosshairState

29.11.1 Overview

This class maintains information about the crosshairs on a plot, as the plot is
being rendered. Crosshairs will often need to “lock on” to the data point nearest
to the anchor point (which is usually set by a mouse click). This class keeps
track of the data item that is “closest” (either in screen space or in data space)
to the anchor point.

29.11.2 Constructors

The default constructor:

public CrosshairState();

Creates a new instance where distance is calculated in screen space.

public CrosshairState(boolean calculateDistanceInDataSpace);

Creates a new instance where you can select to measure distance in data

space or screen space.

29.11.3 Methods

The following method is called as a plot is being rendered:

public void updateCrosshairPoint(double candidateX, double candidateY);

Considers the candidate point and updates the crosshair point if the can-

didate is the “closest” to the anchor point.

29.12 DefaultDrawingSupplier

29.12.1 Overview

A default class used to provide a sequence of unique Paint, Stroke and Shape

objects to be used by renderers when drawing charts (this class implements the
DrawingSupplier interface).

29.12.2 Usage

Every Plot class is initialised with an instance of this class as its drawing sup-
plier, and it is unlikely that you would need to use this class directly. However,
you might create your own class that implements the DrawingSupplier interface,
and register it with the plot, as a way of overriding the default series colors, line
styles and shapes.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 218

29.13 DrawingSupplier

29.13.1 Overview

A drawing supplier provides a limitless (but ultimately repeating) sequence of
Paint, Stroke and Shape objects that can be used by renderers when drawing
charts.

All Plot classes will have a default drawing supplier. This provides a single
source for colors and line styles, which is particularly useful for avoiding dupli-
cates when a plot has multiple renderers.

You can register your own drawing supplier with a plot if you want to modify the
default behaviour. If you do this, you need to call the plot’s setDrawingSupplier()
method before the chart is first drawn (the reason being that the plot’s ren-
derer(s) will cache the values returned by the drawing supplier the first time a
chart is drawn—subsequent changes to the drawing supplier will have no effect
on the values already cached).

29.13.2 Methods

To obtain the next Paint object in the sequence:

public Paint getNextPaint();

Returns the next Paint object in the sequence (never null). These are

usually used as the default series colors in charts.

public Paint getNextOutlinePaint();

Returns the next outline Paint object in the sequence (never null).

public Stroke getNextStroke();

Returns the next Stroke object in the sequence (never null). These are

usually used as the default series line style in charts.

public Stroke getNextOutlineStroke();

Returns the next outline Stroke object in the sequence (never null).

public Shape getNextShape();

Returns the next Shape object in the sequence (never null). The shapes

returned by this method should be centered on (0, 0) in Java2D coordi-

nates.

29.14 FastScatterPlot

29.14.1 Overview

A custom plot that aims to be fast rather than flexible. A couple of techniques
are used to make this plot type faster than the other plot types provided by
JFreeChart:

• data is obtained directly from an array rather than via the XYDataset

interface;

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 219

• the plot draws each point directly rather than using a plug-in renderer.

This class is still at the “proof of concept” stage. It works reasonably well but
doesn’t provide a lot of options.

29.14.2 Methods

This class overrides the draw() method defined in the Plot class:

public void draw(Graphics2D g2, Rectangle2D plotArea,

PlotState parentState, PlotRenderingInfo info);

Draws the plot in the specified area. You won’t normally call this method

directly, it is called for you by the JFreeChart class.

29.14.3 Gridlines

You can display gridlines against the domain axis using the following methods:

public void setDomainGridlinesVisible(boolean visible);

Sets a flag that controls whether or not the gridlines are displayed and

sends a PlotChangeEvent to all registered listeners.

public void setDomainGridlinePaint(Paint paint);

Sets the Paint used for the domain gridlines and sends a PlotChangeEvent

to all registered listeners.

public void setDomainGridlineStroke(Stroke stroke);

Sets the Stroke used for the domain gridlines and sends a PlotChangeEvent

to all registered listeners.

Similarly, you can display gridlines against the range axis:

public void setRangeGridlinesVisible(boolean visible);

Sets a flag that controls whether or not the gridlines are displayed and

sends a PlotChangeEvent to all registered listeners.

public void setRangeGridlinePaint(Paint paint);

Sets the Paint used for the range gridlines and sends a PlotChangeEvent

to all registered listeners.

public void setRangeGridlineStroke(Stroke stroke);

Sets the Stroke used for the range gridlines and sends a PlotChangeEvent

to all registered listeners.

29.14.4 Notes

Some points to note:

• this plot does not support secondary axes;

• there is a demo (FastScatterPlotDemo.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory).

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 220

29.15 IntervalMarker

29.15.1 Overview

An interval marker is used to highlight a (fixed) range of values against the
domain or range axis for a CategoryPlot or an XYPlot. This class extends the
Marker class.

29.15.2 Usage

There is a demo application (DifferenceChartDemo2.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory) that illustrates the use
of this class.

29.15.3 Notes

Some points to note:

• this class is Cloneable and Serializable.

29.16 Marker

29.16.1 Overview

The base class for markers that can be added to a CategoryPlot or an XYPlot.
There are two subclasses, as listed in Table 29.2.

Class: Description:

ValueMarker A marker that highlights a single value.
IntervalMarker A marker that highlights a range of values.

Table 29.2: Subclasses of Marker

Markers are used to highlight particular values or value ranges against either
the domain or range axes. Labels can be added to the markers.

29.16.2 Usage

There is a demo application (MarkerDemo1.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory) that illustrates the use
of markers.

29.16.3 Notes

Some points to note:

• markers should be Cloneable and Serializable.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 221

29.17 MeterPlot

29.17.1 Overview

A plot that displays a single value in a dial presentation. The current value is
represented by a needle in the dial, and is also displayed in the center of the
dial in text format.

Figure 29.3: A meter chart

Three ranges on the dial provide some context for the value: the normal range,
the warning range and the critical range.

29.17.2 Constructors

To create a new MeterPlot:

public MeterPlot(MeterDataset dataset);

Creates a dial with default settings, using the supplied dataset.

If you want to have more control over the appearance of the dial:

public MeterPlot(MeterDataset dataset, Insets insets, Paint backgroundPaint,

Image backgroundImage, float backgroundAlpha, Stroke outlineStroke, Paint

outlinePaint, float foregroundAlpha, int tickLabelType, Font tickLabelfont);

Creates a dial with the supplied settings and dataset.

29.17.3 Methods

A needle is used to indicate the current value on the dial. To change the color
of the needle:

public void setNeedlePaint(Paint paint);

Sets the color of the needle on the dial. The default is Color.green. If

you pass in null to this method, the needle color reverts to the default.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 222

The current value is also displayed (near the center of the dial) in text format.
To change the font used to display the current value:

public void setValueFont(Font font);

Sets the font used to display the current value.

To change the color used to display the current value:

public void setValuePaint(Paint paint);

Sets the paint used to display the current value.

To change the background color of the dial:

public void setDialBackgroundPaint(Paint paint);

Sets the color of the dial background. The default is Color.black. If you

set this to null, no background is painted.

By default, the needle on the dial is free to rotate through 270 degrees (centered
at 12 o’clock). To change this, use this method:

public void setMeterAngle(int angle);

Sets the range within which the dial’s needle can move.

Related to the above is the shape of the dial: circular (the default), pie or chord:

public void setDialType(int type);

Sets the shape of the dial. The default is DIALTYPE CIRCLE. The other

options are DIALTYPE PIE and DIALTYPE CHORD.

The three context ranges are drawn as color highlights near the outer edge of
the dial. To change the highlight color of the normal range:

public void setNormalPaint(Paint paint);

Sets the color of the normal range. The default is Color.green. If you

pass in null to this method, the color reverts to the default.

To change the highlight color of the warning range:

public void setWarningPaint(Paint paint);

Sets the color of the warning range. The default is Color.yellow. If you

pass in null to this method, the color reverts to the default.

To change the highlight color of the critical range:

public void setCriticalPaint(Paint paint);

Sets the color of the critical range. The default is Color.red. If you pass

in null to this method, the color reverts to the default.

To control whether or not labels are displayed for the values in the normal,
warning, critical and overall ranges:

public void setTickLabelType(int type);

Controls whether or not tick labels are displayed. The type should be one

of: NO LABELS and VALUE LABELS.

If tick labels are displayed, the font can be set using:

public void setTickLabelFont(Font font);

Sets the font used to display tick labels (if they are visible).

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 223

29.17.4 Notes

This chart type was contributed by Hari.

The MeterPlotDemo class in the org.jfree.chart.demo package provides a work-
ing example of this class.

In the current version, a fixed number of ticks (20) are drawn for the dial range,
irrespective of the maximum and minimum data values. The tick generation
will be enhanced in a future release.

See Also
MeterDataset, MeterLegend.

29.18 MultiplePiePlot

29.18.1 Overview

A specialised plot that displays data from a CategoryDataset in the form of
multiple pie charts. Figure 29.4 shows an example.

Figure 29.4: A multiple pie chart

29.18.2 Notes

Some points to note:

• a demo application (MultiplePieChartDemo1.java) is included in the JFreeChart
distribution.

• the createMultiplePieChart() and createMultiplePieChart3D() methods
in the ChartFactory class that create charts using this plot.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 224

29.19 PiePlot

29.19.1 Overview

The PiePlot class draws pie charts using data obtained through the PieDataset

interface. A sample chart is shown in figure 29.5. A related class, PiePlot3D,

Figure 29.5: A sample pie chart

draws pie charts with a 3D effect.

29.19.2 Constructors

To construct a pie plot:

public PiePlot(PieDataset dataset);

Creates a pie plot for the given dataset. All plot attributes are initialised

with default values—these can be changed at any time.

29.19.3 Attributes

The attributes maintained by the PiePlot class, which are in addition to those
inherited from the Plot class, are listed in table 29.3.

The following default values are used where necessary:

Name: Value:

DEFAULT INTERIOR GAP 0.25 (25 percent)
DEFAULT START ANGLE 90.0

DEFAULT LABEL FONT new Font("SansSerif", Font.PLAIN, 10);

DEFAULT LABEL PAINT Color.black;

DEFAULT LABEL BACKGROUND PAINT new Color(255, 255, 192);

DEFAULT LABEL GAP 0.10 (10 percent)

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 225

Attribute: Description:

interiorGap The amount of space to leave blank around the outside of
the pie, expressed as a percentage of the chart height and
width. Extra space is added for the labels.

circular A flag that controls whether the pie chart is constrained to
be circular, or allowed to take on an elliptical shape to fit
the available space.

startAngle The angle of the first pie section, expressed in degrees (0
degrees is three o’clock, 90 degrees is twelve o’clock, 180
degrees is nine o’clock and 270 degrees is six o’clock).

direction Pie sections can be ordered in a clock-
wise (Rotation.CLOCKWISE) or anticlockwise
(Rotation.ANTI CLOCKWISE) direction.

sectionPaint The paint used for all sections (usually null).
sectionPaintList The paint used for each section, unless overridden by sec-

tionPaint.
baseSectionPaint The default paint, used when no other setting is specified.
sectionOutlinePaint The outline paint used for all sections (usually null).
sectionOutlinePaintList The outline paint used for each section.
baseSectionOutlinePaint The default outline paint, used when no other setting is spec-

ified.
sectionOutlineStroke The outline stroke used for all sections (usually null).
sectionOutlineStrokeList The outline stroke used for each section.
baseSectionOutlineStroke The default outline stroke, used when no other setting is

specified.
shadowPaint The shadow paint.
shadowXOffset The x-offset for the shadow effect.
shadowYOffset The y-offset for the shadow effect.
explodePercentages The amount (percentage) to “explode” each pie section.
labelGenerator The section label generator, an instance of

PieSectionLabelGenerator.
labelFont The font for the section labels.
labelPaint The color for the section labels.
labelBackgroundPaint The background color for the section labels.
maximumLabelWidth The maximum label width as a percentage of the plot width.
labelGap The gap for the section labels.
labelLinkMargin The label link margin.
labelLinkPaint The Paint used for the lines that connect the pie sections

with their corresponding labels.
labelLinkStroke The Stroke used for the lines that connect the pie sections

to their corresponding labels.
toolTipGenerator A plug-in tool tip generator.
urlGenerator A plug-in URL generator (for image map generation).
pieIndex The index for this plot (only used by the MultiplePiePlot

class).

Table 29.3: Attributes for the PiePlot class

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 226

29.19.4 Methods

To replace the dataset being used by the plot:

public void setDataset(PieDataset dataset);

Replaces the dataset being used by the plot (this triggers a DatasetChangeEvent).

To control whether the pie chart is circular or elliptical:

public void setCircular(boolean flag);

Sets a flag that controls whether the pie chart is circular or elliptical in

shape.

To control the position of the first section in the chart:

public void setStartAngle(double angle);

Defines the angle (in degrees) at which the first section starts. Zero is at

3 o’clock, and as the angle increases it proceeds anticlockwise around the

chart (so that 90 degrees, the current default, is at 12 o’clock). This is

the same encoding used by Java’s Arc2D class.

To control the direction (clockwise or anticlockwise) of the sections in the pie
chart:

public void setDirection(Rotation direction);

Sets the direction of the sections in the pie chart. Use one of the constants

Rotation.CLOCKWISE (the default) and Rotation.ANTICLOCKWISE.

To control the amount of space around the pie chart:

public void setInteriorGapPercent(double percent);

Sets the amount of space inside the plot area.

A pie plot is drawn with this method:

public void draw(Graphics2D g2, Rectangle2D drawArea,

ChartRenderingInfo info);

Draws the pie plot within the specified drawing area. Typically, this
method will be called for you by the JFreeChart class.

The info parameter is optional. If you pass in an instance of ChartRendering-

Info, it will be populated with information about the chart (for example,

chart dimensions and tool tip information).

If you are displaying your pie chart in a ChartPanel and you want to customise
the tooltip text, you can register your own tool tip generator with the plot:

public void setToolTipGenerator(PieToolTipGenerator generator);

Registers a tool tip generator with the pie plot. You can set this to null

if you do not require tooltips.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 227

29.19.5 Section Colors

The colors used to fill the sections in a pie chart are fully customisable. To set
the color used to fill a particular section:

public void setSectionPaint(int section, Paint paint);

Sets the paint used to fill a particular section in the chart and sends a

PlotChangeEvent to all registered listeners.

In a similar way, you can control the paint and stroke used to outline individual
sections in the chart. To set the outline paint:

public void setSectionOutlinePaint(int section, Paint paint);

Sets the paint used to outline a particular section in the chart and sends

a PlotChangeEvent to all registered listeners.

To set the outline stroke:

public void setSectionOutlineStroke(int section, Stroke stroke);

Sets the stroke used to outline a particular section in the chart and sends

a PlotChangeEvent to all registered listeners.

29.19.6 Shadow Effect

The pie plot will draw a “shadow” effect. To set the paint used to draw the
shadow:

public void setShadowPaint(Paint paint);

Sets the paint used to draw the “shadow” effect. If you set this to null,

no shadow effect will be drawn.

To set the x-offset for the shadow effect:

public void setShadowXOffset(double offset);

Sets the x-offset (in Java2D units) for the shadow effect.

To set the y-offset for the shadow effect:

public void setShadowYOffset(double offset);

Sets the y-offset (in Java2D units) for the shadow effect.

29.19.7 Exploded Sections

It is possible to “explode” sections of the pie chart. The PieChartDemo2 appli-
cation (included in the JFreeChart distribution) provides a demo.

29.19.8 Section Labels

Section labels are generated by a plugin class that implements the PieItemLabelGenerator
interface.

To set a new generator:

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 228

public void setLabelGenerator(PieSectionLabelGenerator generator);

Sets the label generator for the plot and sends a PlotChangeEvent to all

registered listeners.

To set the color of the lines connecting the pie sections to their corresponding
labels:

public void setLabelLinkPaint(Paint paint);

Sets the Paint used for the lines connecting the pie sections to their cor-

responding labels and sends a PlotChangeEvent to all registered listeners.

To set the line style for the linking lines:

public void setLabelLinkStroke(Stroke stroke);

Sets the Stroke used for the lines connecting the pie sections to their cor-

responding labels and sends a PlotChangeEvent to all registered listeners.

At the current time, there is no facility to hide the linking lines.

29.19.9 Notes

Some points to note:

• there are several methods in the ChartFactory class that will construct a
default pie chart for you.

• the DatasetUtilities class has methods for creating a PieDataset from a
CategoryDataset.

• the PieChartDemo1 class in the org.jfree.chart.demo package provides a
simple pie chart demonstration.

See Also
PieDataset, PieItemLabelGenerator, Plot.

29.20 PiePlot3D

29.20.1 Overview

An extension of the PiePlot class that draws pie charts with a 3D effect.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 229

29.20.2 Notes

This class does not yet support the “exploded” sections that can be displayed
by the regular pie charts.

29.21 Plot

29.21.1 Overview

An abstract base class that controls the visual representation of data in a chart.
The JFreeChart class maintains a reference to a Plot, and will provide it with
an area in which to draw itself (after allocating space for the chart titles and
legend).

A range of subclasses are used to create different types of charts:

• CategoryPlot – for bar charts and other plots where one axis displays
categories and the other axis displays values;

• MeterPlot – dials, thermometers and other plots that display a single value;

• PiePlot – for pie charts;

• XYPlot – for line charts, scatter plots, time series charts and other plots
where both axes display numerical (or date) values;

Figure 29.6 illustrates the plot class hierarchy.

Plot
#dataset

PiePlot
+getDataset()

MeterPlot
+getMeterDataset()

CategoryPlot
+getDataset()
+getDomainAxis()
+getRangeAxis()

XYPlot
+getDataset()
+getDomainAxis()
+getRangeAxis()

ThermometerPlot

CombinedDomainCategoryPlot CombinedRangeCategoryPlot

OverlaidCategoryPlot OverlaidXYPlot

CombinedDomainXYPlot CombinedRangeXYPlot

Figure 29.6: Plot classes

When a chart is drawn, the JFreeChart class first draws the title (or titles)
and legend. Next, the plot is given an area (the plot area) into which it must
draw a representation of its dataset. This function is implemented in the draw()

method, each subclass of Plot takes a slightly different approach.

29.21.2 Constructors

This class is abstract, so the constructors are protected. You cannot create an
instance of this class directly, you must use a subclass.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 230

29.21.3 Attributes

This class maintains the following attributes:

Attribute: Description:

insets The amount of space to leave around the outside of the plot.
outlineStroke The Stroke used to draw an outline around the plot area.
outlinePaint The Paint used to draw an outline around the plot area.
backgroundPaint The Paint used to draw the background of the plot area.
backgroundImage An image that is displayed in the background of the plot

(optional).
backgroundImageAlignment The image alignment.
backgroundAlpha The alpha transparency value used when coloring the plot’s

background, and also when drawing the background image
(if there is one).

foregroundAlpha The alpha transparency used to draw items in the plot’s
foreground.

noDataMessage A string that is displayed by some plots when there is no
data to display.

noDataMessageFont The Font used to display the “no data” message.
noDataMessagePaint The Paint used to display the “no data” message.
drawingSupplier The drawing supplier.
dataAreaRatio The aspect ratio for the data area.
datasetGroup The dataset group (to be used for synchronising dataset ac-

cess).

Table 29.4: Attributes for the Plot class

All subclasses will inherit these core attributes.

29.21.4 Usage

To customise the appearance of a plot, you first obtain a reference to the plot
as follows:

Plot plot = chart.getPlot();

With this reference, you can change the appearance of the plot by modifying
it’s attributes. For example:

plot.setBackgroundPaint(Color.lightGray); plot.setNoDataMessage("There

is no data.");

Very often, you will find it necessary to cast the Plot object to a specific subclass
so that you can access attributes that are defined by the subclass. Refer to the
usage notes for each subclass for more details.

29.21.5 The Plot Background

The background area for a plot is the area inside the plot’s axes (if the plot has
axes)—it does not include the chart titles, the legend or the axis labels.

By default, the background area for most plot’s in JFreeChart is white. You
can easily change this using code similar to the following:

Plot plot = chart.getPlot(); plot.setBackgroundPaint(Color.lightGray);

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 231

You can also add an image to the background area. The image will be stretched
to fill the plot area:

plot.setBackgroundImage(myImage);

Both the background paint and the background image can be drawn using an
alpha-transparency, you can set this as follows:

plot.setBackgroundAlpha(0.6f);

There are similar methods in the JFreeChart class that allow you to control the
background area for the chart (which encompasses the entire chart area).

29.21.6 Methods

The JFreeChart class expects every plot to implement the draw() method, and
uses this to draw the plot in a specific area via a Graphics2D instance. You won’t
normally need to call this method yourself:

public abstract void draw(Graphics2D g2, Rectangle2D plotArea,

ChartRenderingInfo info);

Draws the chart using the supplied Graphics2D. The plot should be drawn
within the plotArea.

If you wish to record details of the items drawn within the plot, you need

to supply a ChartRenderingInfo object. Once the drawing is complete,

this object will contain a lot of information about the plot. If you don’t

want this information, pass in null.

29.21.7 Notes

Refer to specific subclasses for information about setting the colors, shapes and
line styles for data drawn by the plot.

29.22 PlotOrientation

29.22.1 Overview

Used to represent the orientation of a plot (in particular, the CategoryPlot and
XYPlot classes). There are two values, as listed in table 29.5.

Class: Description:

PlotOrientation.HORIZONTAL A “horizontal” orientation.
PlotOrientation.VERTICAL A “vertical” orientation.

Table 29.5: Plot orientation values

The orientation corresponds to the “direction” of the range axis. So, for exam-
ple, a bar chart with a vertical orientation will display vertical bars, while a bar
chart with a horizontal orientation will display horizontal bars.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 232

29.22.2 Notes

For interesting effects, in addition to changing the orientation of a chart you
can:

• change the location of the chart’s axes;

• invert the scale of the axes.

29.23 PlotRenderingInfo

29.23.1 Overview

This class is used to record information about the individual elements in a single
rendering of a plot. See also the ChartRenderingInfo class.

29.24 PolarPlot

29.24.1 Overview

A plot that is used to display data from an XYDataset using polar coordinates—
see figure 29.7 for an example.

Figure 29.7: A polar chart

The items in the plot are drawn by a PolarItemRenderer.

29.24.2 Usage

There is a demo application (PolarChartDemo.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory) that illustrates the use
of this class.

29.24.3 Notes

Some points to note:

• instances of this class are cloneable and serializable.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 233

29.25 ThermometerPlot

29.25.1 Overview

A plot that displays a single value in a thermometer-style representation.

Figure 29.8: A thermometer chart

You can define three sub-ranges on the thermometer scale to provide some
context for the displayed value: the normal, warning and critical sub-ranges.
The color of the “mercury” in the thermometer can be configured to change for
each sub-range.

By default, the display range for the thermometer is fixed (using the overall
range specified by the user). However, there is an option to automatically adjust
the thermometer scale to display only the sub-range in which the current value
falls. This allows the current data value to be displayed with more precision.

29.25.2 Constructors

To create a new ThermometerPlot:

public ThermometerPlot(ValueDataset dataset);

Creates a thermometer with default settings, using the supplied dataset.

29.25.3 Methods

The current value can be displayed as text in the thermometer bulb or to the
right of the thermometer. To set the position:

public void setValueLocation(int location);

Sets the position of the value label. Use one of the constants: NONE, RIGHT

or BULB.

The font for the value label can be set as follows:

public void setValueFont(Font font);

Sets the font used to display the current value.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 234

Similarly, the paint for the value label can be set as follows:

public void setValuePaint(Paint paint);

Sets the paint used to display the current value.

You can set a formatter for the value label:

public void setValueFormatter(NumberFormat formatter);

Sets the formatter for the value label.

To set the overall range of values to be displayed in the thermometer:

public void setRange(double lower, double upper);

Sets the lower and upper bounds for the value that can be displayed in

the thermometer. If the data value is outside this range, the thermometer

will be drawn as “empty” or “full”.

You can specify the bounds for any of the three sub-ranges:

public void setSubrange(int subrange, double lower, double upper);

Sets the lower and upper bounds for a sub-range. Use one of the constants

NORMAL, WARNING or CRITICAL to indicate the sub-range.

In addition to the actual bounds for the sub-ranges, you can specify display
bounds for each sub-range:

public void setDisplayBounds(int range, double lower, double upper);

Sets the lower and upper bounds of the display range for a sub-range. The

display range is usually equal to or slightly bigger than the actual bounds

of the sub-range.

The display bounds are only used if the thermometer axis range is automatically
adjusted to display the current sub-range. You can set a flag that controls
whether or not this automatic adjustment happens:

public void setFollowDataInSubranges(boolean flag);

If true, the thermometer range is adjusted to display only the current

sub-range (which displays the value with greater precision). If false, the

overall range is displayed at all times.

By default, this flag is set to false.

To set the default color of the “mercury” in the thermometer:

public void setMercuryPaint(Paint paint);

Sets the default color of the mercury in the thermometer.

To set the color of the mercury for each sub-range:

public void setSubrangePaint(int range, Paint paint);

Sets the paint used for the mercury when the data value is within the

specified sub-range. Use one of the constants NORMAL, WARNING or CRITICAL

to indicate the sub-range.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 235

The sub-range mercury colors are only used if the useSubrangePaint flag is set
to true (the default):

public void setUseSubrangePaint(boolean flag);

Sets the flag that controls whether or not the sub-range colors are used

for the mercury in the thermometer.

To show grid lines within the thermometer stem:

public void setShowValueLines(boolean flag);

Sets a flag that controls whether or not grid lines are displayed inside the

thermometer stem.

To control the color of the thermometer outline:

public void setThermometerPaint(Paint paint);

Sets the paint used to draw the outline of the thermometer.

To control the pen used to draw the thermometer outline:

public void setThermometerStroke(Stroke stroke);

Sets the stroke used to draw the outline of the thermometer.

You can control the amount of white space at the top and bottom of the ther-
mometer:

public void setPadding(Spacer padding);

Sets the padding around the thermometer. This is controlled using a

Spacer object.

29.25.4 Notes

The ThermometerPlot class was originally contributed by Bryan Scott from the
Australian Antarctic Division.

The JThermometer class provides a simple (but incomplete) Javabean wrapper
for this class.

Various dimensions for the thermometer (for example, the bulb radius) are hard-
coded constants in the current implementation. A useful enhancement would be
to replace these constants with attributes that could be modified via methods
in the ThermometerPlot class.

The ThermometerDemo class in the org.jfree.chart.demo package provides a work-
ing example of this class.

29.26 ValueMarker

29.26.1 Overview

A value marker is used to indicate a constant value against the domain or range
axis for a CategoryPlot or an XYPlot. This class extends the Marker class.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 236

29.26.2 Usage

There is a demo application (MarkerDemo1.java) included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory) that illustrates the use
of this class.

29.26.3 Notes

Some points to note:

• this class is Cloneable and Serializable.

29.27 XYPlot

29.27.1 Overview

Draws a visual representation of data from an XYDataset, where the domain axis
measures the x-values and the range axis measures the y-values.

The type of plot is typically displayed using a vertical orientation, but it is
possible to change to a horizontal orientation which can be useful for certain
applications.

29.27.2 Layout

Axes are laid out at the left and bottom of the drawing area. The space allocated
for the axes is determined automatically. The following diagram shows how this
area is divided:

Figure 29.9: The plot regions

Determining the dimensions of these regions is an awkward problem. The plot
area can be resized arbitrarily, but the vertical axis and horizontal axis sizes are
more difficult. Note that the height of the vertical axis is related to the height
of the horizontal axis, and, likewise, the width of the vertical axis is related to
the width of the horizontal axis. This results in a “chicken and egg” problem,
because changing the width of an axis can affect its height (especially if the tick
units change with the resize) and changing its height can affect the width (for
the same reason).

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 237

29.27.3 Renderers

The XYPlot class delegates drawing of individual data items to an XYItemRenderer.
A number of renderer implementations are available (and you are free to develop
your own, of course):

• CandlestickRenderer;

• ClusteredXYBarRenderer;

• HighLowRenderer;

• StandardXYItemRenderer;

• XYAreaRenderer;

• XYBarRenderer;

• XYBubbleRenderer;

• XYDifferenceRenderer;

29.27.4 Axis Offsets

It is possible to specify the amount by which the plot’s axes are offset from the
data area. By default, there is no offset, but you can change this easily, for
example:

plot.setAxisOffset(new Spacer(Spacer.ABSOLUTE, 5.0, 5.0, 5.0, 5.0));

29.27.5 Location of Axes

The plot’s axes can appear at the top, bottom, left or right of the plot area. The
location for an axis is specified using the AxisLocation class, which combines
two possible locations within each option—which one is actually used depends
on the orientation (horizontal or vertical) of the plot.

For “vertical” plots (the usual default), the domain axis will appear at the top
or bottom of the plot area, and the range axis will appear at the left or right
of the plot area. For “horizontal” plots, the domain axis will appear at the left
or right of the plot area, and the range axis will appear at the top or bottom of
the plot area.

To set the location for the domain axis:

public void setDomainAxisLocation(AxisLocation location);

Sets the location for the domain axis and sends a PlotChangeEvent to all

registered listeners.

Similarly, to set the location for the range axis:

public void setRangeAxisLocation(AxisLocation location);

Sets the range axis location and sends a PlotChangeEvent to all registered

listeners.

For example, to display the range axis on the right side of a chart:

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 238

plot.setRangeAxisLocation(AxisLocation.BOTTOM OR RIGHT);

This assumes the plot orientation is vertical, if it changes to horizontal the axis
will be displayed at the bottom of the chart.

29.27.6 Gridlines

By default, the plot will draw gridlines in the background of the plot area.
Vertical lines are drawn for each tick mark on the domain axis, and horizontal
lines are drawn for each tick mark on the range axis.

You can customise both the color (Paint) and line-style (Stroke) of the gridlines.
For example, to change the grid lines to solid black lines:

XYPlot plot = myChart.getXYPlot();

plot.setDomainGridStroke(new BasicStroke(0.5f));

plot.setDomainGridPaint(Color.black);

plot.setRangeGridStroke(new BasicStroke(0.5f));

plot.setRangeGridPaint(Color.black);

If you prefer to have no gridlines at all, you can turn them off:

XYPlot plot = myChart.getXYPlot();

plot.setDomainGridVisible(false);

plot.setRangeGridVisible(false);

Note that the settings for the domain grid lines and the range grid lines are
independent of one another.

29.27.7 Markers

Markers are used to highlight particular values along the domain axis or the
range axis for a plot. Typically, a marker will be represented by a solid line per-
pendicular to the axis against which it is measured, although custom renderers
can alter this default behaviour.

To add a marker along the domain axis:

public void addDomainMarker(Marker marker);

Adds a marker for the domain axis. This is usually represented as a

vertical line on the plot (assuming a vertical orientation for the plot).

To add a marker along the range axis:

public void addRangeMarker(Marker marker);

Adds a marker for the range axis. This is usually represented as a hori-

zontal line on the plot (assuming a vertical orientation for the plot).

To clear all domain markers:

public void clearDomainMarkers();

Clears all the domain markers.

Likewise, to clear all range markers:

public void clearRangeMarkers();

Clears all the range markers.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.PLOT 239

29.27.8 Annotations

You can add annotations to a chart to highlight particular data items. For
example, to add the text “Hello World!” to a plot:

XYPlot plot = (XYPlot) chart.getPlot();

XYAnnotation annotation = new XYTextAnnotation("Hello World!", 10.0, 25.0);

plot.addAnnotation(annotation);

To clear all annotations:
plot.clearAnnotations();

29.27.9 Constructors

To create a plot with a specific renderer:

public XYPlot(XYDataset data, ValueAxis domainAxis, ValueAxis rangeAxis,

XYItemRenderer renderer);

Creates an XY plot with a specific renderer.

29.27.10 Methods

To get the current renderer for the plot:

public XYItemRenderer getRenderer();

Returns the current renderer.

To set a new renderer for the plot:

public void setRenderer(XYItemRenderer renderer);

Sets a new renderer.

29.27.11 Notes

It is possible to display time series data with XYPlot by employing a DateAxis

in place of the usual NumberAxis. In this case, the x-values are interpreted as
“milliseconds since 1-Jan-1970” as used in java.util.Date.

See Also
Plot, XYItemRenderer, CombinedDomainXYPlot, CombinedRangeXYPlot.

Chapter 30

Package:
org.jfree.chart.renderer

30.1 Overview

This package contains interfaces and classes that are used to implement render-
ers, plug-in objects that are responsible for drawing individual data items on
behalf of a CategoryPlot or an XYPlot.

Renderers offer a lot of scope for changing the appearance of your charts, ei-
ther by changing the attributes of an existing renderer, or by implementing a
completely new renderer.

30.2 AbstractCategoryItemRenderer

30.2.1 Overview

A base class that can be used to implement a new CategoryItemRenderer.

30.2.2 Constructors

The default constructor creates a renderer with no tooltip generator and no
URL generator. The constructor is protected.

30.2.3 Attributes

The attributes maintained by this class are listed in Table 30.1.

30.2.4 Methods

The following method is called once every time the chart is drawn:

public CategoryItemRendererState initialise(Graphics2D g2, Rectangle2D

dataArea, CategoryPlot plot, Integer index, PlotRenderingInfo info);

240

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 241

Attribute: Description:

plot The CategoryPlot that the renderer is assigned to.
toolTipGenerator The CategoryItemLabelGenerator that generates tool

tips for ALL series (can be null).
toolTipGeneratorList A list of CategoryItemLabelGenerator objects used to

create tool tips for individual series.
baseToolTipGenerator The base CategoryItemLabelGenerator used to create

tool tips when there is no other generator available.
labelGenerator The CategoryItemLabelGenerator that generates item

labels for ALL series (can be null).
labelGeneratorList A list of CategoryItemLabelGenerator objects used to

create item labels for individual series. If null, the base-
LabelGenerator is used instead.

baseLabelGenerator The base CategoryItemLabelGenerator used to create
item labels when no other generator is available.

itemURLGenerator The CategoryURLGenerator that applies to ALL series.
itemURLGeneratorList A list of CategoryURLGenerator objects that apply to

individual series. If null, the baseItemURLGenerator is
used instead.

baseItemURLGenerator The base CategoryURLGenerator, used when no other
generator is available.

Table 30.1: Attributes for the AbstractCategoryItemRenderer class

Performs any initialisation required by the renderer. The default imple-

mentation simply stores a local reference to the info object (which may

be null).

The number of rows and columns in the dataset (a CategoryDataset) is cached
by the renderer in the initialise(...) method.

To get the renderer type:

public RangeType getRangeType();

Returns the range type for the renderer (STANDARD or STACKED).

To draw the plot background:

public void drawBackground(Graphics2D g2, CategoryPlot plot, Rectangle2D

dataArea);

Draws the plot background. Some renderers will choose to override this

method, but for most the default behaviour is OK.

To draw the plot outline:

public void drawOutline(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws the plot outline. Some renderers will choose to override this method,

but for most the default behaviour is OK.

To draw a domain gridline:

public void drawDomainGridline(Graphics2D g2, CategoryPlot plot, Rectangle2D

dataArea, double value);

Draws a domain gridline at the specified value.

To draw a range gridline:

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 242

public void drawRangeGridline(Graphics2D g2, CategoryPlot plot, ValueAxis

axis, Rectangle2D dataArea, double value);

Draws a range gridline at the specified value.

To draw a range marker:

public void drawRangeMarker(Graphics2D g2, CategoryPlot plot, ValueAxis

axis, Marker marker, Rectangle2D dataArea);

Draws a range marker.

To get a legend item:

public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for the specified series. The datasetIndex is zero

for the primary dataset, and 1..N for the secondary datasets.

To get the CategoryItemLabelGenerator for a data item:

public CategoryItemLabelGenerator getItemLabelGenerator(int row,

int column);

Returns the item label generator for a specific data item. By default, this

method just calls the getSeriesItemLabelGenerator() method.

To get the CategoryItemLabelGenerator for a series:

public CategoryItemLabelGenerator getSeriesItemLabelGenerator(int series);

Returns the item label generator for a series. This method returns the

itemLabelGenerator if it is set, otherwise it looks up the itemLabelGen-

eratorList to get a generator specific to the series. If the series-specific

generator is null, the baseItemLabelGenerator is returned.

To get the CategoryURLGenerator for a data item:

public CategoryURLGenerator getItemURLGenerator(int row,int column);

Returns the item URL generator for a specific data item. By default, this

method just calls the getSeriesItemURLGenerator(...) method.

To get the CategoryURLGenerator for a series:

public CategoryURLGenerator getSeriesItemURLGenerator(int series);

Returns the item URL generator for a series. This method returns the

itemURLGenerator if it is set, otherwise it looks up the itemURLGen-

eratorList to get a generator specific to the series. If the series-specific

generator is null, the baseItemURLGenerator is returned.

To get the row count:

public int getRowCount();

Returns the row count.

To get the column count:

public int getColumnCount();

Returns the column count.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 243

30.2.5 Notes

If you are implementing your own renderer, you do not have to use this base
class, but it does save you some work.

30.3 AbstractRenderer

30.3.1 Overview

An abstract class that provides common services for renderer implementations.

This base class is extended by both the AbstractCategoryItemRenderer class and
the AbstractXYItemRenderer class.

30.3.2 Attributes

The attributes maintained by the AbstractRenderer class are listed in Table
30.2.

Attribute: Description:

paint The paint that applies to ALL series (null permitted).
paintList A list of paints that apply to individual series (only referenced

if paint is null).
basePaint The paint that is used if there is no other setting.

outlinePaint The outline paint that applies to ALL series (null permitted).
outlinePaintList A list of outline paints that apply to individual series (only

referenced if outlinePaint is null).
baseOutlinePaint The outline paint that is used if there is no other setting.

stroke The stroke that applies to ALL series (null permitted).
strokeList A list of stroke objects that apply to individual series (only

referenced if stroke is null).
baseStroke The stroke that is used if there is no other setting.

outlineStroke The outline stroke that applies to ALL series (null permitted).
outlineStrokeList A list of outline strokes that apply to individual series (only

referenced if outlineStroke is null).
baseOutlineStroke The outline stroke that is used if there is no other setting.

shape The shape that applies to ALL series (null permitted).
shapeList A list of shapes that apply to individual series (only referenced

if shape is null).
baseShape The shape that is used if there is no other setting.

Table 30.2: Attributes for the AbstractRenderer class

30.3.3 Setting Series Colors

Renderers are responsible for drawing the data items within a plot, so this class
provides attributes for controlling the colors that will be used.

Colors are defined on a “per series” basis, and stored in a lookup table (an
instance of PaintList).

There is a default mechanism to automatically populate the paint list with
default colors (using the DrawingSupplier interface). However, you can manually

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 244

Attribute: Description:

itemLabelsVisible The flag that applies to ALL series (null permitted).
itemLabelsVisibleList A list of flags that apply to individual series (only referenced

if itemLabelsVisible is null).
baseItemLabelsVisible The flag that is used if there is no other setting.

itemLabelFont The font that applies to ALL series (null permitted).
itemLabelFontList A list of fonts that apply to individual series (only referenced

if itemLabelFont is null).
baseItemLabelFont The font that is used if there is no other setting.

itemLabelPaint The paint that applies to ALL series (null permitted).
itemLabelPaintList A list of paints that apply to individual series (only referenced

if itemLabelPaint is null).
baseItemLabelPaint The font that is used if there is no other setting.

itemLabelAnchor The anchor that applies to ALL series (null permitted).
itemLabelAnchorList A list of anchors that apply to individual series (only refer-

enced if itemLabelAnchor is null).
baseItemLabelAnchor The anchor that is used if there is no other setting.

itemLabelTextAnchor The text anchor that applies to ALL series (null permitted).
itemLabelTextAnchorList A list of text anchors that apply to individual series (only

referenced if itemLabelTextAnchor is null).
baseItemLabelTextAnchor The text anchor that is used if there is no other setting.

itemLabelRotationAnchor The rotation anchor that applies to ALL series (null permit-
ted).

itemLabelRotationAnchorList A list of rotation anchors that apply to individual series (only
referenced if itemLabelRotationAnchor is null).

baseItemLabelRotationAnchor The anchor that is used if there is no other setting.

itemLabelAngle The angle that applies to ALL series (null permitted).
itemLabelAngleList A list of angles that apply to individual series (only referenced

if itemLabelAnchor is null).
baseItemLabelAngle The angle that is used if there is no other setting.

Table 30.3: Attributes for the AbstractRenderer class

update the paint list at any time. First, you need to obtain a reference to the
renderer:

CategoryPlot plot = myChart.getCategoryPlot();
AbstractRenderer r1 = (AbstractRenderer) plot.getRenderer();
AbstractRenderer r2 = (AbstractRenderer) plot.getSecondaryRenderer();

The code is similar for charts that use XYPlot:
XYPlot plot = myChart.getXYPlot();
AbstractRenderer r1 = (AbstractRenderer) plot.getRenderer();
AbstractRenderer r2 = (AbstractRenderer) plot.getSecondaryRenderer();

Note that many charts do not use a secondary renderer.

To update the paint table:
// the following methods set the primary dataset colors
// by default...
r1.setSeriesPaint(0, Color.red);
r1.setSeriesPaint(1, Color.green);
r1.setSeriesPaint(2, Color.blue);

To set the colors for the secondary dataset (if one is being used), you need to
use the setSeriesPaint() method that incorporates the dataset index:

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 245

// primary dataset index = 0
r1.setSeriesPaint(0, 0, Color.red);
r1.setSeriesPaint(0, 1, Color.green);
r1.setSeriesPaint(0, 2, Color.blue);

// secondary dataset index = 1
r1.setSeriesPaint(1, 0, Color.orange);
r1.setSeriesPaint(1, 1, Color.yellow);
r1.setSeriesPaint(1, 2, Color.gray);

30.3.4 Setting Series Shapes

Renderers are initialised so that a range of default shapes are available if re-
quired. These are stored in a lookup table that is initially empty. The lookup
table has two rows (one for the primary dataset, and one for the secondary
dataset), and can have any number of columns (one per series). When the ren-
derer requires a Shape, it uses the dataset index (primary or secondary) and the
series index to read a shape from the lookup table. If the value is null, then
the renderer turns to the DrawingSupplier for a new shape—the next shape is
returned by the getNextShape() method.

If you require more control over the shapes that are used for your plots, you
can populate the lookup table yourself using the setSeriesShape(...) method.
The shape you supply can be any instance of Shape, but should be centered on
(0, 0) in Java2D space (so that JFreeChart can position the shape at any data
point).

Here is some sample code that sets four custom shapes for the primary dataset
in an XYPlot:

XYPlot plot = chart.getXYPlot();
XYItemRenderer r = plot.getRenderer();
if (r instanceof StandardXYItemRenderer) {

StandardXYItemRenderer renderer = (StandardXYItemRenderer) r;
renderer.setPlotShapes(true);
renderer.setDefaultShapeFilled(true);
renderer.setSeriesShape(0, new Ellipse2D.Double(-3.0, -3.0, 6.0, 6.0));
renderer.setSeriesShape(1, new Rectangle2D.Double(-3.0, -3.0, 6.0, 6.0));
GeneralPath s2 = new GeneralPath();
s2.moveTo(0.0f, -3.0f);
s2.lineTo(3.0f, 3.0f);
s2.lineTo(-3.0f, 3.0f);
s2.closePath();
renderer.setSeriesShape(2, s2);
GeneralPath s3 = new GeneralPath();
s3.moveTo(-1.0f, -3.0f);
s3.lineTo(1.0f, -3.0f);
s3.lineTo(1.0f, -1.0f);
s3.lineTo(3.0f, -1.0f);
s3.lineTo(3.0f, 1.0f);
s3.lineTo(1.0f, 1.0f);
s3.lineTo(1.0f, 3.0f);
s3.lineTo(-1.0f, 3.0f);
s3.lineTo(-1.0f, 1.0f);
s3.lineTo(-3.0f, 1.0f);
s3.lineTo(-3.0f, -1.0f);
s3.lineTo(-1.0f, -1.0f);
s3.closePath();
renderer.setSeriesShape(3, s3);

}

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 246

30.3.5 Equals, Cloning and Serialization

This class overrides the equals(...) method. TO DO: review equality tests for
Paint and Stroke objects.

30.4 AbstractXYItemRenderer

30.4.1 Overview

A convenient base class for creating new XYItemRenderer implementations.

30.4.2 Constructors

This class provides a default constructor which allocates storage for the label
generator(s), the tool tip generator(s) and the URL generator.

protected AbstractXYItemRenderer();

Creates a new renderer.

30.4.3 Initialisation

Each time a chart is drawn, the plot will initialise the renderer by calling the
following method:

public XYItemRendererState initialise(...)

Initialises the renderer and returns a state object that the plot will pass

to all subsequent calls to the drawItem() method. The state object is

discarded once the chart is fully drawn.

30.4.4 The Pass Count

The pass count refers to the number of times the XYPlot scans through the
dataset passing individual data items to the renderer for drawing. Most render-
ers require only a single pass through the dataset, but some will use a second
pass to overlay shapes (for example) over previously drawn items.

The plot will call the following method to determine how many passes the
renderer requires:

public int getPassCount();

Returns 1 to indicate that the renderer requires only a single pass through

the dataset.

Renderers that require more than one pass through the dataset should override
this method.

30.4.5 Domain and Range Markers

A default method is supplied for displaying a domain marker as a line on the
plot:

public void drawDomainMarker(...);

Draws a line perpendicular to the domain axis to represent a Marker.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 247

A default method is supplied for displaying a range marker as a line on the plot:

public void drawRangeMarker(...);

Draws a line perpendicular to the range axis to represent a Marker.

Most renderers will use these methods by default, but some may override them.

30.4.6 Grid Bands

It is possible to fill the space between alternate grid lines with a different color
to create a “band” effect.

30.4.7 Methods

To find out the range type for the renderer:

public RangeType getRangeType();

Returns the range type for the renderer, which affects the auto-range

calculation for the axis that the renderer is mapped to.

To create a legend item for a series (this method is called by the plot):

public LegendItem getLegendItem(int index, int series);

Returns a legend item that represents the specified series. The index

argument tells the renderer which dataset it is rendering (only the plot

tracks this)—0 for the primary dataset, or n+1 for a secondary dataset

(where n is the index of the secondary dataset).

30.4.8 Notes

Some points to note:

• this class provides a property change mechanism to support the require-
ments of the XYItemRenderer interface;

See Also
XYItemRenderer, XYPlot.

30.5 AreaRenderer

30.5.1 Overview

A category item renderer that represents each item in a CategoryDataset using
a polygon that fills the area between the x-axis and the data point.
This renderer is designed for use with the CategoryPlot class.

30.5.2 Notes

Some notes:

• the createAreaChart(...) method in the ChartFactory class will create
a default chart that uses this renderer.

• this class extends AbstractCategoryItemRenderer.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 248

Figure 30.1: An area chart

See Also
XYAreaRenderer.

30.6 BarRenderer

30.6.1 Overview

A bar renderer is used with a CategoryPlot to create bar charts from data in a
CategoryDataset. Figure 30.2 shows an example of a bar chart with a vertical
orientation and figure 30.3 shows an example of a bar chart with a horizontal
orientation.

Figure 30.2: A vertical bar chart

This class extends AbstractCategoryItemRenderer.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 249

Figure 30.3: A horizontal bar chart

30.6.2 The Bar Width

The renderer automatically calculates the width of the bars to fit the avail-
able space for the plot, so you cannot directly control how wide the bars are.
However, the bar width is a function of the following attributes that you can
control:

• the lowerMargin, upperMargin and categoryMargin attributes, all defined
by the CategoryAxis;

• the item margin attribute belonging to the renderer (see below).

The item margin attribute controls the amount of space between bars within a
category :

public setItemMargin(double percent);

Sets the amount of space (as a percentage of the overall space available

for drawing all the bars) to be allocated to the gaps between bars that

are in the same category.

30.6.3 Appearance

The dynamic bar width calculation can result in very wide bars if you have only
a few data values in a chart. If you would like to specify a “cap” for the bar
width, use this method:

public void setMaxBarWidth(double percent);

Sets the maximum bar width as a percentage of the axis length. For

example, setting this to 0.05 will ensure that the bars never exceed five

percent of the length of the axis.

You can specify whether or not bars are drawn with an outline using:

public void setDrawBarOutline(boolean draw);

Sets a flag that controls whether or not an outline is drawn around each

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 250

bar. The paint and stroke used for the bar outline is specified using

methods in the superclass.

To provide better support for the use of GradientPaint objects to color the bars
drawn by this renderer, you can specify a transformer that will dynamically
adjust the GradientPaint to fit each bar, using the following method:

public void setGradientPaintTransformer(GradientPaintTransformer transformer);

Sets the transformer. If this is set to null, any GradientPaint objects

will be used in their raw form (i.e. with fixed coordinates).

For very small data values (relative to the axis range), you can have bars with a
length of less than 1 pixel (on-screen)—when the value gets too small, the bar
will disappear. If you want to ensure that a line is always drawn so that the
small bar is visible, you can specify a minimum bar length with this method:

public void setMinimumBarLength(double min);

Sets the minimum length that will be used for a bar, specified in Java 2D

units. You can set this to 1.0, for example, to ensure that very short bars

do not disappear.

30.6.4 Item Labels

This renderer supports the display of item labels. Due to the rectangular nature
of the bars, the renderer calculates anchor points are a arranged as shown in
figure 30.4.

OUTSIDE_1

OUTSIDE_2

OUTSIDE_3

OUTSIDE_4

OUTSIDE_5OUTSIDE_6OUTSIDE_7

OUTSIDE_8

OUTSIDE_9

OUTSIDE_10

OUTSIDE_11 OUTSIDE_12

CENTER

INSIDE_12

INSIDE_6

Figure 30.4: Item Label Anchors for Bars

To control the amount of space between item labels (if they are visible) and the
edge of the bar:

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 251

public void setItemLabelAnchorOffset(double offset);

Sets the offset (in Java2D units) between the edge of the bar and the item

label anchor point.

30.6.5 Methods

This class implements all the methods in the CategoryItemRenderer interface.

30.6.6 Notes

Some points to note:

• the ChartFactory class uses this renderer when it constructs bar charts.

• the BarChartDemo.java class, included in the JFreeChart distribution, is
one example that uses this renderer.

See Also
StackedBarRenderer, BarRenderer3D, StackedBarRenderer3D.

30.7 BarRenderer3D

30.7.1 Overview

A renderer that draws items from a CategoryDataset using bars with a 3D
effect. Figure 30.5 shows the renderer being used with a plot that has a vertical
orientation and figure 30.6 shows the renderer being used with a plot that has
a horizontal orientation.

Figure 30.5: An example of the BarRenderer3D class at work

This renderer is designed for use with the CategoryPlot class.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 252

Figure 30.6: Another 3D bar chart

30.7.2 Notes

Some points to note:

• this class implements the CategoryItemRenderer interface.

• the BarChart3DDemo1 and BarChart3DDemo2 applications (included in the
JFreeChart distribution) provide demonstrations of this renderer in use.

30.8 BoxAndWhiskerRenderer

30.8.1 Overview

A renderer that is used to create a box-and-whisker plot within the CategoryPlot

framework.

Figure 30.7: A box-and-whisker plot

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 253

30.8.2 Notes

The BoxAndWhiskerDemo application, included in the JFreeChart distribution,
provides an example of this type of plot.

30.9 CandlestickRenderer

30.9.1 Overview

A candlestick renderer draws each item from a HighLowDataset as a box with
lines extending from the top and bottom. Candlestick charts are typically used
to display financial data—the box represents the open and closing prices, while
the lines indicate the high and low prices for a trading period (often one day).

Figure 30.8: A sample chart using CandlestickRenderer

This renderer is designed for use with the XYPlot class.

This renderer also has the ability to represent volume information in the back-
ground of the chart.

30.9.2 Constructors

To create a new renderer:

public CandlestickRenderer(double candleWidth);

Creates a new renderer.

30.9.3 Methods

To set the width of the candles (in points):

public void setCandleWidth(double width);

Sets the width of each candle. If the value is negative, then the renderer

will automatically determine a width each time the chart is redrawn.

To set the color used to fill candles when the closing price is higher than the
opening price (the price has moved up):

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 254

public void setUpPaint(Paint paint);

Sets the fill color for candles where the closing price is higher than the

opening price.

To set the color used to fill candles when the closing price is lower than the
opening price (the price has moved down):

public void setDownPaint(Paint paint);

Sets the fill color for candles where the closing price is lower than the

opening price.

To control whether or not volume bars are drawn in the background of the chart:

public void setDrawVolume(boolean flag);

Controls whether or not volume bars are drawn in the background of the

chart.

These methods will fire a property change event that will be picked up by the
XYPlot class, triggering a chart redraw.

30.9.4 Notes

This renderer requires a HighLowDataset.

30.10 CategoryItemRenderer

30.10.1 Overview

A category item renderer is an object that is assigned to a CategoryPlot and
assumes responsibility for drawing the visual representation of individual data
items in a dataset. This interface defines the methods that must be provided
by all category item renderers—the plot will only use the methods defined in
this interface.

AbstractCategoryItemRenderer

MinMaxCategoryRendererAreaRenderer LineAndShapeRenderer

BarRenderer

CategoryItemRenderer

IntervalBarRenderer

DefaultCategoryItemRenderer

BarRenderer3D

StackedAreaRenderer

StackedBarRenderer

StackedBarRenderer3D

Figure 30.9: Category item renderers

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 255

A number of different renderers have been developed, allowing different chart
types to be generated easily. The following table lists the renderers that have
been implemented to date:

Class: Description:

AreaRenderer Used to create area charts.
BarRenderer Represents data using bars (anchored at zero).
BarRenderer3D Represents data using bars (anchored at zero)

with a 3D effect.
StackedBarRenderer Used to create a stacked bar charts.
IntervalBarRenderer Draws intervals using bars. This renderer can

be used to create simple Gantt charts.
LineAndShapeRenderer Draws lines and/or shapes to represent data.

30.10.2 Methods

The interface defines an initialisation method:

public CategoryItemRendererState initialise(Graphics2D g2, Rectangle2D

dataArea, CategoryPlot plot, Integer index, PlotRenderingInfo info);

This method is called exactly once at the start of every chart redraw. The

method returns a state object that the plot will pass to the drawItem()

method for each data item that the renderer needs to draw. Thus, it gives

the renderer a chance to precalculate any information it might require

later when rendering individual data items.

For data range calculations, the CategoryPlot class needs to know whether or
not the renderer “stacks” values. This can be determined via the following
method:

public RangeType getRangeType();

Returns the range type (STANDARD or STACKED) for the renderer.

The most important method is the one that actually draws a data item:

public void drawItem(...);

Draws one item on a category plot. The CategoryPlot class will iterate

through the data items, passing them to the renderer one at a time.

30.10.3 Item Labels

An item label is a short text string that can be displayed near each data item
in a chart. Whenever the renderer requires an item label, it obtains a label
generator via the following method:

public CategoryItemLabelGenerator getLabelGenerator(int series, int item);

Returns the label generator for the specified data item. In theory, this

method could return a different generator for each item but, in practice,

it will often return the same generator for every item (or one generator

per series). The method can return null if no generator has been set for

the renderer—in this case, no item labels will be displayed.

To set a generator that will be used for all data items in the chart:

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 256

public void setLabelGenerator(CategoryItemLabelGenerator generator);

Sets the label generator that will be used for ALL data items in the chart,

and sends a RendererChangeEvent to all registered listeners. Set this to

null if you prefer to set the generator on a “per series” basis.

To set a generator for a particular series:

public void setSeriesLabelGenerator(int series, CategoryItemLabelGenerator

generator);

Sets the item label generator for the specified series. If null, the baseIt-

emLabelGenerator will be used.

To make item labels visible for ALL series:

public void setItemLabelsVisible(boolean visible);

Sets the flag that controls whether or not item labels are visible for all

series drawn by this renderer. If you prefer to set the visibility on a per

series basis, you need to set this flag to null (see the next method).

public void setItemLabelsVisible(Boolean visible);

Sets the flag that controls whether or not item labels are visible for all

series drawn by this renderer. Set this to null if you prefer to set the

visibility on a per series basis.

To control the visibility of item labels for a particular series:

public void setSeriesItemLabelsVisible(int series, boolean visible);

Sets a flag that controls whether or not item labels are visible for the

specified series.

public void setSeriesItemLabelsVisible(int series, Boolean visible);

Sets a flag that controls whether or not item labels are visible for the spec-

ified series. If this is set to null, the baseItemLabelsVisible flag determines

the visibility.

The position of the item labels is set using the following methods (one applies
to positive data items and the other applies to negative data items):

public void setPositiveItemLabelPosition(ItemLabelPosition position);

Sets the position for labels for data items where the y-value is positive.

public void setNegativeItemLabelPosition(ItemLabelPosition position);

Sets the position for labels for data items where the y-value is negative.

30.10.4 Tooltips

A tool tip is a short text string that is displayed temporarily in a GUI while the
mouse pointer hovers over a particular item in a chart. Whenever the renderer
requires a text string for a tool tip, it calls the following method:

public CategoryToolTipGenerator getToolTipGenerator(int series, int item);

Returns the tool tip generator for the specified data item (possibly null).

You can register a generator with the renderer using:

public void setToolTipGenerator(CategoryToolTipGenerator generator);

Sets the tool tip generator that will be used for ALL data items in the

chart, and sends a RendererChangeEvent to all registered listeners.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 257

30.10.5 URL Generation

The ChartEntity objects created by the renderer for each data item can have a
URL associated with them. To provide flexibility, URLs are generated using a
mechanism that is very similar to the tooltips mechanism.

URLs are only used in HTML image maps at present. If you are
not generating HTML image maps, then you should leave the URL
generators set to null.

You can associate a CategoryURLGenerator with the renderer using this method:

public void setItemURLGenerator(CategoryURLGenerator generator);

Sets the generator that will be used to generate URLs for items in ALL

series.

It is possible to specify a different URL generator for each series by first setting
the generator in the previous method to null then using the following method
to assign a generator to each series independently:

public void setSeriesItemURLGenerator(int series, CategoryURLGenerator

generator);

Sets the generator for the items in a particular series.

In most cases, a single generator for all series will suffice.

30.10.6 Notes

Some points to note:

• classes that implement the CategoryItemRenderer interface are used by the
CategoryPlot class. They cannot be used by the XYPlot class (which uses
implementations of the XYItemRenderer interface).

See Also
CategoryPlot, AbstractCategoryItemRenderer.

30.11 CategoryItemRendererState

30.11.1 Overview

This class records state information for a CategoryItemRenderer during the pro-
cess of drawing a chart.

Recall that the plot uses a renderer to draw the individual data items in a chart.
In the plot’s render() method, a call is made to the renderer’s initialise()

method, which returns a state object. Subsequently, for every call the plot
makes to the renderer’s drawItem() method, it passes in the same state object
(which can be updated with new state information during the rendering).

This scheme is designed to allow two or more different threads to use a single
renderer to draw a chart to different output targets simultaneously.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 258

30.12 ClusteredXYBarRenderer

30.12.1 Overview

An XY bar renderer draws items from an IntervalXYDataset in the form of bars.

This renderer is designed to work with an XYPlot.

30.12.2 Constructors

The only constructor takes no arguments.

30.12.3 Methods

The drawItem() method handles the rendering of a single item for the plot.

30.12.4 Notes

This renderer casts the dataset to IntervalXYDataset, so you should ensure that
the plot is supplied with the correct type of data. It would probably be a good

idea to merge this class with the XYBarRenderer class, but this hasn’t been done
yet.

30.13 DefaultPolarItemRenderer

30.13.1 Overview

A default renderer for use by the PolarPlot class (implements the PolarItemRenderer
interface).

30.14 GanttRenderer

30.14.1 Overview

A renderer that is used to draw simple Gantt charts—an example is shown in
figure 30.10.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 259

Figure 30.10: A Gantt chart

The renderer is used with the CategoryPlot class and accesses data via the
GanttCategoryDataset interface.

30.14.2 Methods

The renderer can highlight the “percentage complete” for a task, provided that
this information is specified in the dataset. The colors used for this indicator
are set with the following methods:

public void setCompletePaint(Paint paint);

Sets the Paint used to draw the portion of the task that is completed and

sends a RendererChangeEvent to all registered listeners.

public void setIncompletePaint(Paint paint);

Sets the Paint used to draw the portion of the task that is not yet com-

pleted and sends a RendererChangeEvent to all registered listeners.

The width of the “percentage complete” indicator can be controlled by speci-
fying the start and end percentage values relative to the width (not length!) of
the task bars:

public void setStartPercent(double percent);

Sets the start position for the indicator as a percentage of the width of

the task bar (for example, 0.30 is thirty percent)

public void setEndPercent(double percent);

Sets the end position for the indicator as a percentage of the width of the

task bar (for example, 0.70 is seventy percent)

As an example, by setting the start and end percentages in the above methods
to 0.30 and 0.70 (say), the middle forty percent of the task bar is occupied by
the “percentage complete” indicator.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 260

30.14.3 Notes

Some points to note:

• the GanttDemo1.java and GanttDemo2.java applications (included in the
JFreeChart distribution) provide examples of this renderer being used.

30.15 HighLow

30.15.1 Overview

Represents one item used by a HighLowRenderer during the rendering process.

30.16 HighLowRenderer

30.16.1 Overview

A high-low renderer draws each item in an XYDataset using lines to mark the
“high-low” range for a trading period, plus small marks to indicate the “open”
and “close” values.

Figure 30.11: A chart that uses a HighLowRenderer

This renderer is designed for use with the XYPlot class. It requires a HighLowDataset.

30.16.2 Constructors

To create a new renderer:

public HighLowRenderer();

Creates a new renderer.

30.16.3 Methods

Implements the drawItem() method defined in the XYItemRenderer interface.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 261

30.16.4 Notes

This renderer requires the dataset to be an instance of HighLowDataset.

The createHighLowChart() method in the ChartFactory class makes use of this
renderer.

30.17 IntervalBarRenderer

30.17.1 Overview

A renderer that draws bars to represent items from an IntervalCategoryDataset.

Figure 30.12: A chart that uses an IntervalBarRenderer

30.17.2 Notes

Some points to note:

• the IntervalCategoryItemLabelGenerator can be used to generate item la-
bels (including tooltips) with this renderer.

See Also
GanttRenderer.

30.18 LevelRenderer

30.18.1 Overview

A renderer that draws horizontal lines to represent items from an CategoryDataset.
The lines occupy the same width along the axis that a bar drawn by the
BarRenderer class would occupy.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 262

Figure 30.13: A chart that uses a LevelRenderer

30.18.2 Notes

The OverlaidBarChartDemo2 application (included in the JFreeChart distribu-
tion) provides a demo of this renderer.

30.19 LineAndShapeRenderer

30.19.1 Overview

A line and shape renderer displays items in a CategoryDataset by drawing a
shape at each data point, or connecting data points with straight lines, or both.

This renderer is designed for use with the CategoryPlot class.

30.19.2 Constructors

The default constructor creates a renderer that draws both shapes and lines:

public LineAndShapeRenderer();

Creates a new renderer that draws both shapes and lines.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 263

The other constructor allows you to specify the type of renderer:

public LineAndShapeRenderer(int type);

Creates a new renderer of the specified type. Use one of the constants

defined by this class: SHAPES, LINES, or SHAPES AND LINES.

30.19.3 Methods

To control the drawing of lines between data points:

public void setDrawLines(boolean draw);

Sets a flag that controls whether or not lines are drawn between data

points. Notes that no line is drawn if a null data values is encountered.

To control the drawing of shapes at each data point:

public void setDrawShapes(boolean draw);

Sets the flag that controls whether or not shapes are drawn at each data

point.

If shapes are drawn at each data point, you can set a flag that controls whether
or not the shapes are filled. The following two methods allow you to specify the
setting for ALL series:

public void setShapesFilled(boolean filled);

Sets a flag that controls whether or not shapes are filled for ALL series.

public void setShapesFilled(Boolean filled);

As above, but using a Boolean object. This allows the flag to be set to

null, which means that the per series settings will apply.

This class implements the drawCategoryItem(...) method that is defined in
the CategoryItemRenderer interface.

30.19.4 Equals, Cloning and Serialization

This renderer overrides the equals() method, and is Cloneable and Serializable.
For general issues about these methods, refer to section 30.3.5.

30.20 MinMaxCategoryRenderer

30.20.1 Overview

A renderer that draws minimum and maximum markers.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 264

30.21 NoOutlierException

30.21.1 Overview

An exception that can be generated by the classes used for creating box-and-
whisker plots.

30.22 Outlier

30.22.1 Overview

Represents an outlier in a box-and-whisker plot.

30.23 OutlierList

30.23.1 Overview

Represents a collection of outliers for a single item in a box-and-whisker plot.

30.24 OutlierListCollection

30.24.1 Overview

Represents a collection of outlier lists for a box-and-whisker plot.

30.25 PolarItemRenderer

30.25.1 Overview

A renderer that is used by the PolarPlot class. The DefaultPolarItemRenderer

class provides an implementation of this interface.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 265

30.25.2 Change Listeners

You can register any number of RendererChangeListener objects with the ren-
derer and they will receive notification of any changes to the renderer:

public void addChangeListener(RendererChangeListener listener);

Registers a listener with the renderer.

public void removeChangeListener(RendererChangeListener listener);

Deregisters a listener so that it no longer receives change notifications

from the renderer.

30.25.3 Methods

To create a legend item for a series (this method is called by the plot):

public LegendItem getLegendItem(int series);

Creates a legend item for the specified series.

To draw the representation of a series:

public void drawSeries(...);

Renders the specified series.

30.26 RangeType

30.26.1 Overview

The range type relates to the way a renderer presents data, and is used when
calculating the “auto-range” for an axis (that is, the range that will cause all
the data to appear on a chart). There are two range types defined: STANDARD

and STACKED.

In the standard case, a renderer just plots the values, so the maximum and
minimum values in the dataset define the range of values.

An alternative treatment, used for example by the StackedBarRenderer class, is
to stack values within a category. In this case, it is the maximum and minimum
of the sum of the values within a category that determine the range of values.

30.26.2 Notes

Every CategoryItemRenderer returns its range type via the getRangeType() method.

30.27 StackedAreaRenderer

30.27.1 Overview

A stacked area renderer that draws items from a CategoryDataset.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 266

30.28 StackedBarRenderer

30.28.1 Overview

A stacked bar renderer draws each item in a CategoryDataset in the form of
“stacked” bars. For example:

Here is another example, this time with a horizontal orientation:

This renderer is designed for use with the CategoryPlot class.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 267

30.28.2 Methods

This class implements the methods in the CategoryItemRenderer interface.

30.29 StackedBarRenderer3D

30.29.1 Overview

A stacked bar renderer (3D) draws items from a CategoryDataset in the form of
“stacked” bars with a 3D effect.

This renderer is designed for use with the CategoryPlot class.

30.29.2 Methods

This class implements the methods in the CategoryItemRenderer interface.

See Also
StackedBarRenderer.

30.30 StackedXYAreaRenderer

30.30.1 Overview

A stacked area renderer that draws items from a TableXYDataset. An example
is shown in figure 30.14.

30.30.2 Notes

There is a demo (StackedXYAreaChartDemo1.java) that uses this renderer in-
cluded in the JFreeChart distribution (in the src/org/jfree/chart/demo direc-
tory).

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 268

Figure 30.14: A chart created using StackedXYAreaRenderer

30.31 StandardXYItemRenderer

30.31.1 Overview

A standard renderer for the XYPlot class. This renderer represents data by
drawing lines between (x, y) data points. There is also a mechanism for drawing
shapes or images at each at each (x, y) data point (with or without the lines).

30.31.2 Constructors

To create a StandardXYItemRenderer:

public StandardXYItemRenderer(int type);

Creates a new renderer. The type argument should be one of: LINES,

SHAPES or SHAPES AND LINES.

30.31.3 Methods

To control whether or not the renderer draws lines between data points:

public void setPlotLines(boolean flag);

Sets the flag that controls whether or not lines are plotted between data

points. The stroke and paint used for the lines is determined by the plot,

per series.

To control whether or not the renderer draws shapes at each data point:

public void setPlotShapes(boolean flag);

Sets the flag that controls whether or not shapes are plotted at each data
point.

For each item, the shape to be plotted is obtained from the getShape()

method which, unless overridden, delegates to the plot’s getShape() method

(which will return a different shape for each series).

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 269

When the renderer draws each shape, it can draw an outline of the shape, or it
can fill the shape with a solid color. This is controlled by a protected method:

protected boolean isShapeFilled(...);

Returns a flag that controls whether or not the shape is filled.

By default, this method returns the value from the getDefaultShapeFilled()

method, but you can override the method in a subclass to customise the

behaviour.

30.31.4 Notes

This class implements the XYItemRenderer interface.

The XYPlot class will use an instance of this class as its default renderer.

30.32 StatisticalBarRenderer

30.32.1 Overview

A statistical bar renderer draws items from a StatisticalCategoryDataset in the
form of bars with a line indicating the standard deviation.

This renderer is designed for use with the CategoryPlot class.

30.32.2 Notes

This class implements the CategoryItemRenderer interface.

30.33 WindItemRenderer

30.33.1 Overview

A renderer that XYPlot uses to draw wind plots.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 270

Figure 30.15: A sample chart using WindItemRenderer

30.34 XYAreaRenderer

30.34.1 Overview

An XY area renderer draws each item in an XYDataset using a polygon that fills
the area between the x-axis and the data point:

This renderer is designed to be used with the XYPlot class.

30.34.2 Constructors

The default constructor sets up the renderer to draw area charts:

public XYAreaRenderer();

Creates a new renderer.

You can change the appearance of the chart by specifying the type:

public XYAreaRenderer(int type);

Creates a new XYAreaRenderer using one of the following types: SHAPES,

LINES, SHAPES AND LINES, AREA, AREA AND SHAPES.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 271

30.34.3 Notes

This class extends AbstractXYItemRenderer.

You can see from this second constructor that this class uses code copied from
the StandardXYItemRenderer class, and that some additional work is required to
eliminate the duplication. One option (still under consideration) for a future
version of JFreeChart is to merge the two classes.

See Also
AreaRenderer.

30.35 XYBarRenderer

30.35.1 Overview

An XY bar renderer draws items from an IntervalXYDataset in the form of bars.

This renderer is designed to work with an XYPlot.

30.35.2 Constructors

The only constructor takes no arguments.

30.35.3 Methods

The drawItem(...) method handles the rendering of a single item for the plot.

30.35.4 Notes

This renderer casts the dataset to IntervalXYDataset, so you should ensure that
the plot is supplied with the correct type of data.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 272

30.36 XYBoxAndWhiskerRenderer

30.36.1 Overview

A renderer that is used to create a box-and-whisker plot.

30.36.2 Notes

The BoxAndWhiskerDemo application, included in the JFreeChart distribution,
provides an example of this type of plot.

30.37 XYBubbleRenderer

30.37.1 Overview

An XY bubble renderer displays items from an XYZDataset by drawing a bubble
at each (x, y) point.

30.37.2 Notes

Some notes:

• this class implements the XYItemRenderer interface and extends the AbstractXYItemRenderer
class.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 273

• the BubblePlotDemo application (included in the JFreeChart distribution)
provides a demonstration of this renderer.

30.38 XYDifferenceRenderer

30.38.1 Overview

A renderer that displays the difference between two series.

The DifferenceChartDemo.java application (included in the JFreeChart dis-
tribution) provides an example of this renderer being used.

30.39 XYDotRenderer

30.39.1 Overview

A renderer that can be used by an XYPlot to display items from an XYDataset.
The renderer draws a pixel-sized dot at each (x, y) point—see figure 30.16 for
an example.

Figure 30.16: A chart generated with an XYDotRenderer.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 274

This class implements the XYItemRenderer interface.

30.39.2 Constructor

The default constructor is the only constructor available:

public XYDotRenderer();

Creates a new renderer.

30.39.3 Methods

This class implements the drawItem() method defined in the XYItemRenderer

interface. This method is usually called by the plot, you don’t need to call it
yourself. Many other methods are inherited from the AbstractXYItemRenderer

base class.

30.39.4 Notes

Some points to note:

• this class extends the AbstractXYItemRenderer class;

• tooltips, item labels and URLs are NOT generated by this renderer (these
features may be added in a future release);

• this class implements the PublicCloneable interface;

• instances of this class are Serializable;

• a demo application (ScatterPlotDemo4.java) is included in the JFreeChart
distribution (in the src/org/jfree/chart/demo directory).

30.40 XYItemRenderer

30.40.1 Overview

An XY item renderer is a plug-in class that works with an XYPlot and assumes
responsibility for drawing individual data items in a chart. This interface defines
the methods that every renderer must support.

A range of different renderers are supplied in the JFreeChart distribution. Fig-
ure 30.17 shows the class hierarchy.

As well as drawing the visual representation of a data item, the renderer is also
responsible for generating tooltips (for charts displayed in a ChartPanel) and
URL references for charts displayed in an HTML image map.

A summary of the available renderers is given in Table 30.4.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 275

AbstractXYItemRenderer

StandardXYItemRenderer

AreaXYItemRenderer

CandleStickRenderer

HighLowRenderer

SignalRenderer

XYBarRenderer

XYDifferenceRenderer

YIntervalRenderer

XYItemRenderer

DefaultXYItemRenderer

XYStepRenderer

XYDotRenderer

XYBubbleRenderer

ClusteredXYBarRenderer

WindItemRenderer

Figure 30.17: Renderer hierarchy

30.40.2 Methods

The initialise() method is called once at the beginning of the chart drawing
process, and gives the renderer a chance to initialise itself:

public void initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset data, ChartRenderingInfo info);

Initialises the renderer. If possible, a renderer will pre-calculate any values

that help to improve the performance of the drawItem() method.

Class: Description:

HighLowRenderer High-low-open-close charts.
StandardXYItemRenderer Line charts and scatter plots.
WindItemRenderer Wind charts.
XYAreaRenderer Area charts.
XYBarRenderer Bar charts with numerical domain values.
XYBubbleRenderer Bubble charts.
XYDifferenceRenderer Difference charts.
XYDotRenderer Scatter plots.
XYStepRenderer Step charts.
YIntervalRenderer Interval charts.

Table 30.4: Classes that implement the XYItemRenderer interface

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 276

The drawItem() method is responsible for drawing some representation of a
particular data item within a plot:

public void drawItem(Graphics2D g2, Rectangle2D dataArea,

ChartRenderingInfo info, XYPlot plot,

ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset data, int series, int item, CrosshairInfo info);

Draws a single data item on behalf of XYPlot.

You can set your own tooltip generator and URL generator for the renderer.

30.40.3 Notes

Some renderers require the a dataset that is a specific extension of XYDataset.
For example, the HighLowRenderer requires a HighLowDataset.

See Also
AbstractXYItemRenderer, XYPlot.

30.41 XYLineAndShapeRenderer

30.41.1 Overview

A renderer that displays items from an XYDataset by drawing a line between
each (x, y) point and overlaying a shape at each (x, y) point. One of the key
features of this renderer is that it allows you to control on a per series basis
whether:

• lines are drawn between the data points;

• shapes are drawn at each data point;

• shapes are filled or not filled;

This class implements the XYItemRenderer interface and extends the AbstractXYItemRenderer
class.

30.41.2 Methods

To control whether or not lines are displayed for a series, use the following
method:

public void setSeriesLinesVisible(int series, boolean visible);

Sets a flag that controls whether or not lines are visible for the specified

series.

The flags are stored as Boolean objects—if the flag is null for a series, then the
default value is returned. You can set the default value using:

public void setDefaultLinesVisible(boolean flag);

Sets the default flag that controls whether or not the renderer draws lines

between the (x, y) items in a series.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 277

It is recommended that you set the default value as required first, and then
override the setting on a per series basis. If you have set the flag for a series,
but later want to restore the default value, note that there is a version of the
setSeriesLinesVisible() method that accepts a Boolean flag which you can set
to null.

The settings that control whether or not shapes are drawn and filled follow a
very similar pattern. There are default values that can be overridden on a per
series basis.

30.41.3 Notes

Some points to note:

• the renderer makes two passes through the data. In the first pass, the
lines connecting the (x, y) data points are drawn. In the second pass, the
shapes at each data point are drawn. In this way, the lines appear to be
“under” the shapes, which makes for a better presentation;

• there is some overlap between this class and the StandardXYItemRenderer

class.

30.42 XYStepRenderer

30.42.1 Overview

An XY step renderer draws items from an XYDataset using “stepped” lines to
connect each (x, y) point. This renderer is designed for use with the XYPlot

Figure 30.18: A sample chart using XYStepRenderer

class.

30.42.2 Usage

A demo (XYStepChartDemo.java) is included in the JFreeChart distribution (in
the src/org/jfree/chart/demo directory).

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.RENDERER 278

30.43 YIntervalRenderer

30.43.1 Overview

An XYItemRenderer that draws lines between the starting and ending y values
from an IntervalXYDataset.

Figure 30.19: A sample chart using YIntervalRenderer

This renderer is designed for use with the XYPlot class.

30.43.2 Notes

The YIntervalChartDemo class in the org.jfree.chart.demo package provides an
example of this renderer in use.

Chapter 31

Package:
org.jfree.chart.servlet

31.1 Overview

This package contains servlet utility classes developed for JFreeChart by Richard
Atkinson. An excellent demo for these classes can be found at:

http://homepage.ntlworld.com/richard c atkinson/jfreechart

31.2 ChartDeleter

31.2.1 Overview

A utility class that maintains a list of temporary files (chart images created by
the ServletUtilities class) and deletes them at the expiry of an HttpSession.

31.3 DisplayChart

31.3.1 Overview

A servlet that displays a chart image from the temporary directory.

31.4 ServletUtilities

31.4.1 Overview

A utility class for performing operations in a servlet environment.

31.4.2 Methods

To save a chart in the temporary directory:

279

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.SERVLET 280

public static String saveChartAsPNG(JFreeChart chart, int width, int height,

ChartRenderingInfo info, HttpSession session);

Saves a chart to a PNG image file in the temporary directory. The file

is registered with a ChartDeleter instance that is linked to the speci-

fied session—this means the image file will be deleted when the session

expires. Note that the temporary file name prefix can be set using the

setTempFilePrefix() method.

Chapter 32

Package:
org.jfree.chart.title

32.1 Overview

This package contains classes that are used as chart titles and/or subtitles. The
JFreeChart class maintains one chart title (an instance of TextTitle) plus a list
of subtitles (which can be any subclass of Title).

When a chart is drawn, the title and/or subtitles will “grab” a rectangular
section of the chart area in which to draw themselves. This reduces the amount
of space for plotting data, so although there is no limit to the number of subtitles
you can add to a chart, for practical reasons you need to keep the number
reasonably low.

32.2 Events

When you add a Title to a JFreeChart instance, the chart registers itself as
a TitleChangeListener. Any subsequent changes to the title will result in a
TitleChangeEvent being sent to the chart. The chart then passes the event on to
all its registered ChartChangeListeners. If the chart is displayed in a ChartPanel,
the panel will receive a ChartChangeEvent and respond by repainting the chart.

32.3 DateTitle

32.3.1 Overview

A chart title that displays the current date (extends TextTitle). This class
would normally be used to add the date to a chart as a subtitle.

32.3.2 Constructor

To create a new date title for the default locale:

281

CHAPTER 32. PACKAGE: ORG.JFREE.CHART.TITLE 282

public DateTitle(int style);

Creates a new date title with the specified style (defined by the DateFormat

class). The title position is, by default, the lower right corner of the chart.

32.3.3 Methods

To set the date format:

public void setDateFormat(int style, Locale locale);

Sets the date format to the given style and locale (the style is defined by

constants in the DateFormat class).

Other methods are inherited from the TextTitle class.

32.4 ImageTitle

32.4.1 Overview

A chart title that displays an image (extends Title).

32.4.2 Constructors

To create an image title:

public ImageTitle(Image image);

Creates an image title. By default, the title is positioned at the top of the

chart, and the image is centered horizontally within the available space.

Methods

To change the image displayed by the image title:

public void setImage(Image image);

Sets the image for the title and sends a TitleChangeEvent to all registered

listeners.

Other methods are inherited from the Title class.

32.5 LegendTitle

32.5.1 Overview

This class is ultimately intended to make the legend behave in the same way as
all other chart titles, but is currently incomplete.

32.6 TextTitle

32.6.1 Overview

A chart title that displays a text string (extends Title).

CHAPTER 32. PACKAGE: ORG.JFREE.CHART.TITLE 283

32.6.2 Constructors

To create a text title for a chart:

public TextTitle(String text);

Creates a chart title using the specified text. By default, the title will be

positioned at the top of the chart, centered horizontally. The font defaults

to SansSerif, 12pt bold and the color defaults to black.

There are other constructors that provide more control over the attributes of
the TextTitle.

32.6.3 Methods

To set the title string:

public void setText(String text);

Sets the text for the title and sends a TitleChangeEvent to all registered

listeners.

To set the font for the title:

public void setFont(Font font);

Sets the font for the title and sends a TitleChangeEvent to all registered

listeners.

To set the color of the title:

public void setPaint(Paint paint);

Sets the paint used to display the title text and sends a TitleChangeEvent

to all registered listeners.

The following method is called by the JFreeChart class to draw the chart title:

public void draw(Graphics2D g2, Rectangle2D area);

Draws the title onto a graphics device, to occupy the specified area.

There are additional methods inherited from the Title class.

32.6.4 Notes

The title string can contain any characters from the Unicode character set.
However, you need to ensure that the Font that you use to display the title
actually supports the characters you want to display. Most fonts do not support
the full range of Unicode characters, but this website has some information
about fonts that you might be able to use:

http://www.ccss.de/slovo/unifonts.htm

32.7 Title

32.7.1 Overview

The base class for all chart titles. Several concrete sub-classes have been imple-
mented, including: TextTitle, DateTitle and ImageTitle.

CHAPTER 32. PACKAGE: ORG.JFREE.CHART.TITLE 284

32.7.2 Constructors

This is an abstract class, so you won’t instantiate it directly. However, the
following constructor is available for subclasses to use:

protected Title(RectangleEdge position,

HorizontalAlignment horizontalAlignment, VerticalAlignment verticalAlignment,

Spacer spacer);

Creates a new Title with the specified position, alignment and spacing.

32.7.3 Methods

You can set the position for a title using the RectangleEdge class, which defines
an enumeration with the values TOP, BOTTOM, LEFT and RIGHT:

public void setPosition(RectangleEdge position);

Sets the position for the title (null not permitted). Following the change,

a TitleChangeEvent is sent to all registered listeners (the JFreeChart

object that the title belongs to is registered by default).

Within the rectangular area allocated for the title, you can specify the horizontal
alignment:

public void setHorizontalAlignment(HorizontalAlignment alignment);

Sets the horizontal alignment for the title (null not permitted). Following

the change, a TitleChangeEvent is sent to all registered listeners.

Similarly, you can specify the vertical alignment:

public void setVerticalAlignment(VerticalAlignment alignment);

Sets the vertical alignment for the title (null not permitted). Following

the change, a TitleChangeEvent is sent to all registered listeners.

To control the space around the outside of the title, you can use a Spacer:

public void setSpacer(Spacer spacer);

Sets the spacer object for the title and sends a TitleChangeEvent to all

registered listeners.

32.7.4 Notes

Some points to note:

• the original version of this class was written by David Berry. I’ve since
made a few changes to the original version, but the idea for allowing a
chart to have multiple titles came from David.

• the JFreeChart class implements the TitleChangeListener interface, and
receives notification whenever a chart title is changed (this, in turn, trig-
gers a ChartChangeEvent which usually results in the chart being redrawn).

• this class implements Cloneable, which is useful when editing title prop-
erties because you can edit a copy of the original, and then either apply
the changes or cancel the changes.

Chapter 33

Package: org.jfree.chart.ui

33.1 Introduction

This package contains user interface classes that can be used to modify chart
properties. These classes are optional—they are used in the demonstration
application, but you do not need to include this package in your own projects
if you do not want to.

33.1.1 AxisPropertyEditPanel

33.1.2 Overview

A panel for editing the properties of an axis.

The code for this panel is out of date. Many features are missing, and some of

285

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.UI 286

the existing features may not work. It is planned to rewrite the property editors
before JFreeChart 1.0.0 is released.

33.2 ChartPropertyEditPanel

33.2.1 Overview

A panel that displays all the properties of a chart, and allows the user to edit
the properties. The panel uses a JTabbedPane to display four sub-panels:

• a TitlePropertyEditPanel;

• a LegendPropertyEditPanel;

• a PlotPropertyEditPanel;

• a panel containing “other” properties (such as the anti-alias setting and
the background paint for the chart).

The constructors for this class require a reference to a Dialog or a Frame.
Whichever one is specified is passed on to the TitlePropertyEditPanel and is
used if and when a sub-dialog is required for editing titles.

33.3 ColorBarPropertyEditPanel

33.3.1 Overview

A panel for editing the properties of a ColorBar.

33.4 ColorPalette

33.4.1 Overview

The abstract base class for the color palettes used by the ContourPlot class.

33.5 GreyPalette

33.5.1 Overview

A grey palette (extends ColorPalette).

33.6 LegendPropertyEditPanel

33.6.1 Overview

A panel for displaying and editing the properties of a chart legend.
The code for this panel is out of date. Many features are missing, and some of
the existing features may not work. It is planned to rewrite the property editors
before JFreeChart 1.0.0 is released.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.UI 287

Figure 33.1: The legend property editor

33.7 NumberAxisPropertyEditPanel

33.7.1 Overview

A panel for displaying and editing the properties of a NumberAxis.

33.8 PaletteChooserPanel

33.8.1 Overview

A panel for selecting a color palette.

33.9 PlotPropertyEditPanel

33.9.1 Overview

A panel for displaying and editing the properties of a plot.
The code for this panel is out of date. Many features are missing, and some of
the existing features may not work. It is planned to rewrite the property editors
before JFreeChart 1.0.0 is released.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.UI 288

Figure 33.2: The plot property editor

33.10 RainbowPalette

33.10.1 Overview

A rainbow palette (extends ColorPalette).

33.11 TitlePropertyEditPanel

33.11.1 Overview

A panel for displaying and editing the properties of a chart title. The code for
this panel is out of date. Many features are missing, and some of the existing
features may not work. It is planned to rewrite the property editors before
JFreeChart 1.0.0 is released.

Chapter 34

Package: org.jfree.chart.urls

34.1 Overview

This package contains support for URL generation for HTML image maps.
URLs are generated (if they are required) at the point that a renderer draws
the visual representation of a data item. The renderer queries a URL generator
via one of the following interfaces:

• CategoryURLGenerator;

• PieURLGenerator;

• XYURLGenerator;

• XYZURLGenerator;

JFreeChart provides standard implementations for each of these interfaces. In
addition, you can easily write your own implementation and take full control of
the URLs that are generated within your image map.

34.2 CategoryURLGenerator

34.2.1 Overview

A category URL generator is used to generate a URL for each data item in a
CategoryPlot. The generator is associated with the plot’s renderer (an instance
of CategoryItemRenderer) and the URLs are used when you create an HTML
image map for a chart image.

34.2.2 Methods

This method returns a URL for a specific data item:

public String generateURL(CategoryDataset data, int series, int category);

Returns a URL for the specified data item. The series is the row index,

and the category is the column index for the dataset.

289

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.URLS 290

34.2.3 Notes

Some points to note:

• the StandardCategoryURLGenerator class is the only implementation of this
interface provided in the JFreeChart class library, but you can add your
own implementation(s);

• the ChartUtilities class contains code for writing HTML image maps.

34.3 CustomXYURLGenerator

34.3.1 Overview

A URL generator that uses custom strings as the URL for each item in an
XYDataset. This class implements the XYURLGenerator interface.

34.4 PieURLGenerator

34.4.1 Overview

A pie URL generator is used by a PiePlot to generate URLs for use in HTML
image maps.

34.4.2 Methods

This method returns a URL for a specific data item:

public String generateURL(PieDataset dataset, Comparable key, int pieIndex);

Returns a URL for the specified data item. The key is the key for the cur-

rent section within the dataset, and the pieIndex is used when multiple

pie plots are included within one chart.

34.4.3 Notes

Some points to note:

• the StandardPieURLGenerator class is the only implementation of this in-
terface provided in the JFreeChart class library.

• the ChartUtilities class contains methods for writing HTML image maps.

34.5 StandardCategoryURLGenerator

34.5.1 Overview

A class that generates a URL for a data item in a CategoryPlot. By default,
this generator will create URLs in the format:

index.html?series=<serieskey> &category=<categorykey>

This class implements the CategoryURLGenerator interface.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.URLS 291

34.5.2 Usage

If you create a chart using the ChartFactory class, you can ask for a default
URL generator to be installed in the renderer just by setting the urls flag (a
parameter for most chart creation methods) to true.

Alternatively, you can create a new generator and register it with the renderer
(replacing the existing generator, if there is one) as follows:

CategoryPlot plot = chart.getCategoryPlot();
CategoryItemRenderer renderer = plot.getRenderer();
CategoryURLGenerator generator = new StandardCategoryURLGenerator(

‘‘index.html’’,
‘‘series’’,
‘‘category’’

);
renderer.setItemURLGenerator(generator);

Set the URL generator to null if you do not require URLs to be generated.

34.5.3 Constructors

To create a new generator:

public StandardCategoryURLGenerator(String prefix,

String seriesParameterName, String categoryParameterName);

Creates a new generator with the specified attributes.

34.5.4 Methods

The following method is called by the renderer to generator the URL for a single
data item in a chart:

public String generateURL(CategoryDataset data, int series, int category)

Returns a string that will be used as the URL for the specified data item.

34.5.5 Notes

Some points to note:

• this class is the only implementation of the CategoryURLGenerator inter-
face that is provided by JFreeChart, but you can easily write your own
implementation.

34.6 StandardPieURLGenerator

34.6.1 Overview

A default URL generator for use when creating HTML image maps for pie
charts. This class implements the PieURLGenerator interface.

34.6.2 Constructor

To create a new generator:

public StandardPieURLGenerator(String prefix, String categoryParameterName);

Creates a new generator.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.URLS 292

34.7 StandardXYURLGenerator

34.7.1 Overview

A default URL generator for creating HTML image maps. This class implements
the XYURLGenerator interface.

34.8 StandardXYZURLGenerator

34.8.1 Overview

A URL generator that creates URLs for the items in an XYZDataset.

34.9 TimeSeriesURLGenerator

34.9.1 Overview

A URL generator that creates URLs for the items in an XYDataset. The x-values
from the dataset are evaluated as “milliseconds since midnight 1-Jan-1970” (as
for java.util.Date) and converted to date format.

34.10 XYURLGenerator

34.10.1 Overview

An XY URL generator is used by a XYItemRenderer to generate URLs for use
in HTML image maps.

34.10.2 Methods

This method returns a URL for a specific data item:

public String generateURL(XYDataset data, int series, int item);

Returns a URL for the specified data item.

34.10.3 Notes

Some points to note:

• the StandardXYURLGenerator class is the only implementation of this inter-
face provided in the JFreeChart class library.

• the ChartUtilities class contains methods for writing HTML image maps.

34.11 XYZURLGenerator

34.11.1 Overview

An XYZ URL generator is used by a XYItemRenderer to generate URLs for use
in HTML image maps.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.URLS 293

34.11.2 Methods

This method returns a URL for a specific data item:

public String generateURL(XYDataset data, int series, int item);

Returns a URL for the specified data item.

34.11.3 Notes

Some points to note:

• the StandardXYURLGenerator class is the only implementation of this inter-
face provided in the JFreeChart class library.

• the ChartUtilities class contains methods for writing HTML image maps.

Chapter 35

Package: org.jfree.data

35.1 Introduction

This package contains interfaces and classes for the datasets used by JFreeChart.

A design principle in JFreeChart is that there should be a clear separation
between the data (as represented by the classes in this package) and its presen-
tation (controlled by the plot and renderer classes defined elsewhere). For this
reason, you will not find methods or attributes that relate to presentation (for
example, series colors or line styles) in the dataset classes.

35.2 AbstractDataset

35.2.1 Overview

A useful base class for implementing the Dataset interface (or extensions). This
class provides a default implementation of the change listener mechanism.

35.2.2 Constructors

The default constructor:

protected AbstractDataset();

Allocates storage for the registered change listeners.

35.2.3 Methods

To register a change listener:

public void addChangeListener(DatasetChangeListener listener);

Registers a change listener with the dataset. The listener will be notified

whenever the dataset changes, via a call to the datasetChanged() method.

To deregister a change listener:

public void removeChangeListener(DatasetChangeListener listener);

Deregisters a change listener. The listener will be no longer be notified

whenever the dataset changes.

294

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 295

35.2.4 Notes

In most cases, JFreeChart will automatically register listeners for you, and up-
date charts whenever the data changes.

You can implement a dataset without subclassing AbstractDataset. This class
is provided simply for convenience to save you having to implement your own
change listener mechanism.

If you write your own class that extends AbstractDataset, you need to remember
to call fireDatasetChanged() whenever the data in your class is modified.

See Also
Dataset, DatasetChangeListener, AbstractSeriesDataset.

35.3 AbstractSeriesDataset

35.3.1 Overview

A useful base class for implementing the SeriesDataset interface (or extensions).
This class extends AbstractDataset.

35.3.2 Constructors

This class is never instantiated directly, so the constructor is protected:

protected AbstractSeriesDataset();

Simply calls the constructor of the superclass.

35.3.3 Methods

This method receives series change notifications:

public void seriesChanged(SeriesChangeEvent event);

The default behaviour provided by this method is to raise a DatasetChangeEvent

every time this method is called.

35.3.4 Notes

This class is provided simply for convenience, you are not required to use it
when developing your own dataset classes.

See Also
Dataset.

35.4 CategoryDataset

35.4.1 Overview

A category dataset is a table of values that can be accessed using row and column
keys. This type of dataset is most commonly used to create bar charts.

This interface extends the KeyedValues2D and Dataset interfaces.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 296

35.4.2 Methods

This interface adds no additional methods to those defined in the KeyedValues2D

and Dataset interfaces.

35.4.3 Notes

Some points to note:

• this interface provides the methods required for reading the dataset, not
for updating it. Classes that implement this interface may be “read-only”,
or they may provide “write” access.

• a useful implementation of this interface is provided by the Default-
CategoryDataset class.

• the CategoryToPieDataset class converts one row or column of the dataset
into a PieDataset.

• you can read a CategoryDataset from a file (in a prespecified XML for-
mat) using the DatasetReader class.

See Also
CategoryPlot.

35.5 CategoryToPieDataset

35.5.1 Overview

A utility class that presents one row or column of data from a CategoryDataset

via the PieDataset interface.

35.5.2 Constructor

To create a new instance:

public CategoryToPieDataset(CategoryDataset source, TableOrder extract,

int index);

Creates a new pie dataset based on the source. The extract argument

specifies whether the dataset uses a row or column from the source dataset

(use TableOrder.BY ROW or TableOrder.BY COLUMN), and the index con-

trols which row or column is selected.

35.5.3 Notes

This class registers itself with the underlying CategoryDataset to receive change
events. Whenever the underlying dataset is changed, a new DatasetChangeEvent

is triggered and sent to all registered listeners.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 297

35.6 CombinationDataset

35.6.1 Overview

An interface that defines the methods that should be implemented by a combi-
nation dataset.

35.6.2 Notes

This interface is implemented by the CombinedDataset class.

35.7 CombinedDataset

35.7.1 Overview

A dataset that can combine other datasets.

Notes

The combined charts feature, originally developed by Bill Kelemen, has been
restructured so that it is no longer necessary to use this class. However, you
can still use this class if you need to construct a dataset that is the union of
existing datasets.

See Also
CombinationDataset.

35.8 ContourDataset

35.8.1 Overview

The dataset used by the ContourPlot class.

35.8.2 Methods

This interface defines the following methods in addition to those inherited from
the XYZDataset interface:

public double getMinZValue();

Returns the minimum z-value.

public double getMaxZValue();

Returns the maximum z-value.

public Number[] getXValues();

Returns an array containing all the x-values.

public Number[] getYValues();

Returns an array containing all the y-values.

public Number[] getZValues();

Returns an array containing all the z-values.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 298

public int[] indexX();

Returns the index values.

public int[] getXIndices();

Returns an int array contain the index into the x values.

public Range getZValueRange(Range x, Range y);

Returns the maximum z-value for the specified visible region of the plot.

public boolean isDateAxis(int axisNumber);

Returns true if the values for the specified axis are dates (where axisNumber

is defined as 0-x, 1-y, and 2-z).

See Also
DefaultContourDataset.

35.9 Dataset

35.9.1 Overview

The base interface for datasets. Not useful in its own right, this interface is
further extended by PieDataset, CategoryDataset and SeriesDataset.

35.9.2 Methods

This base interface defines two methods for registering change listeners:

public void addChangeListener(DatasetChangeListener listener);

Registers a change listener with the dataset. The listener will be notified

whenever the dataset changes.

public void removeChangeListener(DatasetChangeListener listener);

Deregisters a change listener.

35.9.3 Notes

This interface is not intended to be used directly, you should use an extension
of this interface such as PieDataset, CategoryDataset or XYDataset.

35.10 DatasetChangeEvent

35.10.1 Overview

An event that is used to provide information about changes to datasets.

35.10.2 Constructors

The standard constructor:

public DatasetChangeEvent(Object source, Dataset dataset);

Creates a new event. Usually the source is the dataset, but this is not

guaranteed.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 299

35.10.3 Methods

To get a reference to the Dataset that generated the event:

public Dataset getDataset();

Returns the dataset which generated the event.

35.10.4 Notes

The current implementation simply indicates that some change has been made
to the dataset. In the future, this class may carry more information about the
change.

See Also
DatasetChangeListener.

35.11 DatasetChangeListener

35.11.1 Overview

An interface through which dataset change event notifications are posted. If
a class needs to receive notification of changes to a dataset, then it should
implement this interface and register itself with the dataset.

35.11.2 Methods

The interface defines a single method:

public void datasetChanged(DatasetChangeEvent event);

Receives notification of a change to a dataset.

35.11.3 Notes

In JFreeChart, the Plot class implements this interface in order to receive noti-
fication of changes to the dataset.

See Also
DatasetChangeEvent.

35.12 DatasetGroup

35.12.1 Overview

A dataset group provides a mechanism for grouping related datasets. At present,
this is not used, but in the future it is likely that thread synchronisation will be
added to JFreeChart using dataset groups.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 300

35.13 DatasetUtilities

35.13.1 Overview

A collection of utility methods for working with datasets.

35.13.2 Maximum and Minimum Values

To get the minimum domain value in a dataset:

public static Number getMinimumDomainValue(Dataset data);

Returns the minimum domain value for the dataset. If the dataset im-

plements the DomainInfo interface, then this will be used to obtain the

minimum domain value. Otherwise, this method iterates through all of

the data.

To get the maximum domain value in a dataset:

public static Number getMaximumDomainValue(Dataset data);

Returns the maximum domain value for the dataset. If the dataset im-

plements the DomainInfo interface, then this will be used to obtain the

maximum domain value. Otherwise, this method iterates through all of

the data.

To get the minimum range value in a dataset:

public static Number getMinimumRangeValue(Dataset data);

Returns the minimum range value for the dataset. If the dataset im-

plements the RangeInfo interface, then this will be used to obtain the

minimum range value. Otherwise, this method iterates through all of the

data.

To get the maximum range value in a dataset:

public static Number getMaximumRangeValue(Dataset data);

Returns the maximum range value for the dataset. If the dataset im-

plements the RangeInfo interface, then this will be used to obtain the

maximum range value. Otherwise, this method iterates through all of the

data.

To get the minimum “stacked” range value in a CategoryDataset:

public static Number getMinimumStackedRangeValue(CategoryDataset data);

Returns the minimum stacked range value in a dataset.

To get the maximum “stacked” range value in a CategoryDataset:

public static Number getMaximumStackedRangeValue(CategoryDataset data);

Returns the maximum stacked range value in a dataset.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 301

35.13.3 Creating Datasets

To create a PieDataset from the data in one column of a CategoryDataset:

public static PieDataset createPieDatasetForColumn(CategoryDataset data,

Comparable columnKey);

Returns a pie dataset by taking all the values in the category dataset for

the specified column.

To create a PieDataset from the data in one row of a CategoryDataset:

public static PieDataset createPieDatasetForRow(CategoryDataset data, Comparable

rowKey);

Returns a pie dataset by taking all the values in the category dataset for

the specified series.

To create an XYDataset by sampling values from a Function2D:

public static XYDataset sampleFunction2D(Function2D f,

double start, double end, int samples, String seriesName);

Creates a new XYDataset by sampling values in a specified range for the

Function2D.

See Also
DomainInfo, RangeInfo.

35.14 DataUtilities

35.14.1 Overview

This class contains utility methods that relate to general data classes.

35.14.2 Methods

To calculate the cumulative percentage values from a collection of data values:

public static KeyedValues getCumulativePercentages(KeyedValues data);

Returns a new collection of data values containing the cumulative per-

centage values from the specified data.

35.15 DateRange

35.15.1 Overview

An extension of the Range class that is used to represent a date/time range. In
JFreeChart, the primary use for this class is for specifying the range of values
to display on a DateAxis.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 302

35.15.2 Constructors

To create a new date range:

public DateRange(Date lower, Date upper);

Creates a new date range using the specified lower and upper bounds (do

not use null for either parameter).

35.15.3 Notes

Instances of this class are immutable and Serializable.

35.16 DefaultCategoryDataset

35.16.1 Overview

A default implementation of the CategoryDataset interface.

35.16.2 Constructors

The default constructor creates a new, empty dataset:

public DefaultCategoryDataset();

Creates a new dataset.

The DatasetUtilities class has static methods for creating instances of this
class using array data.

35.16.3 Methods

To add a value to the dataset:

public addValue(Number value, Comparable rowKey, Comparable columnKey)

Adds a value to the dataset. The value can be null (to indicate missing

data). If there is already a value for the given keys, it is overwritten.

A similar method accepts a double value and converts it to a Number object
before storing it.

Identical setValue(...) methods are also provided. These function in exactly
the same way as the addValue(...) methods.

35.16.4 Notes

This class uses an instance of DefaultKeyedValues2D to store its data.

35.17 DefaultContourDataset

35.17.1 Overview

A default implementation of the ContourDataset interface.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 303

See Also
ContourPlot

35.18 DefaultHighLowDataset

35.18.1 Overview

A default implementation of the HighLowDataset interface.

35.19 DefaultIntervalCategoryDataset

35.19.1 Overview

A default implementation of the IntervalCategoryDataset interface.

35.20 DefaultKeyedValue

35.20.1 Overview

A (key, value) data item, where the key is an instance of Comparable and the
value is an instance of Number. For the value, you can use null to represent a
missing or unknown value. This class provides a default implementation of the
KeyedValue interface.

35.20.2 Usage

This class is typically used to represent individual data items in a larger collec-
tion, such as DefaultKeyedValues.

35.20.3 Constructor

To create a new instance:

public DefaultKeyedValue(Comparable key, Number value);

Creates a new data item that associates a value with a key. The key

should be an immutable object such as String. The value can be any

Number instance, or null to represent a missing or unknown value.

35.20.4 Methods

There are methods to access the key and value attributes:

public Comparable getKey();

Returns the key.

public Number getValue();

Returns the value (possibly null).

Once a DefaultKeyedValue instance is created, the key can never be changed,
but you can update the value:

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 304

public synchronized void setValue(Number value);

Sets the value for this data item.

35.20.5 Notes

Some points to note:

• cloning is supported, but no deep cloning is performed because it is as-
sumed that both the key and value are immutable (we know this is true
for the value, and assume it to be true for the key).

• this class is serializable provided that the key is serializable.

35.21 DefaultKeyedValueDataset

35.21.1 Overview

A dataset that contains a single (key, value) data item. This class implements
the KeyedValueDataset interface.

35.21.2 Usage

This class does not get used by JFreeChart.

35.22 DefaultKeyedValues

35.22.1 Overview

A collection of (key, value) data items, where the key is an instance of Comparable
and the value is an instance of Number.

35.22.2 Notes

Some points to note:

• this class provides a default implementation of the KeyedValues interface;

• the DefaultPieDataset class uses an instance of this class to store its data.

35.23 DefaultKeyedValuesDataset

35.23.1 Overview

A dataset that implements the KeyedValuesDataset interface.

35.23.2 Notes

This dataset extends the DefaultPieDataset class without modification—it ex-
ists for completeness sake, to follow the naming pattern established for related
classes and interfaces.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 305

35.24 DefaultKeyedValues2D

35.24.1 Overview

A storage structure for a table of values that are associated with keys. This
class provides a default implementation of the KeyedValues2D interface.

35.24.2 Notes

The DefaultCategoryDataset class uses an instance of this class to store its data.

35.25 DefaultKeyedValues2DDataset

35.25.1 Overview

A default implementation of the KeyedValues2DDataset interface.

35.26 DefaultMeterDataset

35.26.1 Overview

A default implementation of the MeterDataset interface.

35.27 DefaultPieDataset

35.27.1 Overview

A default implementation of the PieDataset interface.

35.27.2 Constructors

To create a new pie dataset:

public DefaultPieDataset();

Creates a new dataset, initially empty.

35.27.3 Methods

To get the value associated with a key:

public Number getValue(Comparable key);

Returns the value associated with a key (possibly null)

To set the value associated with a key:

public void setValue(Comparable key, Number value);

Sets the value associated with a key.

35.27.4 Notes

The dataset can contain null values.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 306

See Also
PiePlot.

35.28 DefaultValueDataset

35.28.1 Overview

A default implementation of the ValueDataset interface.

35.29 DefaultWindDataset

35.29.1 Overview

A default implementation of the WindDataset interface.

35.30 DomainInfo

35.30.1 Overview

An interface that provides information about the minimum and maximum values
in a dataset’s domain.

35.30.2 Methods

To get the minimum value in the dataset’s domain:

public Number getMinimumDomainValue();

Returns the minimum value in the dataset’s domain.

To get the maximum value in the dataset’s domain:

public Number getMaximumDomainValue();

Returns the maximum value in the dataset’s domain.

To get the range of values in the dataset’s domain:

public Range getDomainRange();

Returns the range of values in the dataset’s domain.

35.30.3 Notes

It is not mandatory for a dataset to implement this interface. However, some-
times it is necessary to calculate the minimum and maximum values in a dataset.
Without knowing the internal structure of a dataset, the only means of deter-
mining this information is iteration over the entire dataset. If there is a more
efficient way to determine the values for your data structures, then you can
implement this interface and provide the values directly.

See Also
RangeInfo, DatasetUtilities.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 307

35.31 Function2D

35.31.1 Overview

A simple interface for a 2D function. Implementations of this interface include:

• LineFunction2D;

• PowerFunction2D.

It is a simple matter to implement your own functions.

35.31.2 Methods

The interface defines a single method for obtaining the value of the function for
a given input:

public double getValue(double x);

Returns the value of the function for a given input.

35.31.3 Notes

The DatasetUtilities class provides a method for creating an XYDataset by
sampling the values of a function.

See Also
LineFunction2D, PowerFunction2D.

35.32 HighLowDataset

35.32.1 Overview

A dataset that supplies data in the form of high-low-open-close items. These
typically relate to trading data (prices or rates) in financial markets: the open
and close values represent the prices at the opening and closing of the trading
period, while the high and low values represent the highest and lowest price
during the trading period.

Another value returned by this dataset is the volume. This represents the volume
of trading, and is usually the number of units of the commodity traded during
a period. If this data is not available, null is returned.

This interface is an extension of the XYDataset interface.

35.32.2 Methods

To get the high value:

public Number getHighValue(int series, int item);

Returns the high value for an item within a series.

To get the low value:

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 308

public Number getLowValue(int series, int item);

Returns the low value for an item within a series.

To get the open value:

public Number getOpenValue(int series, int item);

Returns the open value for an item within a series.

To get the close value:

public Number getCloseValue(int series, int item);

Returns the close value for an item within a series.

To get the volume:

public Number getVolumeValue(int series, int item);

Returns the volume value for an item within a series.

35.32.3 Notes

This dataset is implemented by the DefaultHighLowDataset class, and used by
the CandlestickRenderer class.

See Also
XYDataset, DefaultHighLowDataset.

35.33 IntervalCategoryDataset

35.33.1 Overview

An extension of the CategoryDataset interface that adds methods for returning
a start value and an end value for each item in the dataset.

Like a CategoryDataset, this dataset is conceptually a table of data items where
the “categories” represent columns and the “series” represent rows. The cells
within the table contain three items: the start value, the end value and the
value (the final item may be the same as one of the previous values or it may
be different).

35.33.2 Methods

To get the start value for a data item:

public Number getStartValue(int series, int category);

Returns the start value for the specified data item.

public Number getStartValue(Comparable series, Comparable category);

Returns the start value for the specified data item

To get the end value for a data item:

public Number getEndValue(int series, int category);

Returns the end value for the specified data item.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 309

public Number getEndValue(Comparable series, Comparable category);

Returns the end value for the specified data item.

Note that all of the above methods can return null to represent a missing or
unknown value.

35.33.3 Notes

Some points to note:

• the IntervalBarRenderer class expects to receive data from a dataset that
implements this interface;

• the DefaultIntervalCategoryDataset class provides one implementation of
this interface;

35.34 IntervalXYDataset

35.34.1 Overview

A dataset that returns an interval for each of the x and y dimensions. Extends
the XYDataset interface.

35.34.2 Methods

To get the start value of the x-interval:

public Number getStartXValue(int series, int item);

Returns the starting x-value for an item within a series.

To get the end value of the x-interval:

public Number getEndXValue(int series, int item);

Returns the ending x-value for an item within a series.

To get the start value of the y-interval:

public Number getStartYValue(int series, int item);

Returns the starting y-value for an item within a series.

To get the end value of the y-interval:

public Number getEndYValue(int series, int item);

Returns the ending y-value for an item within a series.

35.34.3 Notes

The TimeSeriesCollection class implements this interface.

See Also:
XYDataset, IntervalXYZDataset.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 310

35.35 IntervalXYZDataset

35.35.1 Overview

An extension of the XYZDataset interface, analogous to the IntervalXYDataset

extension of the XYDataset interface.

35.35.2 Notes

There are no classes that implement this interface at present.

35.36 JDBCCategoryDataset

35.36.1 Overview

A category dataset that reads data from a database via JDBC. The data is
cached in memory, and can be refreshed at any time.

35.36.2 Constructors

You can create an empty dataset that establishes its own connection to the
database, ready for executing a query:

public JDBCCategoryDataset(String url, String driverName,

String userName, String password);

Creates an empty dataset (no query has been executed yet) and establishes

a database connection.

Alternatively, you can create an empty dataset that will use a pre-existing
database connection:

public JDBCCategoryDataset(Connection con);

Creates an empty dataset (no query has been executed yet) with a pre-

existing database connection.

If you want to initialise the data via the constructor, rather than creating an
empty dataset:

public JDBCCategoryDataset(Connection con, String query);

Creates a dataset with a pre-existing database connection and executes

the specified query.

35.36.3 Methods

This class implements all the methods in the CategoryDataset interface (by
inheriting them from DefaultCategoryDataset).

To refresh the data in the dataset, you need to execute a query against the
database:

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 311

public void executeQuery(String query);

Refreshes the data (which is cached in memory) for the dataset by exe-

cuting the specified query. The query can be any valid SQL that returns

at least two columns, the first containing VARCHAR data representing cat-

egories, and the remaining columns containing numerical data.

You can re-execute the query at any time.

35.36.4 Notes

There is a demo application JDBCCategoryChartDemo in the JFreeChart distri-
bution (0.9.3 or later) that illustrates the use of this class.

See Also
CategoryDataset, DefaultCategoryDataset.

35.37 JDBCPieDataset

35.37.1 Overview

A pie dataset that reads data from a database via JDBC. The data is cached
in memory, and can be refreshed at any time.

35.37.2 Constructors

You can create an empty dataset that establishes its own connection to the
database, ready for executing a query:

public JDBCPieDataset(String url, String driverName, String userName,

String password);

Creates an empty dataset (no query has been executed yet) and establishes

a database connection.

Alternatively, you can create an empty dataset that will use a pre-existing
database connection:

public JDBCPieDataset(Connection con);

Creates an empty dataset (no query has been executed yet) with a pre-

existing database connection.

If you want to initialise the data via the constructor, rather than creating an
empty dataset:

public JDBCPieDataset(Connection con, String query);

Creates a dataset with a pre-existing database connection and executes

the specified query.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 312

35.37.3 Methods

This class implements all the methods in the PieDataset interface (by inheriting
them from DefaultPieDataset).

To refresh the data in the dataset, you need to execute a query against the
database:

public void executeQuery(String query);

Refreshes the data (which is cached in memory) for the dataset by exe-

cuting the specified query. The query can be any valid SQL that returns

two columns, the first containing VARCHAR data representing categories,

and the second containing numerical data.

You can re-execute the query at any time.

35.37.4 Notes

There is a demo application JDBCPieChartDemo in the JFreeChart distribution
that illustrates the use of this class.

See Also
PieDataset, DefaultPieDataset.

35.38 JDBCXYDataset

35.38.1 Overview

An XY dataset that reads data from a database via JDBC. The data is cached
in memory, and can be refreshed at any time.

35.38.2 Constructors

You can create an empty dataset that establishes its own connection to the
database, ready for executing a query:

public JDBCXYDataset(String url, String driverName, String userName,

String password);

Creates an empty dataset (no query has been executed yet) and establishes

a database connection.

Alternatively, you can create an empty dataset that will use a pre-existing
database connection:

public JDBCXYDataset(Connection con);

Creates an empty dataset (no query has been executed yet) with a pre-

existing database connection.

If you want to initialise the data via the constructor, rather than creating an
empty dataset:

public JDBCXYDataset(Connection con, String query);

Creates a dataset with a pre-existing database connection and executes

the specified query.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 313

35.38.3 Methods

This class implements all the methods in the XYDataset interface.

To refresh the data in the dataset, you need to execute a query against the
database:

public void executeQuery(String query);

Refreshes the data (which is cached in memory) for the dataset by exe-

cuting the specified query. The query can be any valid SQL that returns

at least two columns, the first containing numerical or date data repre-

senting x-values, and the remaining column(s) containing numerical data

for each series (one series per column).

You can re-execute the query at any time.

35.38.4 Notes

There is a demo application JDBCXYChartDemo in the JFreeChart distribution that
illustrates the use of this class.

See Also
XYDataset.

35.39 KeyedObject

35.39.1 Overview

Not yet documented.

35.40 KeyedObjects

35.40.1 Overview

Not yet documented.

35.41 KeyedObjects2D

35.41.1 Overview

Not yet documented.

35.42 KeyedValue

35.42.1 Overview

A keyed value is a value (Number) that is associated with a key (Comparable).

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 314

35.42.2 Methods

This interface extends the Value interface.

To access the key associated with the value:

public Comparable getKey();

Returns the key associated with the value.

35.42.3 Notes

The DefaultKeyedValue class provides one implementation of this interface.

35.43 KeyedValueComparator

35.43.1 Overview

This class is used to compare two KeyedValue objects, either by key or by value.

35.44 KeyedValueComparatorType

35.44.1 Overview

Used to represent the two comparison types—by key or by value—used by the
KeyedValueComparator class.

35.45 KeyedValueDataset

35.45.1 Overview

A dataset that contains a single (key, value) data item, where the key is an
instance of Comparable and the value is an instance of Number.

35.45.2 Methods

This interface extends the KeyedValue and Dataset interfaces, and adds no ad-
ditional methods.

35.45.3 Notes

There are currently no charts that specifically require this type of dataset.

35.46 KeyedValues

35.46.1 Overview

A collection of (key, value) data items, where the key is an instance of Comparable
and the value is an instance of Number. This interface extends the Values inter-
face.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 315

35.46.2 Methods

To access the key associated with a value:

public Comparable getKey(int index);

Returns the key associated with an item in the collection.

To convert a key into an item index:

public int getIndex(Comparable key);

Returns the item index for a key.

To get a list of all keys in the collection:

public List getKeys();

Returns a list of the keys in the collection.

To get the value associated with a key:

public Number getValue(Comparable key);

Returns the value associated with a key.

35.46.3 Notes

Some points to note:

• the (key, value) pairs in the collection have a specific order, since each key
is associated with a zero-based index;

• the DefaultKeyedValues class provides one implementation of this inter-
face.

35.47 KeyedValuesDataset

35.47.1 Overview

A keyed values dataset is a collection of values where each value is associated
with a key. A common use for this type of dataset is in the creation of pie
charts.

35.47.2 Methods

This interface adds no methods to those it inherits from the KeyedValues and
Dataset interfaces.

35.48 KeyedValues2D

35.48.1 Overview

A table of values that can be accessed using a row key and a column key. This
interface extends the Values2D interface.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 316

35.48.2 Methods

To get the key for a row:

public Comparable getRowKey(int row);

Returns the key associated with a row.

To convert a row key into an index:

public int getRowIndex(Comparable key);

Returns the row index for the given key.

To get a list of the row keys:

public List getRowKeys();

Returns a list of the row keys.

To get the key for a column:

public Comparable getColumnKey(int column);

Returns the key associated with a column.

To convert a column key into an index:

public int getColumnIndex(Comparable key);

Returns the column index for a given key.

To return a list of column keys:

public List getColumnKeys();

Returns a list of the column keys.

To get the value associated with a pair of keys:

public Number getValue(Comparable rowKey, Comparable columnKey);

Returns the value associated with the keys.

35.48.3 Notes

The DefaultKeyedValues2D class provides one implementation of this interface.

35.49 KeyedValues2DDataset

35.49.1 Overview

Equivalent to the CategoryDataset interface.

35.50 LineFunction2D

35.50.1 Overview

A simple function of the form y = a + bx.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 317

35.50.2 Constructor

To construct a new line function:

public LineFunction2D(double a, double b);

Creates a new line function with the given coefficients.

35.50.3 Methods

public double getValue(double x);

Returns the value of the function for a given input.

35.50.4 Notes

This class implements the Function2D interface.

The RegressionDemo1 application provides an example of this class being used.

See Also
PowerFunction2D.

35.51 MeanAndStandardDeviation

35.51.1 Overview

A simple class that records the mean and standard deviation for some data.

35.51.2 Notes

Used in the DefaultStatisticalCategoryDataset implementation.

35.52 MeterDataset

35.52.1 Overview

A dataset that supplies a single value within some overall range. In addition,
the dataset defines three subranges: a “normal” range, a “warning” range, and
a “critical” range.

This dataset can be used to display meters and gauges. The normal, warning,
and critical ranges can be used to color code a meter or gauge and provide
context for the meter reading.

35.52.2 Methods

To get the current value (or meter reading):

public Number getValue();

Returns the current value.

To get the overall range:

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 318

public Number getMinimumValue();

Returns the lowest possible value.

public Number getMaximumValue();

Returns the highest possible value.

To get the “normal” range (a subset of the overall range):

public Number getMinimumNormalValue();

Returns the lower bound of the “normal” range.

public Number getMaximumNormalValue();

Returns the upper bound of the “normal” range.

To get the “warning” range (a subset of the overall range):

public Number getMinimumWarningValue();

Returns the lower bound of the “warning” range.

public Number getMaximumWarningValue();

Returns the upper bound of the “warning” range.

To get the “critical” range (a subset of the overall range):

public Number getMinimumCriticalValue();

Returns the lower bound of the “critical” range.

public Number getMaximumCriticalValue();

Returns the upper bound of the “critical” range.

There is a method to query whether or not the current value is valid:

public boolean isValueValid();

Returns true if the current value is valid, and false otherwise.

Note that this method is redundant, since the getValue() method can just
return null if there is no value available.

To get a description of the unit of measurement for the value returned by the
dataset:

public String getUnits();

Returns a description of the unit of measurement for the dataset value.

One final method returns a “border type”:

public int getBorderType();

Returns the border type. This should return one of: NORMAL DATA, WARNING DATA,

CRITICAL DATA and FULL DATA.

I’m not sure of the purpose of this method, in the MeterPlot class it seems to
change the color-coding of the subranges, but only a return value of FULL DATA
appears to make sense.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 319

35.52.3 Notes

The DefaultMeterDataset class provides one implementation of this interface.

There is an argument for moving the “normal”, “warning” and “critical” range
settings to the plot classes, since they relate to the presentation of the data,
rather than being part of the data itself. I’ve chosen (for now at least) to leave
the code in the form that it was contributed.

See Also:
DefaultMeterDataset, MeterPlot.

35.53 MovingAverage

35.53.1 Overview

A utility class for calculating a moving average for a data series (usually a
TimeSeries). Moving averages are most commonly used in the analysis of stock
prices or other financial data.

35.53.2 An Example

An example is perhaps the best way to illustrate how moving averages are
calculated. A sample dataset containing daily data and a corresponding three-
day moving average is presented in Table 35.1.

Date: Value: 3 Day Moving Average:

11-Aug-2003 11.2 -
13-Aug-2003 13.8 -
17-Aug-2003 14.1 14.100
18-Aug-2003 12.7 13.400
19-Aug-2003 16.5 14.433
20-Aug-2003 15.6 14.933
25-Aug-2003 19.8 19.800
27-Aug-2003 10.7 15.250
28-Aug-2003 14.3 12.500

Table 35.1: A sample moving average

The code to calculate this moving average is:

TimeSeries series = new TimeSeries("Series 1", Day.class);
series.add(new Day(11, SerialDate.AUGUST, 2003), 11.2);
series.add(new Day(13, SerialDate.AUGUST, 2003), 13.8);
series.add(new Day(17, SerialDate.AUGUST, 2003), 14.1);
series.add(new Day(18, SerialDate.AUGUST, 2003), 12.7);
series.add(new Day(19, SerialDate.AUGUST, 2003), 16.5);
series.add(new Day(20, SerialDate.AUGUST, 2003), 15.6);
series.add(new Day(25, SerialDate.AUGUST, 2003), 19.8);
series.add(new Day(27, SerialDate.AUGUST, 2003), 10.7);
series.add(new Day(28, SerialDate.AUGUST, 2003), 14.3);

TimeSeries mavg = MovingAverage.createMovingAverage(source,
"Moving Average", 3, 3);

In this example, we have chosen to skip the average calculation for the first
three days (11, 12 and 13 August) of the time series (note that there are only

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 320

two observations in this three day period for the example series). For each of
the other dates, an average value is calculated by taking the three days up to
and including the particular date. For example, for 19 August, the values for
17, 18 and 19 August are averaged to give a value of 14.433:

[14.1 + 12.7 + 16.5] / 3 = 43.3 / 3 = 14.433

Similarly, the value for 25 August is the average of the values for 23, 24 and 25
August—but in this case no values are available for 23 or 24 August, so only
the value from 25 August is used.

35.53.3 Methods

To calculate a moving average for a time series:

public static TimeSeries createMovingAverage(TimeSeries source, String

name, int periodCount, int skip);

Creates a new series containing moving average values based on the source

series. The new series will be called name. The periodCount specifies the

number of periods over which the average is calculated, and skip controls

the initial number of periods for which no average is calculated (usually

0 or periodCount - 1).

To calculate a moving average for each time series in a collection:

public static TimeSeriesCollection createMovingAverage(

TimeSeriesCollection source, String suffix, int periodCount, int skip)

Returns a new collection containing a moving average time series for each

series in the source collection. The names of the moving average series

are derived by appending the specified suffix to the source series name.

An alternative means of calculating a moving average is to count back a fixed
number of points, irrespective of the “age” of each point:

public static TimeSeries createPointMovingAverage(TimeSeries source, String

name, int pointCount)

Creates a new series containing moving average values based on the source

series.

35.53.4 Notes

The MovingAverageDemo class in the JFreeChart distribution provides one ex-
ample of how to use this class.

35.54 MultiIntervalCategoryDataset

35.54.1 Overview

An extension of the IntervalCategoryDataset interface that allows multiple in-
tervals for each category.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 321

35.54.2 Notes

The TaskSeriesCollection class implements this interface.

35.55 NonGridContourDataset

35.55.1 Overview

A dataset for use with the ContourPlot class.

35.56 PieDataset

35.56.1 Overview

A pie dataset is a collection of values where each value is associated with a key.
This type of dataset is most commonly used to create pie charts.

35.56.2 Methods

This interface adds no methods to those it inherits from the KeyedValues and
Dataset interfaces.

35.56.3 Notes

Some points to note:

• the DefaultPieDataset class provides one implementation of this interface.

• the DatasetUtilities class includes some methods for creating a PieDataset
by slicing a CategoryDataset either by row or column.

• you can read a PieDataset from a file (in a prespecified XML format)
using the DatasetReader class.

See Also
CategoryToPieDataset, PiePlot.

35.57 PowerFunction2D

35.57.1 Overview

A function of the form y = axb.

35.57.2 Constructor

To construct a new power function:

public PowerFunction2D(double a, double b);

Creates a new power function with the given coefficients.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 322

35.57.3 Methods

public double getValue(double x);

Returns the value of the function for a given input.

35.57.4 Notes

This class implements the Function2D interface.

The RegressionDemo1 application provides an example of this class being used.

See Also
LineFunction2D.

35.58 Range

35.58.1 Overview

A class that represents a range of values by recording the lower and upper
bounds of the range.

35.58.2 Methods

To get the lower bound of the range:

public double getLowerBound();

Returns the lower bound for the range.

To get the upper bound of the range:

public double getUpperBound();

Returns the upper bound for the range.

To test whether or not a value falls within the range:

public boolean contains(double value);

Returns true if lowerbound ¡= value ¡= upperbound, and false otherwise.

To combine two ranges:

public static Range combine(Range range1, Range range2);

Returns a new range which encompasses both of the specified ranges.

35.58.3 Notes

Some points to note:

• this class is immutable, so instances may be shared;

• the DateRange class extends this class to support a date range.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 323

35.59 RangeInfo

35.59.1 Overview

An interface that provides information about the minimum and maximum values
in a dataset’s range.

35.59.2 Methods

To get the minimum value in the dataset’s range:

public Number getMinimumRangeValue();

Returns the minimum value in the dataset’s range.

To get the maximum value in the dataset’s range:

public Number getMaximumRangeValue();

Returns the maximum value in the dataset’s range.

To get the range of values in the dataset’s range:

public Range getValueRange();

Returns the range of values in the dataset’s range.

35.59.3 Notes

It is not mandatory for a dataset to implement this interface. However, some-
times it is necessary to calculate the minimum and maximum values in a dataset.
Without knowing the internal structure of a dataset, the only means of deter-
mining this information is iteration over the entire dataset. If there is a more
efficient way to determine the values for your data structures, then you can
implement this interface and provide the values directly.

See Also
DomainInfo.

35.60 Regression

35.60.1 Overview

This class provides some utility methods for calculating regression co-efficients.
Two regression types are supported:

• linear (OLS) regression;

• power regression.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 324

35.60.2 Methods

To calculate the OLS regression for an array of data values:

public static double[] getOLSRegression(double[][] data);

Performs an ordinary least squares regression on the data. The result is

an array containing two values, the intercept and the slope.

To calculate a power regression for an array of data values:

public static double[] getPowerRegression(double[][] data);

Performs a power regression on the data.

35.61 Series

35.61.1 Overview

A useful base class for implementing data series, subclasses include TimeSeries

and XYSeries. This class provides a mechanism for registering change listeners,
objects that will receive a message (a SeriesChangeEvent) every time the series
is modified in some way.

35.61.2 Constructor

The constructor is protected since you do not create a Series directly, but via
a subclass:

protected Series(String name, String description);

Creates a new series.

35.61.3 Methods

To register a change listener (an object that wishes to receive notification when-
ever the series is changed):

public void addChangeListener(SeriesChangeListener listener);

Registers the listener to receive SeriesChangeEvent notifications.

To deregister a change listener:

public void removeChangeListener(SeriesChangeListener listener);

Deregisters the listener.

If you have a lot of changes to make to a series, sometimes it can be a problem
that every change generates a SeriesChangeEvent which is sent to all listeners.
You can temporarily disable the event notification using:

public void setNotify(boolean notify);

Turns the event notification on or off. When you turn this off then on

again, a change event is sent immediately.

See Also
AbstractSeriesDataset, TimeSeries, XYSeries.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 325

35.62 SeriesChangeEvent

35.62.1 Overview

An event class that is passed to a SeriesChangeListener to notify it concerning
a change to a Series.

35.63 SeriesChangeListener

35.63.1 Overview

The interface through which series change notifications are posted.

Typically a dataset will implement this interface to receive notification of any
changes to the individual series in the dataset (which will normally be passed
on as a DatasetChangeEvent).

35.63.2 Methods

This interface defines a single method:

public void seriesChanged(SeriesChangeEvent event);

Receives notification when a series changes.

35.63.3 Notes

The AbstractSeriesDataset class implements this interface—it will generate a
DatasetChangeEvent every time it receives notification of a SeriesChangeEvent.

35.64 SeriesDataset

35.64.1 Overview

A base interface that defines a dataset containing zero, one or many data series.

35.64.2 Methods

To find out how many series there are in a dataset:

public int getSeriesCount();

Returns the number of series in the dataset.

To get the name of a series:

public String getSeriesName(int series);

Returns the name of the series with the specified index (zero based).

35.64.3 Notes

This interface is extended by CategoryDataset and XYDataset.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 326

35.65 SeriesException

35.65.1 Overview

A general exception that can be thrown by a Series.

For example, a time series will not allow duplicate time periods—attempting to
add a duplicate time period will throw a SeriesException.

35.66 SignalsDataset

35.66.1 Overview

Not yet documented.

35.67 SubseriesDataset

A specialised dataset implementation written by Bill Kelemen. To be docu-
mented.

35.68 TableXYDataset

35.68.1 Overview

This interface is an extension of the XYDataset interface. By implementing
this interface, a dataset is declaring that all series share a common set of
x-values—this is required by renderers that “stack” values (for example, the
StackedXYAreaRenderer).

35.69 TimeSeriesTableModel

An initial attempt to display a time series in a JTable.

35.70 Value

35.70.1 Overview

An interface for accessing a single value (Number object). By way of an ex-
ample, the ValueDataset interface extends this interface, and is used by the
ThermometerPlot class.

35.70.2 Methods

The interface defines a single method for accessing the value:

public Number getValue();

Returns the value (possibly null).

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 327

35.70.3 Notes

Some notes:

• the KeyedValue interface extends this interface.

• the DefaultKeyedValue class provides one implementation of this interface.

35.71 ValueDataset

35.71.1 Overview

A value dataset stores a single value (Number object).

35.71.2 Methods

This interface extends the Value and Dataset interfaces, and adds no new meth-
ods.

35.71.3 Notes

This dataset is used by the ThermometerPlot class.

35.72 Values

35.72.1 Overview

An interface for accessing a collection of values.

35.72.2 Methods

To get the number of items in the collection:

public int getItemCount();

Returns the number of items in the collection.

To get a value from the collection:

public Number getValue(int item);

Returns a value from the collection (possibly null).

35.72.3 Notes

Some notes:

• the KeyedValues interface extends this interface.

• the DefaultKeyedValues class provides one implementation of this inter-
face.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 328

35.73 Values2D

35.73.1 Overview

An interface for accessing a table of values.

35.73.2 Methods

To get the number of rows in the table:

public int getRowCount();

Returns the row count.

To get the number of columns in the table:

public int getColumnCount();

Returns the column count.

To get a value from one cell in the table:

public Number getValue(int row, int column);

Returns a value (possibly null) from a cell in the table.

35.73.3 Notes

Some points to note:

• the KeyedValues2D interface extends this interface.

• the DefaultKeyedValues2D class provides one implementation of this inter-
face.

35.74 WindDataset

35.74.1 Overview

A wind dataset provides wind direction and intensity values observed at various
points in time.

35.74.2 Notes

The WindChartDemo application, included in the JFreeChart distribution, pro-
vides an example.

35.75 XisSymbolic

35.75.1 Overview

Not yet documented.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 329

35.76 XYBarDataset

35.76.1 Overview

A dataset wrapper class that can convert any XYDataset into an IntervalXYDataset.

35.76.2 Constructor

To create a new dataset wrapper:

public XYBarDataset(XYDataset underlying, double barWidth);

Creates a wrapper for the underlying dataset, effectively converting it into

an IntervalXYDataset.

35.77 XYDataItem

35.77.1 Overview

This class represents a pair (x, y) of Number objects. The x-value should always
be defined, but the y-value can be set to null to represent a missing or unknown
value.

35.77.2 Notes

Some notes:

• this class implements the Comparable interface, and implements ordering
by x-values.

• this class parallels the TimeSeriesDataItem class.

35.78 XYDataset

35.78.1 Overview

An interface that defines a collection of data in the form of (x, y) values. The
dataset can consist of zero, one or many data series. The (x, y) values in one
series are completely independent of the (x, y) value in the other series in the
dataset (that is, x-values are not “shared”).

Extensions of this interface include: IntervalXYDataset, HighLowDataset, XYZDataset
and TableXYDataset.

35.78.2 Methods

To get the number of items in a series:

public int getItemCount(int series);

Returns the number of data items in a series.

To get the x-value for an item within a series:

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 330

public Number getXValue(int series, int item);

Returns an x-value for a series.

To get the y-value for an item within a series:

public Number getYValue(int series, int item);

Returns a y-value for a series (possibly null).

35.78.3 Notes

It is often pointed out to me that using double values instead of Number objects
would speed up the access to data. That is true, but I have decided to stick
with using Number objects for two reasons:

• it allows null to be used to indicate an unknown data value;

• objects can be more conveniently displayed using standard Java compo-
nents such as Swing’s JTable.

See Also:
SeriesDataset, IntervalXYDataset.

35.79 XYSeries

35.79.1 Overview

A series of (x, y) data items (extends Series). Each item is represented by an
instance of XYDataItem and stored in a list (sorted in ascending order of x-values,
by default).

XYSeries will allow duplicate x-values, unless a flag is set in the constructor to
prevent duplicates.

35.79.2 Constructors

To construct a series:

public XYSeries(String name);

Creates a new series (initially empty) with the specified name. By default,

the data items will be sorted in ascending order of x-values, and duplicate

x-values will be allowed.

To construct a series with control over sorting and whether or not duplicate
x-values are permitted:

public XYSeries(String name,

boolean autoSort, boolean allowDuplicateXValues);

Creates a new series (initially empty) with the specified name. Flags are

set that determine whether the data items are sorted by x-value, and

where duplicate x-values will be allowed or disallowed, as specified.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 331

35.79.3 Methods

To find out how many items are contained in a series:

public int getItemCount();

Returns the number of items in the series.

You can obtain a list of the items in the dataset:

public List getItems();

Returns an unmodifiable list of the items in the series. Note that the list

is unmodifiable, but you can still change the y-values for the individual

data items in the list—this is not the recommended way to change data

in the series, because no notification of the change occurs.

To add new data to a series:

public void add(double x, double y);

Adds a new data item to the series. Note that duplicate x values may not

be allowed (refer to the constructor for details).

To update an existing data value:

public void update(int item, Number y);

Changes the value of one item in the series. The item is a zero-based

index.

To clear all values from the series:

public void clear();

Clears all values from the series.

35.79.4 Notes

Some points to note:

• this class extends Series, so you can register change listeners with the
series;

• you can create a collection of series using the XYSeriesCollection class.
Since XYSeriesCollection implements the XYDataset interface, this is a
convenient structure for supplying data to JFreeChart.

35.80 XYSeriesCollection

35.80.1 Overview

A collection of XYSeries objects. This class implements both the XYDataset and
IntervalXYDataset interfaces, so can be used as the dataset for a wide range of
charts.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 332

35.80.2 Constructors

To construct a series collection:

public XYSeriesCollection();

Creates a new empty series collection.

35.80.3 Methods

To add a series to the collection:

public void addSeries(XYSeries series);

Adds a series to the collection. Registered listeners are notified that the

dataset has changed.

To find out how many series are held in the collection:

public int getSeriesCount();

Returns the number of series in the collection.

To access a particular series:

public XYSeries getSeries(int series);

Returns a series from the collection. The series argument is a zero-based

index.

35.80.4 Using as an IntervalXYDataset

This class implements the IntervalXYDataset interface, which means you can
(for example) use the collection as a dataset to create a bar chart (using the
XYPlot and XYBarRenderer classes). The underlying data items are just points,
so it is necessary to “manufacture” an x-interval for each item. The width of
this interval defaults to 1.0, but can be specified with the following method:

public void setIntervalWidth(double width);

Sets the width of the x-interval and sends a DatasetChangeEvent to all

registered listeners.

Given a data item at (2.0, 3.75), the default x-interval will be extend from 1.5

to 2.5 (that is, an interval of width 1.0 centered about the x-value of 2.0). You
might want to change where the interval falls about the actual x-value—you can
use the following method:

public void setIntervalPositionFactor(double factor);

Sets the interval position factor, a value between 0.0 and 1.0 (the default

is 0.5, which centers the interval about the x-value).

35.81 XYZDataset

35.81.1 Overview

An interface that defines a collection of data items in the form of (x, y, z) values.
This is a natural extension of the XYDataset interface.

CHAPTER 35. PACKAGE: ORG.JFREE.DATA 333

35.81.2 Notes

JFreeChart doesn’t have support for three dimensional charts yet, but this in-
terface still finds a use in the XYBubbleRenderer class.

35.82 YisSymbolic

35.82.1 Overview

To be documented.

Chapter 36

Package:
org.jfree.data.gantt

36.1 Introduction

This package contains classes used to represent the dataset for a Gantt chart.

36.2 GanttCategoryDataset

36.2.1 Overview

An extension of the IntervalCategoryDataset interface that is intended for cre-
ating Gantt charts.

36.2.2 Methods

This interface adds a range of methods in addition to those it inherits from
the IntervalCategoryDataset interface. These are aimed at supporting subtasks
within tasks, and providing information about the “percentage complete” for
individual tasks.

To get the number of subtasks for a given task:

public int getSubIntervalCount(int row, int column);

Returns the number of subtasks defined for the specified item (possibly

0).

public int getSubIntervalCount(Comparable rowKey, Comparable columnKey);

Returns the number of subtasks defined for the specified item (possibly

0).

To get the start value (time in milliseconds) for a specific subtask:

public Number getStartValue(int row, int column, int subinterval);

Returns the start value for a subtask.

334

CHAPTER 36. PACKAGE: ORG.JFREE.DATA.GANTT 335

public Number getStartValue(Comparable rowKey, Comparable columnKey, int

subinterval);

Returns the start value for a subtask.

To get the end value (time in milliseconds) for a specific subtask:

public Number getEndValue(int row, int column, int subinterval);

Returns the end value for a subtask.

public Number getEndValue(Comparable rowKey, Comparable columnKey, int

subinterval);

Returns the end value for a subtask.

To get the percentage complete for a given task:

public Number getPercentComplete(int row, int column);

Returns the percentage complete for the specified task. This method can

return null if the value is unknown.

public Number getPercentComplete(Comparable rowKey, Comparable columnKey);

Returns the percentage complete for the specified task. This method can

return null if the value is unknown.

To get the percentage complete for a subtask:

public Number getPercentComplete(int row, int column, int subinterval);

Returns the percentage complete for the specified subtask. This method

can return null if the value is unknown.

public Number getPercentComplete(Comparable rowKey, Comparable columnKey,

int subinterval);

Returns the percentage complete for the specified subtask. This method

can return null if the value is unknown.

36.2.3 Notes

The GanttRenderer class expects to find a dataset of this type.

36.3 Task

36.3.1 Overview

A class that represents a task, consisting of:

• a task description;

• a duration (estimated or actual);

• a list of sub-tasks;

In JFreeChart, tasks are used in the construction of Gantt charts. One or more
related tasks can be added to a TaskSeries. In turn, one or more TaskSeries

can be added to a TaskSeriesCollection.

CHAPTER 36. PACKAGE: ORG.JFREE.DATA.GANTT 336

36.4 TaskSeries

36.4.1 Overview

A task series is a collection of related tasks.
You can add one or more TaskSeries objects to a TaskSeriesCollection to create
a dataset that can be used to produce Gantt charts.

36.5 TaskSeriesCollection

36.5.1 Overview

A task series collection contains one or more TaskSeries objects, and provides
access to the task information via the MultiIntervalCategoryDataset interface.
You can use this class as the dataset for a Gantt chart.

Chapter 37

Package:
org.jfree.data.statistics

37.1 Introduction

This package contains interfaces and classes for representing statistical datasets.

37.2 BoxAndWhiskerCalculator

37.2.1 Overview

A utility class for calculating the statistics required for a box-and-whisker plot.

37.2.2 Methods

To calculate box-and-whisker statistics for a list of values:

public static BoxAndWhiskerItem calculateBoxAndWhiskerStatistics(List values);

Calculates a set of statistics (mean, median, quartiles Q1 and Q3, plus

outliers) for a list of Number objects.

To calculate the mean of a list of values:

public static double calculateMean(List values)

Returns the mean of a list of numbers. Items in the list that are not in-

stances of the Number class are ignored. Likewise, null items are ignored.

To calculate the median of a list of values:

public static double calculateMedian(List values);

Returns the median of a list of values. This method REQUIRES the list

of values to be in ascending order.

To calculate the first quartile value:

public static double calculateQ1(List values);

Returns the first quartile boundary for a list of values. This method

REQUIRES the list of values to be in ascending order.

337

CHAPTER 37. PACKAGE: ORG.JFREE.DATA.STATISTICS 338

To calculate the third quartile value:

public static double calculateQ3(List values);

Returns the first quartile boundary for a list of values. This method

REQUIRES the list of values to be in ascending order.

37.3 BoxAndWhiskerCategoryDataset

37.3.1 Overview

An interface that extends the CategoryDataset interface and returns the values
required for a box-and-whisker chart. The dataset represents a two-dimensional
table, where each cell in the table contains a complete set of statistics for one
box-and-whisker item (a mean, median, quartile boundary values Q1 and Q3,
plus information about outliers and farouts).

The DefaultBoxAndWhiskerCategoryDataset provides one implementation of this
interface.

37.3.2 Methods

The interface provides a range of methods for reading the values from the
dataset. No update methods are provided, since not every dataset implementa-
tion needs to be writeable.

To get the mean for one item in the dataset:

public Number getMeanValue(int row, int column);

Returns the mean value for an item.

public Number getMeanValue(Comparable rowKey, Comparable columnKey);

Returns the mean value for an item.

To get the median value for one item in the dataset:

public Number getMedianValue(int row, int column);

Returns the median value for an item.

public Number getMedianValue(Comparable rowKey, Comparable columnKey);

Returns the median value for an item.

To get the first quartile boundary value:

public Number getQ1Value(int row, int column);

Returns the first quartile boundary value.

public Number getQ1Value(Comparable rowKey, Comparable columnKey);

Returns the first quartile boundary value.

To get the third quartile boundary value:

public Number getQ3Value(int row, int column);

Returns the third quartile boundary value.

CHAPTER 37. PACKAGE: ORG.JFREE.DATA.STATISTICS 339

public Number getQ3Value(Comparable rowKey, Comparable columnKey);

Returns the third quartile boundary value.

To get the minimum regular value (everything lower than this is either an outlier
or a farout):

public Number getMinRegularValue(int row, int column);

Returns the lowest regular value.

public Number getMinRegularValue(Comparable rowKey, Comparable columnKey);

Returns the lowest regular value.

To get the maximum regular value (everything higher than this is either an
outlier or a farout):

public Number getMaxRegularValue(int row, int column);

Returns the highest regular value.

public Number getMaxRegularValue(Comparable rowKey, Comparable columnKey);

Returns the highest regular value.

To get the minimum outlier (everything lower than this is a farout value):

public Number getMinOutlier(int row, int column);

Returns the lowest outlier.

public Number getMinOutlier(Comparable rowKey, Comparable columnKey);

Returns the lowest outlier.

To get the maximum outlier (everything higher than this is a farout value):

public Number getMaxOutlier(int row, int column);

Returns the highest outlier.

public Number getMaxOutlier(Comparable rowKey, Comparable columnKey);

Returns the highest outlier.

To get a list of the outlier (and farout) values for an item in the dataset:

public List getOutliers(int row, int column);

Returns a list of the outlier (and farout) values.

public List getOutliers(Comparable rowKey, Comparable columnKey);

Returns a list of the outlier (and farout) values.

37.4 BoxAndWhiskerItem

37.4.1 Overview

A small class that holds the statistics and values required for a box-and-whisker
item:

• a mean;

CHAPTER 37. PACKAGE: ORG.JFREE.DATA.STATISTICS 340

• a median;

• a first quartile boundary value;

• a third quartile boundary value;

• a minimum regular value;

• a maximum regular value;

• a minimum outlier;

• a maximum outlier;

• a list of outlier values;

This class is immutable.

37.4.2 Notes

The BoxAndWhiskerCalculator class returns instances of this class from one of
its methods.

37.5 BoxAndWhiskerXYDataset

37.5.1 Overview

An interface that is used to obtain data for a box-and-whisker plot using the
XYPlot class. This interface extends XYDataset.

The DefaultBoxAndWhiskerXYDataset class provides one implementation of this
interface.

37.5.2 Methods

To get the mean value for an item:

public Number getMeanValue(int series, int item);

Returns the mean value.

To get the median value for an item:

public Number getMedianValue(int series, int item);

Returns the median value.

To get the first quartile boundary value:

public Number getQ1Value(int series, int item);

Returns the first quartile boundary value.

To get the third quartile boundary value:

public Number getQ3Value(int series, int item);

Returns the third quartile boundary value.

To get the minimum regular value:

CHAPTER 37. PACKAGE: ORG.JFREE.DATA.STATISTICS 341

public Number getMinRegularValue(int series, int item);

Returns the minimum regular value. Anything lower than this is either

an outlier or a farout value.

To get the maximum regular value:

public Number getMaxRegularValue(int series, int item);

Returns the maximum regular value. Anything higher than this is either

an outlier or a farout value.

To get the minimum outlier:

public Number getMinOutlier(int series, int item);

Returns the minimum outlier. Anything lower than this is a farout value.

To get the maximum outlier:

public Number getMaxOutlier(int series, int item);

Returns the maximum outlier. Anything higher than this is a farout value.

To get a list of the outlier values:

public List getOutliers(int series, int item);

Returns a list of the outlier (and farout) values for this item.

To get the outlier coefficient:

public double getOutlierCoefficient();

Returns the outlier coefficient (this is probably redundant).

To get the farout coefficient:

public double getFaroutCoefficient();

Returns the farout coefficient (this is probably redundant).

37.6 DefaultBoxAndWhiskerCategoryDataset

37.6.1 Overview

A basic implementation of the BoxAndWhiskerCategoryDataset interface.

37.6.2 Notes

The BoxAndWhiskerDemo (included in the JFreeChart distribution) provides an
example of this class being used.

37.7 DefaultBoxAndWhiskerXYDataset

37.7.1 Overview

A basic implementation of the BoxAndWhiskerXYDataset interface.

CHAPTER 37. PACKAGE: ORG.JFREE.DATA.STATISTICS 342

37.7.2 Notes

The XYBoxAndWhiskerDemo (included in the JFreeChart distribution) provides an
example of this class being used.

37.8 DefaultStatisticalCategoryDataset

37.8.1 Overview

A default implementation of the StatisticalCategoryDataset interface.

37.9 HistogramBin

37.9.1 Overview

This class is used to represent a bin for the HistogramDataset class.

37.10 HistogramDataset

37.10.1 Overview

A dataset that can be used with the XYPlot class to display a histogram.

37.10.2 Constructors

The default constructor creates an empty dataset:

public HistogramDataset();

Creates an empty dataset with a type of HistogramType.FREQUENCY.

37.10.3 Methods

To set the type of histogram:

public void setType(HistogramType type);

Sets the histogram type and sends a DatasetChangeEvent to all registered

listeners.

To add raw data to the dataset, allowing the bin range to be determined auto-
matically to fit the data:

public void addSeries(String name, double[] values, int bins);

Creates a series within the dataset that summarises the values supplied by

allocating them to the specified number of bins. The bin size is calculated

to cover the range of values in the array.

To add raw data to the dataset, using a specified bin range:

CHAPTER 37. PACKAGE: ORG.JFREE.DATA.STATISTICS 343

public void addSeries(String name, double[] values, int bins,

double minimum, double maximum);

Creates a series within the dataset the summarises the values supplied by

allocating them to bins. The bin size is calculated so that the specified

number of bins covers the range (minimum, maximum).

For both of the above methods, values that fall on a bin boundary will be
allocated to the lower bin (except in the case of the minimum value which is
assigned to the first bin).

37.10.4 Notes

Some points to note:

• the dataset is Cloneable and Serializable;

• a demo (HistogramDemo.java) is included in the JFreeChart distribution,
in the src/org/jfree/chart/demo directory.

37.11 HistogramType

37.11.1 Overview

An enumeration of the possible histogram types:

• FREQUENCY - a frequency histogram shows the number of data items allo-
cated to each bin;

• RELATIVE FREQUENCY - a relative frequency histogram shows the number of
data items allocated to each bin as a fraction of the total number of items;

• SCALE AREA TO 1 - similar to a relative frequency histogram, except that
the values are scaled so that the overall area represented by the bars is
equal to 1.

37.11.2 Usage

These values are normally used in the getType() and setType() methods of the
HistogramDataset class.

37.12 StatisticalCategoryDataset

37.12.1 Overview

A statistical category dataset is a table of data where each data item consists
of a mean and a standard deviation (calculated externally on the basis of some
other data). This interface is an extension of the CategoryDataset interface.

CHAPTER 37. PACKAGE: ORG.JFREE.DATA.STATISTICS 344

37.12.2 Methods

To get the mean value for an item in the dataset, using row and column indices:

public Number getMeanValue(int row, int column);

Returns the mean value for one cell in the table.

Alternatively, you can access the same value using the row and column keys:

public Number getMeanValue(Comparable rowKey, Comparable columnKey);

Returns the mean value for one cell in the table.

To get the standard deviation value for an item in the dataset, using row and
column indices:

public Number getStdDevValue(int row, int column);

Returns the standard deviation for one cell in the table.

As with the mean value, you can also access the standard deviation using the
row and column keys:

public Number getStdDevValue(Comparable rowKey, Comparable columnKey);

Returns the standard deviation for one cell in the table.

37.12.3 Notes

The DefaultStatisticalCategoryDataset class implements this interface.

37.13 Statistics

37.13.1 Overview

Provides some static utility methods for calculating statistics.

37.13.2 Methods

To calculate the average of an array of Number objects:

public static double getAverage(Number[] data);

Returns the average of an array of numbers.

To calculate the standard deviation of an array of Number objects:

public static double getStdDev(Number[] data);

Returns the standard deviation of an array of numbers.

To calculate a least squares regression line through an array of data:

public static double[] getLinearFit(Number[] x data, Number[] y data);

Returns the intercept (double[0]) and slope (double[1]) of the linear re-

gression line.

To calculate the slope of a least squares regression line:

CHAPTER 37. PACKAGE: ORG.JFREE.DATA.STATISTICS 345

public static double getSlope(Number[] x data, Number[] y data);

Returns the slope of the linear regression line.

To calculate the slope of a least squares regression line:

public static double getCorrelation(Number[] data1, Number[] data2);

Returns the correlation between two sets of numbers.

37.13.3 Notes

This class was written by Matthew Wright.

Chapter 38

Package: org.jfree.data.time

38.1 Introduction

This package contains interfaces and classes that are used to represent time-
based data.

The TimeSeriesCollection class is perhaps the most important class in this
package. It is used to store one or more TimeSeries objects, and provides an
implementation of the XYDataset interface. This allows it to be used as the
dataset for an XYPlot).

The TimePeriodValuesCollection class performs a similar role, but allows more
general (less regular) time periods to be used.

38.2 Day

38.2.1 Overview

A regular time period that is one day long. This class is designed to be used
with the TimeSeries class, but could also be used in other situations. Extends
RegularTimePeriod.

38.2.2 Usage

A common use for this class is to represent daily data in a time series. For
example:

TimeSeries series = new TimeSeries("Daily Data");
series.add(new Day(1, SerialDate.MARCH, 2003), 10.2);
series.add(new Day(3, SerialDate.MARCH, 2003), 17.3);
series.add(new Day(4, SerialDate.MARCH, 2003), 14.6);
series.add(new Day(7, SerialDate.MARCH, 2003), null);

Note that the SerialDate class is defined in the JCommon class library.

38.2.3 Constructor

There are several different ways to create a new Day instance. You can specify
the day, month and year:

346

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 347

public Day(int day, int month, int year);

Creates a new Day instance. The month argument should be in the range

1 to 12. The year argument should be in the range 1900 to 9999.

You can create a Day instance based on a SerialDate (defined in the JCommon
class library):

public Day(SerialDate day);

Creates a new Day instance.

You can create a Day instance based on a Date:

public Day(Date time);

Creates a new Day instance.

Finally, the default constructor creates a Day instance based on the current
system date:

public Day();

Creates a new Day instance for the current system date.

38.2.4 Methods

There are methods to return the year, month and day-of-the-month:

public int getYear();

Returns the year (in the range 1900 to 9999).

public int getMonth();

Returns the month (in the range 1 to 12).

public int getDayOfMonth();

Returns the day-of-the-month (in the range 1 to 31).

There is no method to set these attributes, because this class is immutable.

To return a SerialDate instance that represents the same day as this object:

public SerialDate getSerialDate();

Returns the day as a SerialDate.

Given a Day object, you can create an instance representing the previous day
or the next day:

public RegularTimePeriod previous();

Returns the previous day, or null if the lower limit of the range is reached.

public RegularTimePeriod next();

Returns the next day, or null if the upper limit of the range is reached.

To convert a Day object to a String object:

public String toString();

Returns a string representing the day.

To convert a String object to a Day object:

public static Day parseDay(String s) throws TimePeriodFormatException;

Parses the string and, if possible, returns a Day object.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 348

38.2.5 Notes

Points to note:

• in the current implementation, the day can be in the range 1-Jan-1900 to
31-Dec-9999.

• the Day class is immutable, a requirement for all RegularTimePeriod sub-
classes.

38.3 FixedMillisecond

38.3.1 Overview

A regular time period that is one millisecond in length. This class uses the same
encoding convention as java.util.Date. Unlike the other regular time period
classes, FixedMillisecond is fixed in real time. This class is designed to be used
with the TimeSeries class, but could also be used in other situations. Extends
RegularTimePeriod.

38.3.2 Constructors

To create a new FixedMillisecond:

public FixedMillisecond(long millisecond);

Creates a new FixedMillisecond instance. The millisecond argument

uses the same encoding as java.util.Date.

You can construct a a FixedMillisecond instance based on a java.util.Date
instance:

public FixedMillisecond(Date time);

Creates a new FixedMillisecond instance representing the same millisec-

ond as the time argument.

A default constructor is provided, which creates a FixedMillisecond instance
based on the current system time:

public FixedMillisecond();

Creates a new FixedMillisecond instance based on the current system

time.

38.3.3 Methods

Given a FixedMillisecond object, you can create an instance representing the
previous millisecond:

public RegularTimePeriod previous();

Returns the previous millisecond, or null if the lower limit of the range

is reached.

...and the next millisecond:

public RegularTimePeriod next();

Returns the next millisecond, or null if the upper limit of the range is

reached.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 349

38.3.4 Notes

Some points to note:

• this class is just a wrapper for the java.util.Date class, to allow it to be
used as a RegularTimePeriod;

• the FixedMillisecond class is immutable. This is a requirement for all
RegularTimePeriod subclasses.

38.4 Hour

38.4.1 Overview

A regular time period one hour in length. This class is designed to be used
with the TimeSeries class, but could also be used in other situations. Extends
RegularTimePeriod.

38.4.2 Usage

A common use for this class is to represent hourly data in a time series. For
example:

TimeSeries series = new TimeSeries("Hourly Data", Hour.class);
Day today = new Day();
series.add(new Hour(3, today), 734.4);
series.add(new Hour(4, today), 453.2);
series.add(new Hour(7, today), 500.2);
series.add(new Hour(8, today), null);
series.add(new Hour(12, today), 734.4);

Note that the hours in the TimeSeries do not have to be consecutive.

38.4.3 Constructor

There are several ways to create a new Hour instance. You can specify the hour
and day:

public Hour(int hour, Day day);

Creates a new Hour instance. The hour argument should be in the range

0 to 23.

Alternatively, you can supply a java.util.Date:

public Hour(Date time);

Creates a new Hour instance. The default time zone is used to decode the

Date.

A default constructor is provided:

public Hour();

Creates a new Hour instance based on the current system time.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 350

38.4.4 Methods

To access the hour and day:

public int getHour();

Returns the hour (in the range 0 to 23).

public Day getDay();

Returns the day.

There is no method to set the hour or the day, because this class is immutable.

Given a Hour object, you can create an instance representing the previous hour:

public RegularTimePeriod previous();

Returns the previous hour, or null if the lower limit of the range is

reached.

...or the next hour:

public RegularTimePeriod next();

Returns the next hour, or null if the upper limit of the range is reached.

38.4.5 Notes

The Hour class is immutable. This is a requirement for all RegularTimePeriod

subclasses.

38.5 Millisecond

38.5.1 Overview

A regular time period one millisecond in length. This class is designed to be used
with the TimeSeries class, but could also be used in other situations. Extends
RegularTimePeriod.

38.5.2 Constructors

To construct a Millisecond instance:

public Millisecond(int millisecond, Second second);

Creates a new Millisecond instance. The millisecond argument should

be in the range 0 to 999.

To construct a Millisecond instance based on a java.util.Date:

public Millisecond(Date date);

Creates a new Millisecond instance.

A default constructor is provided:

public Millisecond();

Creates a new Millisecond instance based on the current system time.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 351

38.5.3 Methods

To access the millisecond:

public int getMillisecond();

Returns the second (in the range 0 to 999).

To access the Second:

public Second getSecond();

Returns the Second.

There is no method to set the millisecond or the second, because this class is
immutable.

Given a Millisecond object, you can create an instance representing the previous
millisecond:

public RegularTimePeriod previous();

Returns the previous millisecond, or null if the lower limit of the range

is reached.

...or the next:

public RegularTimePeriod next();

Returns the next millisecond, or null if the upper limit of the range is

reached.

38.5.4 Notes

The Millisecond class is immutable. This is a requirement for all RegularTimePeriod
subclasses.

38.6 Minute

38.6.1 Overview

A regular time period one minute in length. This class is designed to be used
with the TimeSeries class, but could also be used in other situations.

38.6.2 Constructors

There are several ways to create new instances of this class. You can specify
the minute and hour:

public Minute(int minute, Hour hour);

Creates a new Minute instance. The minute argument should be in the

range 0 to 59.

Alternatively, you can supply a java.util.Date:

public Minute(Date time);

Creates a new Minute instance based on the supplied date/time.

A default constructor is provided:

public Minute();

Creates a new Minute instance, based on the current system time.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 352

38.6.3 Methods

To access the minute and hour:

public int getMinute();

Returns the minute (in the range 0 to 59).

public Hour getHour();

Returns the hour.

There is no method to set the minute or the day, because this class is immutable.

Given a Minute object, you can create an instance representing the previous
minute:

public RegularTimePeriod previous();

Returns the previous minute, or null if the lower limit of the range is

reached.

...or the next:

public RegularTimePeriod next();

Returns the next minute, or null if the upper limit of the range is reached.

38.6.4 Notes

The Minute class is immutable. This is a requirement for all RegularTimePeriod
subclasses.

38.7 Month

38.7.1 Overview

A time period representing a month in a particular year. This class is designed
to be used with the TimeSeries class, but could be used in other contexts as
well. Extends RegularTimePeriod.

38.7.2 Constructors

There are several ways to create new instances of this class. You can specify
the month and year:

public Month(int month, Year year);

Creates a new Month instance. The month argument should be in the

range 1 to 12.

public Month(int month, int year);

Creates a new Month instance. The month argument should be in the

range 1 to 12. The year argument should be in the range 1900 to 9999.

Alternatively, you can specify a java.util.Date:

public Month(Date time);

Creates a new Month instance.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 353

A default constructor is provided:

public Month();

Creates a new Month instance, based on the current system time.

38.7.3 Methods

To access the month and year:

public int getMonth();

Returns the month (in the range 1 to 12).

public Year getYear();

Returns the year.

public int getYearValue();

Returns the year as an int.

There is no method to set the month or the year, because this class is immutable.

Given a Month object, you can create an instance representing the previous
month:

public RegularTimePeriod previous();

Returns the previous month, or null if the lower limit of the range is

reached.

...or the next month:

public RegularTimePeriod next();

Returns the next month, or null if the upper limit of the range is reached.

To convert a Month object to a String object:

public String toString();

Returns a string representing the month.

38.7.4 Notes

Points to note:

• the year can be in the range 1900 to 9999.

• this class is immutable. This is a requirement for all RegularTimePeriod
subclasses.

38.8 Quarter

38.8.1 Overview

A calendar quarter—this class extends RegularTimePeriod.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 354

38.8.2 Usage

A common use for this class is representing quarterly data in a time series:

TimeSeries series = new TimeSeries("Quarterly Data", Quarter.class);
series.add(new Quarter(1, 2001), 500.2);
series.add(new Quarter(2, 2001), 694.1);
series.add(new Quarter(3, 2001), 734.4);
series.add(new Quarter(4, 2001), 453.2);
series.add(new Quarter(1, 2002), 500.2);
series.add(new Quarter(2, 2002), null);
series.add(new Quarter(3, 2002), 734.4);
series.add(new Quarter(4, 2002), 453.2);

38.8.3 Constructor

There are several ways to create a new Quarter instance. You can specify the
quarter and year:

public Quarter(int quarter, Year year);

Creates a new Quarter instance. The quarter argument should be in the

range 1 to 4.

public Quarter(int quarter, int year);

Creates a new Quarter instance.

Alternatively, you can supply a java.util.Date:

public Quarter(Date time);

Creates a new Quarter instance.

A default constructor is provided:

public Quarter();

Creates a new Quarter instance based on the current system time.

38.8.4 Methods

To access the quarter and year:

public int getQuarter();

Returns the quarter (in the range 1 to 4).

public Year getYear();

Returns the year.

There is no method to set the quarter or the year, because this class is im-
mutable.

Given a Quarter object, you can create an instance representing the previous or
next quarter:

public RegularTimePeriod previous();

Returns the previous quarter, or null if the lower limit of the range is

reached.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 355

public RegularTimePeriod next();

Returns the next quarter, or null if the upper limit of the range is reached.

To convert a Quarter object to a String object:

public String toString();

Returns a string representing the quarter.

38.8.5 Notes

Points to note:

• the year can be in the range 1900 to 9999.

• this class is immutable. This is a requirement for all RegularTimePeriod
subclasses.

38.9 RegularTimePeriod

38.9.1 Overview

An abstract class that represents a time period that occurs at some regular in-
terval. A number of concrete subclasses have been implemented: Year, Quarter,
Month, Week, Day, Hour, Minute, Second, Millisecond and FixedMillisecond.

38.9.2 Time Zones

The time periods represented by this class and its subclasses typically “float”
with respect to any specific time zone. For example, if you define a Day object
to represent 1-Apr-2002, then that is the day it represents no matter where you
are in the world. Of course, against a real time line, 1-Apr-2002 in (say) New
Zealand is not the same as 1-Apr-2002 in (say) France. But sometimes you
want to treat them as if they were the same, and that is what this class does.1

38.9.3 Conversion To/From Date Objects

Occasionally you may want to convert a RegularTimePeriod object into an in-
stance of java.util.Date. The latter class represents a precise moment in real
time (as the number of milliseconds since January 1, 1970, 00:00:00.000 GMT),
so to do the conversion you have to “peg” the RegularTimePeriod instance to a
particular time zone.

The getStart() and getEnd() methods provide this facility, using the default
timezone. In addition, there are other methods to return the first, last and
middle milliseconds for the time period, using the default time zone, a user
supplied timezone, or a Calendar with the timezone preset.

1For example, an accountant might be adding up sales for all the subsidiaries of a multi-
national company. Sales on 1-Apr-2002 in New Zealand are added to sales on 1-Apr-2002 in
France, even though the real time periods are offset from one another.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 356

38.9.4 Methods

Given a RegularTimePeriod instance, you can create another instance represent-
ing the previous or next time period:

public abstract RegularTimePeriod previous();

Returns the previous time period, or null if the current time period is

the first in the supported range.

public abstract RegularTimePeriod next();

Returns the next time period, or null if the current time period is the

last in the supported range.

To assist in converting the time period to a java.util.Date object, the following
methods peg the time period to a particular time zone and return the first
and last millisecond of the time period (using the same encoding convention as
java.util.Date):

public long getFirstMillisecond();

Returns the first millisecond of the time period, evaluated using the de-

fault timezone.

public long getFirstMillisecond(TimeZone zone);

Returns the first millisecond of the time period, evaluated using a partic-

ular timezone.

public abstract long getFirstMillisecond(Calendar calendar);

Returns the first millisecond of the time period, evaluated using the sup-

plied calendar (which incorporates a timezone).

public long getMiddleMillisecond();

Returns the middle millisecond of the time period, evaluated using the

default timezone.

public long getMiddleMillisecond(TimeZone zone);

Returns the middle millisecond of the time period, evaluated using a par-

ticular timezone.

public long getMiddleMillisecond(Calendar calendar);

Returns the middle millisecond of the time period, evaluated using the

supplied calendar (which incorporates a timezone).

public long getLastMillisecond();

The last millisecond of the time period, evaluated using the default time-

zone.

public long getLastMillisecond(TimeZone zone);

Returns the last millisecond of the time period, evaluated using a partic-

ular timezone.

public abstract long getLastMillisecond(Calendar calendar);

Returns the last millisecond of the time period, evaluated using the sup-

plied calendar (which incorporates a timezone).

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 357

38.9.5 Notes

Points to note:

• this class and its subclasses can be used with the TimeSeries class.

• all RegularTimePeriod subclasses are required to be immutable.

• known subclasses include: Year, Quarter, Month, Week, Day, Hour, Minute,
Second, Millisecond and FixedMillisecond.

38.10 Second

38.10.1 Overview

A regular time period that is one second long. This class is designed to be used
with the TimeSeries class, but could also be used in other situations. Extends
RegularTimePeriod.

38.10.2 Constructors

There are several ways to create new instances of this class. You can specify
the minute and second:

public Second(int second, Minute minute);

Creates a new Second instance. The second argument should be in the

range 0 to 59.

Alternatively, you can supply a java.util.Date:

public Second(Date date);

Creates a new Second instance.

A default constructor is provided:

public Second();

Creates a new Second instance based on the current system time.

38.10.3 Methods

To access the second and minute:

public int getSecond();

Returns the second (in the range 0 to 59).

public Minute getMinute();

Returns the minute.

There is no method to set the second or the minute, because this class is im-
mutable.

Given a Second object, you can create an instance representing the previous
second or the next second:

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 358

public RegularTimePeriod previous();

Returns the previous second, or null if the lower limit of the range is

reached.

public TimePeriod next();

Returns the next second, or null if the upper limit of the range is reached.

38.10.4 Notes

The Second class is immutable. This is a requirement for all RegularTimePeriod
subclasses.

38.11 SimpleTimePeriod

38.11.1 Overview

A simple implementation of the TimePeriod interface.

38.11.2 Methods

To return the start and end dates:

public Date getStart();

Returns the start date for the period.

public Date getEnd();

Returns the end date for the period.

38.12 TimePeriod

38.12.1 Overview

A period of time defined by two java.util.Date instances representing the start
and end of the time period.

38.12.2 Methods

To get the start and end of the time period:

public Date getStart();

Returns the start of the time period.

public Date getEnd();

Returns the end of the time period.

38.12.3 Notes

This interface is implemented by:

• the SimpleTimePeriod class;

• the RegularTimePeriod base class and all its subclasses.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 359

38.13 TimePeriodAnchor

38.13.1 Overview

An enumeration of the three possible time period anchor positions:

• START - the start of the time period;

• MIDDLE - the middle of the time period;

• END - the end of the time period.

These are used by the TimeSeriesCollection and TimePeriodValuesCollection

classes to determine how x-values are derived from the underlying time periods
when these classes are used as XYDataset instances.

38.14 TimePeriodFormatException

38.14.1 Overview

An exception that can be thrown by the methods used to convert time periods
to strings, and vice versa.

38.15 TimePeriodValue

38.15.1 Overview

An object that represents a time period with an associated value, used to rep-
resent each item in a TimePeriodValues collection.

38.15.2 Constructors

To create a new TimePeriodValue object:

public TimePeriodValue(TimePeriod period, Number value);

Creates a new data item that associates a value (null permitted) with a

period.

For convenience, you can also use the following constructor:

public TimePeriodValue(TimePeriod period, double value);

Creates a new data item that associates a value with a period.

38.15.3 Methods

There are methods for accessing the period and value attributes. You can
update the value but not the period (this allows other classes to maintain a
collection of TimePeriodValue objects in some order that is based on the period,
without the risk of that order being compromised by a change to a particular
item).

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 360

38.16 TimePeriodValues

38.16.1 Overview

A collection of TimePeriodValue objects. The objects are maintained in the
order they are added. This class is used to represent one data series in a
TimePeriodValuesCollection.

38.17 TimePeriodValuesCollection

38.17.1 Overview

A collection of TimePeriodValues objects.

38.17.2 Usage

The TimePeriodValuesDemo application, included in the JFreeChart distribution,
provides an example of how to use this class.

38.17.3 Constructors

To create a new, empty collection:

public TimePeriodValuesCollection();

Creates a new empty collection. After creation, you can add TimePeriodValues

objects using the addSeries(...) method.

38.17.4 Methods

To add a new series to the collection:

public void addSeries(TimePeriodValues series);

Adds a series to the collection. A DatasetChangeEvent is sent to all

registered listeners.

38.17.5 Notes

This class implements the DomainInfo interface.

38.18 TimeSeries

38.18.1 Overview

A time series is a data structure that associates numeric values with particular
time periods. In other words, a collection of data values in the form (timeperiod,
value).

The time periods are represented by subclasses of RegularTimePeriod, includ-
ing Year, Quarter, Month, Week, Day, Hour, Minute, Second, Millisecond and
FixedMillisecond.

The values are represented by the Number class. The value null can be used to
indicate missing or unknown values.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 361

38.18.2 Usage

A time series may contain zero, one or many time periods with associated data
values. You can assign a null value to a time period, and you can skip time
periods completely. You cannot add duplicate time periods to a time series.
Different subclasses of RegularTimePeriod cannot be mixed within one time se-
ries.

Here is an example showing how to create a series with quarterly data:

TimeSeries series = new TimeSeries("Quarterly Data", Quarter.class);
series.add(new Quarter(1, 2001), 500.2);
series.add(new Quarter(2, 2001), 694.1);
series.add(new Quarter(3, 2001), 734.4);
series.add(new Quarter(4, 2001), 453.2);
series.add(new Quarter(1, 2002), 500.2);
series.add(new Quarter(2, 2002), null);
series.add(new Quarter(3, 2002), 734.4);
series.add(new Quarter(4, 2002), 453.2);

One or more TimeSeries objects can be aggregated to form a dataset for a chart
using the TimeSeriesCollection class.

The TimeSeriesDemo class provides an example of how to create a dataset for a
chart using this class.

38.18.3 Constructors

To create a named time series containing no data:

public TimeSeries(String name);

Creates an empty time series for daily data (that is, one value per day).

To create a time series for a frequency other than daily, use this constructor:

public TimeSeries(String name, Class timePeriodClass);

Creates an empty time series. The caller specifies the time period by

specifying the class of the RegularTimePeriod subclass (for example,

Month.class).

The final constructor allows you to specify descriptions for the domain and range
of the data:

public TimeSeries(String name, String domain, String range,

Class timePeriodClass);

Creates an empty time series. The caller specifies the time period, plus

strings describing the domain and range.

38.18.4 Attributes

Each instance of TimeSeries has the following attributes:

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 362

Attribute: Description:

name The name of the series (inherited from Series).
domain-description A description of the time period domain (for example,

“Quarter”). The default is “Time”.
range-description A description of the value range (for example,

“Price”). The default is “Value”.
maximum-item-count The maximum number of items that the series will

record. Once this limit is reached, the oldest observa-
tion is dropped whenever a new observation is added.

history-count The number of time periods defining a “window” for
the data. Starting with the latest observation, the
window extends back for this number of time periods.
Any data older than the window is discarded.

38.18.5 Methods

To find out how many data items are in a series:

public int getItemCount()

Returns the number of data items in the series.

To retrieve a particular value from a series by the index of the item:

public TimeSeriesDataItem getDataItem(int item)

Returns a data item. The item argument is a zero-based index.

To retrieve a particular value from a series by time period:

public TimeSeriesDataItem getDataItem(linkRegularTimePeriod period)

Returns the data item (if any) for the specified time period.

To add a value to a time series:

public void add(RegularTimePeriod period, Number value)

throws SeriesException;

Adds a new value (null permitted) to the time series. Throws an excep-

tion if the time period is not unique within the series.

You can create a time series that automatically discards “old” data. This is
done by specifying a history-count attribute:

public void setHistoryCount(int count);

Sets the history-count attribute, which is the number of time periods in the

“history” for the time series. When a new data value is added, any data

that is more than history-count periods old is automatically discarded.

38.18.6 Notes

You can calculate the moving average of a time series using the MovingAverage

utility class.

See Also
TimePeriod, TimeSeriesCollection.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 363

38.19 TimeSeriesCollection

38.19.1 Overview

A collection of TimeSeries objects. A key feature of this class is that it im-
plements the XYDataset interface, which means that you can use it to generate
time series charts easily. Further, it implements the IntervalXYDataset interface,
which is used by some specialised chart renderers.

The xPosition and domainIsPointsInTime attributes control aspects of the be-
haviour of this class when it is being used as a dataset—see section 38.19.4 for
details.

38.19.2 Usage

The TimeSeriesDemo application, included in the JFreeChart distribution, pro-
vides an example of how to use this class.

38.19.3 Constructors

To create an empty time series collection:

public TimeSeriesCollection();

Creates a new, empty collection.

To create a collection containing a single time series (more can be added later):

public TimeSeriesCollection(TimeSeries series);

Creates a new time series collection, containing a single time series.

Once a collection has been constructed, you are free to add additional time
series to the collection.

38.19.4 Attributes

When this class is used an an XYDataset, the xPosition attribute is used to
determine how each x-value is derived from the underlying time period for a
data item. You can choose to return the start, middle (the default) or end of
the time period as the x-value.

The domainIsPointsInTime flag controls the treatment of time periods in the
collection when the overall range of values is being calculated. There are two
possibilities:

• consider each time period as a single point, which is the case when the
collection is being used as an XYDataset;

• consider each time period as a range of values, which is the case when the
collection is being used as an IntervalXYDataset.

If the domainIsPointsInTime flag is set to TRUE (the default), the former treat-
ment is applied, and if it is set to FALSE the latter treatment is applied.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 364

38.19.5 Methods

To find out how many TimeSeries objects are in the collection:

public int getSeriesCount();

Returns the number of time series objects in the collection.

To get a reference to a particular series:

public TimeSeries getSeries(int series);

Returns a reference to a series in the collection.

To get the name of a series:

public String getSeriesName(int series);

Returns the name of a series in the collection. This method is provided

for convenience.

To add a series to the collection:

public void addSeries(TimeSeries series);

Adds the series to the collection. Registered listeners are notified that the

collection has changed.

To get the number of items in a series:

public int getItemCount(int series);

Returns the number of items in a series. This method is implemented as

a requirement of the XYDataset interface.

To alter the way that x-values are derived from the underlying time period:

public void setXPosition(TimePeriodAnchor anchor);

Sets the position (START, MIDDLE, or END) within each time period that is

used as the x-value for a data item.

The DomainInfo interface requires the following method, which returns the over-
all range of x-values contained in the collection:

public Range getDomainRange();

Returns the overall range of x-values contained in the collection. The

result is affected by the current setting of the domainIsPointsInTime

attribute—see section 38.19.4 for details.

38.19.6 Notes

Points to note:

• this class extends AbstractSeriesDataset to provide some of the basic
series information.

• this class implements the XYDataset and IntervalXYDataset interfaces.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 365

38.20 TimeSeriesDataItem

38.20.1 Overview

This class associates a Number with a RegularTimePeriod, and is used by the
TimeSeries class to record individual data items.

38.20.2 Usage

You won’t normally use this class directly. The TimeSeries class will create
instances as required.

38.20.3 Notes

This class has a number of important features:

• the class implements the Comparable interface, allowing data items to be
sorted into time order using standard Java API calls.

• instances of this class can be easily cloned.

• the time period element is immutable, so that when a collection of objects
is held in sorted order, the sorted property cannot inadvertently be broken.

• instances of this class can be easily cloned.

38.21 Week

38.21.1 Overview

A subclass of RegularTimePeriod that represents one week in a particular year.
This class is designed to be used with the TimeSeries class, but (hopefully) is
general enough to be used in other situations.

38.21.2 Constructors

To construct a Week instance:

public Week(int week, Year year);

Creates a new Week instance. The week argument should be in the range

1 to 52.

public Week(int week, int year);

Creates a new Week instance.

To construct a Week instance based on a java.util.Date:

public Week(Date time);

Creates a new Week instance.

A default constructor is provided:

public Week();

Creates a new Week instance based on the current system time.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 366

38.21.3 Methods

To access the week:

public int getWeek();

Returns the week (in the range 1 to 52).

To access the year:

public Year getYear();

Returns the year.

There is no method to set the week or the year, because this class is immutable.

Given a Week object, you can create an instance representing the previous week
or the next week:

public RegularTimePeriod previous();

Returns the previous week, or null if the lower limit of the range is reached.

public RegularTimePeriod next();

Returns the next week, or null if the upper limit of the range is reached.

To convert a Week object to a String object:

public String toString();

Returns a string representing the week.

38.21.4 Notes

In the current implementation, the year can be in the range 1900 to 9999.

The Week class is immutable. This is a requirement for all RegularTimePeriod

subclasses.

See Also:
Year.

38.22 Year

38.22.1 Overview

A class that represents a calendar year (for example, “2003”). This class extends
RegularTimePeriod.

38.22.2 Usage

A typical use for this class is for creating TimeSeries objects for annual data.
For example:

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 367

TimeSeries t1 = new TimeSeries("Series 1", "Year", "Value", Year.class);
t1.add(new Year(1990), new Double(50.1));
t1.add(new Year(1991), new Double(12.3));
t1.add(new Year(1992), new Double(23.9));
t1.add(new Year(1993), new Double(83.4));
t1.add(new Year(1994), new Double(-34.7));
t1.add(new Year(1995), new Double(76.5));
t1.add(new Year(1996), new Double(10.0));
t1.add(new Year(1997), new Double(-14.7));
t1.add(new Year(1998), new Double(43.9));
t1.add(new Year(1999), new Double(49.6));
t1.add(new Year(2000), new Double(37.2));
t1.add(new Year(2001), new Double(17.1));

38.22.3 Constructors

To create a new year:

public Year(int year);

Creates a new Year instance. The year argument should be in the range

1900 to 9999.

To construct a Year instance based on a java.util.Date:

public Year(Date time);

Creates a new Year instance.

A default constructor is provided:

public Year();

Creates a new Year instance based on the current system time.

38.22.4 Methods

To access the year:

public int getYear();

Returns the year.

There is no method to set the year, because this class is immutable.

Given a Year object, you can create an instance representing the previous year:

public RegularTimePeriod previous();

Returns the previous year, or null if the lower limit of the range is reached.

...or the next:

public RegularTimePeriod next();

Returns the next year, or null if the upper limit of the range is reached.

To convert a Year object to a String object:

public String toString();

Returns a string representing the year.

To convert a String object to a Year object:

public static Year parseYear(String s) throws TimePeriodFormatException;

Parses the string and, if possible, returns a Year object.

CHAPTER 38. PACKAGE: ORG.JFREE.DATA.TIME 368

38.22.5 Notes

Some points to note:

• in the current implementation, the year can be in the range 1900 to 9999.

• the Year class is immutable—this is a requirement for all RegularTimePeriod
subclasses.

Chapter 39

Package: org.jfree.data.xml

39.1 Introduction

This package contains interfaces and classes that provide basic support for
reading datasets from XML files. In the current release, there is support for
PieDataset and CategoryDataset. It is intended that other dataset types will be
supported in the future.

39.2 Usage

In normal usage, you will access the facilities provided by this package via
methods in the DatasetReader class. The following examples are provided in the
JFreeChart distribution:

• XMLBarChartDemo.java

• XMLPieChartDemo.java

You will find these demos in the src/org/jfree/chart/demo directory.

39.3 CategoryDatasetHandler

39.3.1 Overview

A SAX handler that creates a CategoryDataset by processing the elements in
an XML document.

39.3.2 Usage

In most cases, you won’t need to use this class directly. Instead, use the
DatasetReader class. For an example, see the XMLBarChartDemo included in the
JFreeChart distribution.

369

CHAPTER 39. PACKAGE: ORG.JFREE.DATA.XML 370

39.3.3 XML Format

The format supported by the handler is illustrated by the following example:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Sample data for JFreeChart. -->

<CategoryDataset>

<Series name = "Series 1">
<Item>

<Key>Category 1</Key>
<Value>15.4</Value>

</Item>
<Item>

<Key>Category 2</Key>
<Value>12.7</Value>

</Item>
<Item>

<Key>Category 3</Key>
<Value>5.7</Value>

</Item>
<Item>

<Key>Category 4</Key>
<Value>9.1</Value>

</Item>
</Series>

<Series name = "Series 2">
<Item>

<Key>Category 1</Key>
<Value>45.4</Value>

</Item>
<Item>

<Key>Category 2</Key>
<Value>73.7</Value>

</Item>
<Item>

<Key>Category 3</Key>
<Value>23.7</Value>

</Item>
<Item>

<Key>Category 4</Key>
<Value>19.4</Value>

</Item>
</Series>

</CategoryDataset>

The <CategoryDataset> element can contain any number of <Series> elements,
and each <Series> element can contain any number of <Item> elements.

39.3.4 Notes

This class delegates work to the CategorySeriesHandler class.

39.4 CategorySeriesHandler

39.4.1 Overview

A SAX handler that reads a <Series> sub-element within a category dataset
XML file. Work is delegated to this class by the CategoryDatasetHandler class.

CHAPTER 39. PACKAGE: ORG.JFREE.DATA.XML 371

39.5 DatasetReader

39.5.1 Overview

This class contains utility methods for reading datasets from XML files. In the
current release, support is included for PieDataset and CategoryDataset.

39.5.2 Usage

Two applications (XMLPieChartDemo and XMLBarChartDemo) that demonstrate how
to use this class are included in the JFreeChart distribution.

39.6 DatasetTags

39.6.1 Overview

An interface that defines constants for the literal text used in the element tags
within the XML documents.

Attribute: Value:

PIEDATASET TAG PieDataset

CATEGORYDATASET TAG CategoryDataset

SERIES TAG Series

ITEM TAG Item

KEY TAG Key

VALUE TAG Value

Table 39.1: Attributes for the DatasetTags interface

39.7 ItemHandler

39.7.1 Overview

A SAX handler that reads a key/value pair.

39.7.2 Usage

You should not need to use this class directly. Work is delegated to this handler
by the PieDatasetHandler class.

39.7.3 Notes

This class delegates some work to the KeyHandler class.

39.8 KeyHandler

39.8.1 Overview

A SAX handler that reads a key element from an XML file.

CHAPTER 39. PACKAGE: ORG.JFREE.DATA.XML 372

39.8.2 Usage

You should not need to use this class directly. Work is delegated to this class
by the ItemHandler class.

39.8.3 Notes

A key can be any instance of Comparable, but the handler always uses the String

class to represent keys.

39.9 PieDatasetHandler

39.9.1 Overview

A SAX handler for reading a PieDataset from an XML file.

39.9.2 Usage

In most cases, you won’t need to use this class directly. Instead, use the
DatasetReader class. For an example, see the XMLPieChartDemo application in-
cluded in the JFreeChart distribution.

39.9.3 XML Format

The format supported by the handler is illustrated by the following example:

<?xml version="1.0" encoding="UTF-8"?>

<!-- A sample pie dataset for JFreeChart. -->

<PieDataset>
<Item>

<Key>Java</Key>
<Value>15.4</Value>

</Item>
<Item>

<Key>C++</Key>
<Value>12.7</Value>

</Item>
<Item>

<Key>PHP</Key>
<Value>5.7</Value>

</Item>
<Item>

<Key>Python</Key>
<Value>9.1</Value>

</Item>
</PieDataset>

The <PieDataset> element can contain any number of <Item> elements.

39.9.4 Notes

This class delegates some work to the ItemHandler class.

CHAPTER 39. PACKAGE: ORG.JFREE.DATA.XML 373

39.10 RootHandler

39.10.1 Overview

The base handler class that provides support for a “sub-handler stack”. While
processing an XML element, a handler can push a sub-handler onto the stack
and delegate work to it (usually the processing of a sub-element). When the
sub-handler is finished its work, it gets popped from the stack, and the original
handler resumes control. In this way, nested elements within the XML file can
be processed by different classes.

39.11 ValueHandler

39.11.1 Overview

A SAX handler that processes numerical values.

Appendix A

JCommon

A.1 Introduction

JFreeChart makes use of classes in the JCommon class library. The JCommon
runtime jar file is included in the JFreeChart distribution. If you require the
source code and/or documentation, you can download these from:

http://www.jfree.org/jcommon/index.html

Selected JCommon classes are documented here because they are used exten-
sively within JFreeChart.

A.2 PublicCloneable

A.2.1 Overview

An interface for objects with a clone() method. This is used in JFreeChart to
“look behind” an interface to see if the class implementing the interface can be
cloned.

A.2.2 Methods

This interface declares a single method:

public Object clone() throws CloneNotSupportedException;

Creates a clone of the object.

A.3 RectangleAnchor

A.3.1 Overview

This class defines an enumeration of nine common anchor points within a rect-
angle. These points include the four corners of the rectangle, the four mid-points
of each rectangle edge, and the center point:

374

APPENDIX A. JCOMMON 375

ID: Description:

RectangleAnchor.TOP The midpoint of the rectangle’s top edge.
RectangleAnchor.BOTTOM The midpoint of the rectangle’s bottom edge.
RectangleAnchor.LEFT The midpoint of the rectangle’s left edge.
RectangleAnchor.RIGHT The midpoint of the rectangle’s right edge.
RectangleAnchor.TOP LEFT The top-left corner of the rectangle.
RectangleAnchor.TOP RIGHT The top-right corner of the rectangle.
RectangleAnchor.BOTTOM LEFT The bottom-left corner of the rectangle.
RectangleAnchor.BOTTOM RIGHT The bottom-right corner of the rectangle.
RectangleAnchor.CENTER The center of the rectangle.

Table A.1: Constants defined by RectangleAnchor

A.4 RectangleEdge

A.4.1 Overview

This class defines an enumeration of the four edges of a rectangle. It is used
to specify the location of objects (for example, axes in a plot) relative to a
rectangle:

ID: Description:

RectangleEdge.TOP The top edge.
RectangleEdge.BOTTOM The bottom edge.
RectangleEdge.LEFT The left edge.
RectangleEdge.RIGHT The right edge.

Table A.2: Constants defined by RectangleEdge

A.5 Spacer

A.5.1 Overview

This class is used to specify left, right, top and bottom margins relative to an
arbitrary rectangle. The space can be specified in absolute terms (points, or 1/72
inch) or relative terms (a percentage of the height or width of the rectangle).

A.5.2 Constructor

To create a new Spacer:

public Spacer(int type, double left, double top, double right,

double left);

Creates a new spacer. The type can be ABSOLUTE or RELATIVE. The re-

maining arguments are interpreted as points (1/72 inch) for absolute spac-

ing, or percentages for relative spacing.

A.5.3 Methods

To get the amount of spacing for the left side:

APPENDIX A. JCOMMON 376

public double getLeftSpace(double width);

Returns the amount of spacing for the left side.

To get the amount of spacing for the right side:

public double getRightSpace(double width);

Returns the amount of spacing for the right side.

In both of the above methods, the width argument refers to the width of a
rectangle that the space calculation is relative to. It is ignored if the space is
specified in absolute terms.

To get the amount of spacing for the top side:

public double getTopSpace(double height);

Returns the amount of spacing for the top side.

To get the amount of spacing for the bottom side:

public double getBottomSpace(double height);

Returns the amount of spacing for the top side.

In both of the above methods, the height argument refers to the height of a
rectangle that the space calculation is relative to. It is ignored if the space is
specified in absolute terms.

A given rectangle can be “shrunk” by a spacer object:

public void trim(Rectangle2D area);

Reduces the dimensions of the specified area, according to the space set-

tings.

A.5.4 Notes

Throughout JFreeChart, the Insets class has been used to specify (absolute)
padding information. This class is intended to replace the use of Insets to allow
both absolute and relative settings.

A.6 TextAnchor

A.6.1 Overview

This class defines an enumeration of the anchor points relative to the bounds
of a text string (see table A.3). It is used to specify an anchor point for text
alignment and rotation.

APPENDIX A. JCOMMON 377

ID: Description:

TextAnchor.TOP LEFT The top left corner.
TextAnchor.TOP CENTER The center point on the top edge.
TextAnchor.TOP RIGHT The top right corner.
TextAnchor.CENTER LEFT The center point on the left edge.
TextAnchor.CENTER The center point of the text.
TextAnchor.CENTER RIGHT The center point on the right edge.
TextAnchor.HALF ASCENT LEFT The half ascent point on the left edge.
TextAnchor.HALF ASCENT CENTER The center point along the half ascent line.
TextAnchor.HALF ASCENT RIGHT The half ascent point on the right edge.
TextAnchor.BASELINE LEFT The baseline point on the left edge.
TextAnchor.BASELINE CENTER The center point along the half ascent line.
TextAnchor.BASELINE RIGHT The baseline point on the right edge.
TextAnchor.BOTTOM LEFT The bottom left corner.
TextAnchor.BOTTOM CENTER The center point on the bottom edge.
TextAnchor.BOTTOM RIGHT The bottom right corner.

Table A.3: Constants defined by TextAnchor

Appendix B

The GNU Lesser General
Public License

B.1 Introduction

JFreeChart is licensed under the terms of the GNU Lesser General Public Li-
cense (LGPL). The full text of this license is reproduced in this appendix. You
should read and understand this license before using JFreeChart in your own
projects.

If you are not familiar with the idea of free software, you can find out more at
the Free Software Foundation’s web site:

http://www.fsf.org

Please send e-mail to david.gilbert@object-refinery.com if you have any
questions about the licensing of JFreeChart (but please read section B.3 first).

B.2 The License

The following license has been used for the distribution of the JFreeChart class
library:
GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to
share and change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages–typically libraries–of the Free Software Foundation and other authors who decide to
use it. You can use it too, but we suggest you first think carefully about whether this license

378

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 379

or the ordinary General Public License is the better strategy to use in any particular case,
based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of it in new free programs;
and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give
the recipients all the rights that we gave you. You must make sure that they, too, receive or
can get the source code. If you link other code with the library, you must provide complete
object files to the recipients, so that they can relink them with the library after making changes
to the library and recompiling it. And you must show them these terms so they know their
rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify the
library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License. This license, the GNU Lesser General Public License, applies to certain designated
libraries, and is quite different from the ordinary General Public License. We use this license
for certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the entire
combination fits its criteria of freedom. The Lesser General Public License permits more lax
criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages are
the reason we use the ordinary General Public License for many libraries. However, the Lesser
license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free
programs must be allowed to use the library. A more frequent case is that a free library does
the same job as widely used non-free libraries. In this case, there is little to gain by limiting
the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the GNU
C Library in non-free programs enables many more people to use the whole GNU operating
system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close
attention to the difference between a “work based on the library” and a “work that uses
the library”. The former contains code derived from the library, whereas the latter must be
combined with the library in order to run.

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 380

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODI-
FICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called “this License”). Each
licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be con-
veniently linked with application programs (which use some of those functions and data) to
form executables.

The “Library”, below, refers to any such software library or work which has been distributed
under these terms. A “work based on the Library” means either the Library or any derivative
work under copyright law: that is to say, a work containing the Library or a portion of it, either
verbatim or with modifications and/or translated straightforwardly into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true
depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this
License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

* a) The modified work must itself be a software library.

* b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

* c) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

* d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when the
facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must be optional: if the applica-
tion does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Library.

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 381

In addition, mere aggregation of another work not based on the Library with the Library (or
with a work based on the Library) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of
this License to a given copy of the Library. To do this, you must alter all the notices that
refer to this License, so that they refer to the ordinary GNU General Public License, version
2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that
copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange.

If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement
to distribute the source code, even though third parties are not compelled to copy the source
along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a “work that uses the
Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls
outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is
a derivative of the Library (because it contains portions of the Library), rather than a “work
that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not
precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for
the work under the terms of Section 6. Any executables containing that work also fall under
Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses the
Library” with the Library to produce a work containing portions of the Library, and distribute
that work under terms of your choice, provided that the terms permit modification of the work
for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to the
copy of this License. Also, you must do one of these things:

* a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with
the complete machine-readable “work that uses the Library”, as object code and/or source
code, so that the user can modify the Library and then relink to produce a modified executable
containing the modified Library. (It is understood that the user who changes the contents of

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 382

definitions files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

* b) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will op-
erate properly with a modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work was made with.

* c) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

* d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

* e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such
a combined library, provided that the separate distribution of the work based on the Library
and of the other library facilities is otherwise permitted, and provided that you do these two
things:

* a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of the
Sections above.

* b) Give prominent notice with the combined library of the fact that part of it is a work based
on the Library, and explaining where to find the accompanying uncombined form of the same
work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except

as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Library (or any work based on the Library), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Library at all. For example, if a patent license would
not permit royalty-free redistribution of the Library by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Library.

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 383

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply, and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number
of this License which applies to it and “any later version”, you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose
any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LI-
ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 384

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and each
file should have at least the ”copyright” line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for

more details.

You should have received a copy of the GNU Lesser General Public License

along with this library; if not, write to the Free Software Foundation,

Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a ”copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 385

B.3 Frequently Asked Questions

B.3.1 Introduction

Some of the most frequently asked questions about JFreeChart concern the
license. I’ve published this FAQ to help developers understand my choice of
license for JFreeChart. If anything is unclear, or technically incorrect, please
e-mail me (david.gilbert@object-refinery.com) and I will try to improve
the text.

B.3.2 Questions and Answers

1. “Can I incorporate JFreeChart into a proprietary (closed-source) applica-
tion?”

Yes, the GNU Lesser General Public License (LGPL) is specifically designed to
allow this.

2. “Do I have to pay a license fee to use JFreeChart?”

No, JFreeChart is free software. You are not required to pay a fee to use
JFreeChart. All that we ask is that you comply with the terms of the license,
which (for most developers) is not very difficult.

If you want to make a financial contribution to the JFreeChart project, you can
buy a copy of the JFreeChart Developer Guide from Object Refinery Limited.
This is appreciated, but not required.

3. “If I use JFreeChart, do I have to release the source code for my application
under the terms of the LGPL?”

No, you can choose whatever license you wish for your software. But when
you distribute your application, you must include the complete source code for
JFreeChart—including any changes you make to it—under the terms of the
LGPL. Your users end up with the same rights in relation to JFreeChart as you
have been granted under the LGPL.

4. “My users will never look at the source code, and if they did, they wouldn’t
know what to do with it...why do I have to give it to them?”

The important point is that your users have access to the source code—whether
or not they choose to use it is up to them. Bear in mind that non-technical
users can make use of the source code by hiring someone else to work on it for
them.

5. “What are the steps I must follow to release software that incorporates
JFreeChart?”

The steps are listed in the license (see section 6 especially). The most important
things are:

• include a notice in your software that it uses the JFreeChart class library,
and that the library is covered by the LGPL;

• include a copy of the LGPL so your users understand that JFreeChart
is distributed WITHOUT WARRANTY, and the rights that they have
under the license;

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 386

• include the complete source code for the version of the library that you
are distributing (or a written offer to supply it on demand);

6. “I want to display the JFreeChart copyright notice, what form should it take?”

Try this:

This software incorporates JFreeChart, (C)opyright 2000-2004 by
Object Refinery Limited and Contributors.

7. “The LGPL is unnecessarily complicated!”

OK, that’s not a question, but the point has been raised by a few developers.

Yes, the LGPL is complicated, but only out of necessity. The complexity is
mostly related to the difficulty of defining (in precise legal terms) the relationship
between a free software library and a proprietary application that uses the
library.

A useful first step towards understanding the LGPL is to read the GNU General
Public License (GPL). It is a much simpler license, because it does not allow free
software to be combined with non-free (or proprietary) software. The LGPL is
a superset of the GPL (you are free to switch from the LGPL to the GPL at
any time), but slightly more “relaxed” in that it allows you to combine free and
non-free software.

A final note, some of the terminology in the LGPL is easier to understand
if you keep in mind that the license was originally developed with statically-
linked C programs in mind. Ensuring that it is possible to relink a modified free
library with a non-free application, adds significant complexity to the license.
For Java libraries, where code is dynamically linked, modifying and rebuilding
a free library for use with a non-free application needn’t be such a big issue,
particularly if the free library resides in its own jar file.

8. “Who developed the license?”

The license was developed by the Free Software Foundation and has been
adopted by many thousands of free software projects. You can find out more
information at the Free Software Foundation website:

http://www.fsf.org

The Free Software Foundation performs important work, please consider sup-
porting them financially.

APPENDIX B. THE GNU LESSER GENERAL PUBLIC LICENSE 387

9. “Have you considered releasing JFreeChart under a different license, such as
an “Apache-style” license?”

Yes, a range of licenses was considered for JFreeChart, but now that the choice
has been made there are no plans to change the license in the future.

A publication by Bruce Perens was especially helpful in comparing the available
licenses:

http://www.oreilly.com/catalog/opensources/book/perens.html

In the end, the LGPL was chosen because it is the closest fit in terms of my
goals for JFreeChart. It is not a perfect license, but there is nothing else that
comes close (except the GPL) in terms of protecting the freedom of JFreeChart
for everyone to use. Also, the LGPL is very widely used, and many developers
are already familiar with its requirements.

Some other open source licenses (for example the Apache Software License)
allow open source software to be packaged and redistributed without source
code. These licenses offer more convenience to developers (especially in large
companies) than the LGPL, but they allow a path from open source software to
closed source software, which is not something I want to allow for JFreeChart.

Index

AbstractCategoryItemRenderer, 240
AbstractDataset, 294
AbstractRenderer, 243
AbstractSeriesDataset, 295
AbstractXYItemRenderer, 246
acknowledgements, 15
Acrobat PDF, 102
annotations, 150

XYPlot, 239
anti-aliasing, 63
applets, 116
AreaRenderer, 247
Axis, 154
AxisChangeEvent, 185
AxisChangeListener, 185
AxisCollection, 157
AxisConstants, 157
AxisLocation, 157
AxisSpace, 158
AxisState, 159

background image, 63
BarRenderer, 248
BarRenderer3D, 251
Batik, 112
border, 61
BoxAndWhiskerCalculator, 337
BoxAndWhiskerCategoryDataset, 338
BoxAndWhiskerItem, 339
BoxAndWhiskerRenderer, 252
BoxAndWhiskerXYDataset, 340
bubble charts, 272

CandlestickRenderer, 253
catcode.com, 141
category axis

margins, 160
CategoryAnchor, 159
CategoryAnnotation, 150
CategoryAxis, 159
CategoryAxis3D, 163

CategoryDataset, 295
CategoryItemEntity, 180
CategoryItemRenderer, 254
CategoryItemRendererState, 257
CategoryLabelPosition, 163
CategoryLabelPositions, 164
CategoryPlot, 210
CategoryTextAnnotation, 150
CategoryTick, 165
CategoryToPieDataset, 296
Cewolf, 131
chart

background color, 62
background image, 63
border, 61
subtitles, 62
title, 62

chart entities, 180
ChartChangeEvent, 186
ChartChangeListener, 186
ChartColor, 133
ChartEntity, 181
ChartFactory, 133
ChartFrame, 136
ChartMouseEvent, 136
ChartMouseListener, 137
ChartPanel, 137
ChartPanelConstants, 139
ChartProgressEvent, 186
ChartProgressListener, 187
ChartRenderingInfo, 139
ChartUtilities, 140
ClipPath, 142
ClusteredXYBarRenderer, 258
ColorBar, 165
CombinationDataset, 297
combined charts, 91
CombinedDataset, 297
CombinedDomainCategoryPlot, 213
CombinedDomainXYPlot, 213
CombinedRangeCategoryPlot, 214

388

INDEX 389

CombinedRangeXYPlot, 215
comments and suggestions, 15
CompassFormat, 165
CompassPlot, 216
compiling JFreeChart, 33
ContourDataset, 297
ContourEntity, 182
ContourPlot, 216
ContourPlotUtilities, 216
ContourValuePlot, 217
contributors, 15
CrosshairState, 217

Dataset, 298
DatasetChangeEvent, 298
DatasetChangeListener, 299
DatasetGroup, 299
DatasetUtilities, 300
DataUtilities, 301
DateAxis, 166
DateRange, 301
DateTick, 168
DateTickMarkPosition, 168
DateTickUnit, 168
Day, 346
DefaultBoxAndWhiskerCategoryDataset,

341
DefaultBoxAndWhiskerXYDataset,

341
DefaultCategoryDataset, 302
DefaultContourDataset, 302
DefaultDrawingSupplier, 217
DefaultHighLowDataset, 303
DefaultIntervalCategoryDataset,

303
DefaultKeyedValue, 303
DefaultKeyedValueDataset, 304
DefaultKeyedValues, 304
DefaultKeyedValues2D, 305
DefaultKeyedValues2DDataset, 305
DefaultKeyedValuesDataset, 304
DefaultMeterDataset, 305
DefaultPieDataset, 305
DefaultPolarItemRenderer, 258
DefaultStatisticalCategoryDataset,

342
DefaultValueDataset, 306
DefaultWindDataset, 306
demo

running, 33

distribution
contents, 32

domain axis, 154
DomainInfo, 306
download, 31
DrawingSupplier, 218
dynamic charts, 67

Effect3D, 143
entities, 180
EntityCollection, 182
events, 185
exporting charts

to JPEG, 141
to PDF, 102
to PNG, 140
to SVG, 112

FastScatterPlot, 218
features, 13
FixedMillisecond, 348
Free Software Foundation, 378
Function2D, 307

GanttCategoryDataset, 334
GanttRenderer, 258
gridlines

XYPlot, 238

headless Java, 131
HighLowDataset, 307
HighLowRenderer, 260
HistogramBin, 342
HistogramDataset, 342
HistogramType, 343
home page, 14
Hour, 349
HTML image map, 142

image maps, 142
images

JPEG format, 141
PNG format, 140

IntervalBarRenderer, 261
IntervalCategoryDataset, 308
IntervalMarker, 220
IntervalXYDataset, 309
IntervalXYZDataset, 310
item labels, 75
ItemLabelAnchor, 196
ItemLabelPosition, 197

INDEX 390

iText, 102

Javadoc, 33
JDBCCategoryDataset, 310
JDBCPieDataset, 311
JDBCXYDataset, 312
JFreeChart, 143

applets, 116
license, 378
overview and features, 13
sample charts, 16
servlets, 121

JPEG, 141
JSP, 131

KeyedObject, 313
KeyedObjects, 313
KeyedObjects2D, 313
KeyedValue, 313
KeyedValueComparator, 314
KeyedValueComparatorType, 314
KeyedValueDataset, 314
KeyedValues, 314
KeyedValues2D, 315
KeyedValues2DDataset, 316
KeyedValuesDataset, 315

Legend, 146
LegendChangeEvent, 187
LegendChangeListener, 187
LevelRenderer, 261
LGPL, 378
license, 378

frequently asked questions, 385
LineAndShapeRenderer, 262
linear regression, 323
LineFunction2D, 316
LogarithmicAxis, 170

Marker, 220
MarkerAxisBand, 170
MeanAndStandardDeviation, 317
MeterDataset, 317
MeterPlot, 221
Millisecond, 350
MinMaxCategoryRenderer, 263
Minute, 351
Month, 352
MovingAverage, 319
MultiIntervalCategoryDataset, 320

MultiplePiePlot, 223

NonGridContourDataset, 321
NoOutlierException, 264
NumberAxis, 170
NumberAxis3D, 173
NumberTick, 173
NumberTickUnit, 173

Outlier, 264
OutlierList, 264
OutlierListCollection, 264

PieDataset, 321
PiePlot, 224
PiePlot3D, 228
PieSectionEntity, 183
PieSectionLabelGenerator, 198
PieToolTipGenerator, 198
Plot, 229
PlotChangeEvent, 187
PlotChangeListener, 188
PlotOrientation, 231
PlotRenderingInfo, 232
PNG, 140
PolarChartPanel, 148
PolarItemRenderer, 264
PolarPlot, 232
power regression, 323
PowerFunction2D, 321
PublicCloneable, 374

Quarter, 353

Range, 322
range axis, 154
RangeInfo, 323
RangeType, 265
real time charts, 68
RectangleAnchor, 374
RectangleEdge, 375
Regression, 323
RegularTimePeriod, 355
RendererChangeEvent, 188
RendererChangeListener, 189
rendering hints, 63

sample charts, 16
Second, 357
SegmentedTimeline, 174
Series, 324

INDEX 391

SeriesChangeEvent, 325
SeriesChangeListener, 325
SeriesDataset, 325
SeriesException, 326
servlets, 121

deploying, 129
SimpleTimePeriod, 358
Spacer, 375
StackedAreaRenderer, 265
StackedBarRenderer, 266
StackedBarRenderer3D, 267
StackedXYAreaRenderer, 267
StandardEntityCollection, 183
StandardLegend, 148
StandardPieItemLabelGenerator,

201
StandardXYItemRenderer, 268
StatisticalBarRenderer, 269
StatisticalCategoryDataset, 343
Statistics, 344
step charts, 277
subtitles, 62
SVG, 112
SymbolicAxis, 175
SymbolicTickUnit, 175

TableXYDataset, 326
Task, 335
TaskSeries, 336
TaskSeriesCollection, 336
TextAnchor, 376
TextAnnotation, 151
ThermometerPlot, 233
Tick, 175
TickUnit, 175
TickUnits, 176
Timeline, 176
TimePeriod, 358
TimePeriodAnchor, 359
TimePeriodFormatException, 359
TimePeriodValue, 359
TimePeriodValues, 360
TimePeriodValuesCollection, 360
TimeSeries, 360
TimeSeriesCollection, 363
TimeSeriesDataItem, 365
TimeSeriesTableModel, 326
title, 62
TitleChangeEvent, 189
TitleChangeListener, 189

tooltips, 72

Unicode, 108
unpacking the JFreeChart distribu-

tion, 32

Value, 326
ValueAxis, 177
ValueDataset, 327
ValueMarker, 235
Values, 327
Values2D, 328

Week, 365
WindDataset, 328
WindItemRenderer, 269

X11, 131
XisSymbolic, 328
XYAnnotation, 151
XYAreaRenderer, 270
XYBarDataset, 329
XYBarRenderer, 271
XYBoxAndWhiskerRenderer, 272
XYBubbleRenderer, 272
XYDataItem, 329
XYDataset, 329
XYDifferenceRenderer, 273
XYDotRenderer, 273
XYDrawableAnnotation, 152
XYItemEntity, 184
XYItemRenderer, 274
XYLineAndShapeRenderer, 276
XYLineAnnotation, 152
XYPlot, 236
XYPointerAnnotation, 152
XYSeries, 330
XYSeriesCollection, 331
XYStepRenderer, 277
XYTextAnnotation, 153
XYZDataset, 332

Year, 366
YIntervalRenderer, 278
YisSymbolic, 333

	Introduction
	What is JFreeChart?
	This Document
	Acknowledgements
	Comments and Suggestions

	Sample Charts
	Introduction
	Pie Charts
	Bar Charts
	Line Chart
	XY Plots
	Time Series Charts
	Histograms
	Area Charts
	Difference Chart
	Step Chart
	Gantt Chart
	Multiple Axis Charts
	Combined and Overlaid Charts
	Future Development

	Downloading and Installing JFreeChart
	Introduction
	Download
	Unpacking the Files
	Running the Demonstration Applications
	Compiling the Source
	Generating the Javadoc Documentation

	Using JFreeChart
	Overview
	Creating Your First Chart

	Bar Charts
	Introduction
	A Bar Chart
	Customising Bar Charts

	Line Charts
	Introduction
	A Line Chart Based On A Category Dataset

	Time Series Charts
	Introduction
	Time Series Charts

	Customising Charts
	Introduction
	Chart Attributes
	Plot Attributes
	Axis Attributes

	Dynamic Charts
	Overview
	Background
	The Demo Application

	Tooltips
	Overview
	Generating Tool Tips
	Collecting Tool Tips
	Displaying Tool Tips
	Disabling Tool Tips
	Customising Tool Tips

	Item Labels
	Introduction
	Displaying Item Labels
	Item Label Appearance
	Item Label Positioning
	Customising the Item Label Text
	Example 1 - Values Above a Threshold
	Example 2 - Displaying Percentages

	Using Multiple Axes
	Introduction
	An Example
	Hints and Tips

	Combined Charts
	Introduction
	Combined Domain Category Plot
	Combined Range Category Plot
	Combined Domain XY Plot
	Combined Range XY Plot

	Datasets and JDBC
	Introduction
	About JDBC
	Sample Data
	PostgreSQL
	The JDBC Driver
	The Demo Applications

	Exporting Charts to Acrobat PDF
	Introduction
	What is Acrobat PDF?
	iText
	Graphics2D
	Getting Started
	The Application
	Viewing the PDF File
	Unicode Characters

	Exporting Charts to SVG Format
	Introduction
	Background
	A Sample Application

	Applets
	Introduction
	Issues
	A Sample Applet

	Servlets
	Introduction
	A Simple Servlet
	Deploying the Servlet
	Embedding Charts in HTML Pages
	Supporting Files
	Deploying Servlets

	Miscellaneous
	Introduction
	X11 / Headless Java
	Java Server Pages

	Packages
	Overview

	Package: org.jfree.chart
	Overview
	ChartColor
	ChartFactory
	ChartFrame
	ChartMouseEvent
	ChartMouseListener
	ChartPanel
	ChartPanelConstants
	ChartRenderingInfo
	ChartUtilities
	ClipPath
	DrawableLegendItem
	Effect3D
	JFreeChart
	JFreeChartConstants
	Legend
	LegendItem
	LegendItemCollection
	LegendItemLayout
	MeterLegend
	PolarChartPanel
	StandardLegend
	StandardLegendItemLayout

	Package: org.jfree.chart.annotations
	Overview
	CategoryAnnotation
	CategoryTextAnnotation
	TextAnnotation
	XYAnnotation
	XYDrawableAnnotation
	XYLineAnnotation
	XYPointerAnnotation
	XYTextAnnotation

	Package: org.jfree.chart.axis
	Overview
	Axis
	AxisCollection
	AxisConstants
	AxisLocation
	AxisSpace
	AxisState
	CategoryAnchor
	CategoryAxis
	CategoryAxis3D
	CategoryLabelPosition
	CategoryLabelPositions
	CategoryTick
	ColorBar
	CompassFormat
	DateAxis
	DateTickMarkPosition
	DateTick
	DateTickUnit
	LogarithmicAxis
	MarkerAxisBand
	NumberAxis
	NumberAxis3D
	NumberTick
	NumberTickUnit
	SegmentedTimeline
	SymbolicAxis
	SymbolicTickUnit
	Tick
	TickUnit
	TickUnits
	Timeline
	ValueAxis

	Package: org.jfree.chart.entity
	Introduction
	Background
	CategoryItemEntity
	ChartEntity
	ContourEntity
	EntityCollection
	PieSectionEntity
	StandardEntityCollection
	XYItemEntity

	Package: org.jfree.chart.event
	Introduction
	AxisChangeEvent
	AxisChangeListener
	ChartChangeEvent
	ChartChangeListener
	ChartProgressEvent
	ChartProgressListener
	LegendChangeEvent
	LegendChangeListener
	PlotChangeEvent
	PlotChangeListener
	RendererChangeEvent
	RendererChangeListener
	TitleChangeEvent
	TitleChangeListener

	Package: org.jfree.chart.imagemap
	Overview
	DynamicDriveToolTipTagFragmentGenerator
	OverLIBToolTipTagFragmentGenerator
	StandardToolTipTagFragmentGenerator
	StandardURLTagFragmentGenerator
	ToolTipTagFragmentGenerator
	URLTagFragmentGenerator

	Package: org.jfree.chart.labels
	Introduction
	BoxAndWhiskerItemLabelGenerator
	CategoryItemLabelGenerator
	CategoryToolTipGenerator
	ContourToolTipGenerator
	CustomXYItemLabelGenerator
	HighLowItemLabelGenerator
	IntervalCategoryItemLabelGenerator
	ItemLabelAnchor
	ItemLabelPosition
	PieSectionLabelGenerator
	PieToolTipGenerator
	StandardCategoryItemLabelGenerator
	StandardContourToolTipGenerator
	StandardPieItemLabelGenerator
	StandardXYItemLabelGenerator
	StandardXYZItemLabelGenerator
	SymbolicXYItemLabelGenerator
	XYItemLabelGenerator
	XYToolTipGenerator
	XYZItemLabelGenerator

	Package: org.jfree.chart.needle
	Overview
	ArrowNeedle
	LineNeedle
	LongNeedle
	MeterNeedle
	PinNeedle
	PlumNeedle
	PointerNeedle
	ShipNeedle
	WindNeedle

	Package: org.jfree.chart.plot
	Overview
	CategoryPlot
	CombinedDomainCategoryPlot
	CombinedDomainXYPlot
	CombinedRangeCategoryPlot
	CombinedRangeXYPlot
	CompassPlot
	ContourPlot
	ContourPlotUtilities
	ContourValuePlot
	CrosshairState
	DefaultDrawingSupplier
	DrawingSupplier
	FastScatterPlot
	IntervalMarker
	Marker
	MeterPlot
	MultiplePiePlot
	PiePlot
	PiePlot3D
	Plot
	PlotOrientation
	PlotRenderingInfo
	PolarPlot
	ThermometerPlot
	ValueMarker
	XYPlot

	Package: org.jfree.chart.renderer
	Overview
	AbstractCategoryItemRenderer
	AbstractRenderer
	AbstractXYItemRenderer
	AreaRenderer
	BarRenderer
	BarRenderer3D
	BoxAndWhiskerRenderer
	CandlestickRenderer
	CategoryItemRenderer
	CategoryItemRendererState
	ClusteredXYBarRenderer
	DefaultPolarItemRenderer
	GanttRenderer
	HighLow
	HighLowRenderer
	IntervalBarRenderer
	LevelRenderer
	LineAndShapeRenderer
	MinMaxCategoryRenderer
	NoOutlierException
	Outlier
	OutlierList
	OutlierListCollection
	PolarItemRenderer
	RangeType
	StackedAreaRenderer
	StackedBarRenderer
	StackedBarRenderer3D
	StackedXYAreaRenderer
	StandardXYItemRenderer
	StatisticalBarRenderer
	WindItemRenderer
	XYAreaRenderer
	XYBarRenderer
	XYBoxAndWhiskerRenderer
	XYBubbleRenderer
	XYDifferenceRenderer
	XYDotRenderer
	XYItemRenderer
	XYLineAndShapeRenderer
	XYStepRenderer
	YIntervalRenderer

	Package: org.jfree.chart.servlet
	Overview
	ChartDeleter
	DisplayChart
	ServletUtilities

	Package: org.jfree.chart.title
	Overview
	Events
	DateTitle
	ImageTitle
	LegendTitle
	TextTitle
	Title

	Package: org.jfree.chart.ui
	Introduction
	ChartPropertyEditPanel
	ColorBarPropertyEditPanel
	ColorPalette
	GreyPalette
	LegendPropertyEditPanel
	NumberAxisPropertyEditPanel
	PaletteChooserPanel
	PlotPropertyEditPanel
	RainbowPalette
	TitlePropertyEditPanel

	Package: org.jfree.chart.urls
	Overview
	CategoryURLGenerator
	CustomXYURLGenerator
	PieURLGenerator
	StandardCategoryURLGenerator
	StandardPieURLGenerator
	StandardXYURLGenerator
	StandardXYZURLGenerator
	TimeSeriesURLGenerator
	XYURLGenerator
	XYZURLGenerator

	Package: org.jfree.data
	Introduction
	AbstractDataset
	AbstractSeriesDataset
	CategoryDataset
	CategoryToPieDataset
	CombinationDataset
	CombinedDataset
	ContourDataset
	Dataset
	DatasetChangeEvent
	DatasetChangeListener
	DatasetGroup
	DatasetUtilities
	DataUtilities
	DateRange
	DefaultCategoryDataset
	DefaultContourDataset
	DefaultHighLowDataset
	DefaultIntervalCategoryDataset
	DefaultKeyedValue
	DefaultKeyedValueDataset
	DefaultKeyedValues
	DefaultKeyedValuesDataset
	DefaultKeyedValues2D
	DefaultKeyedValues2DDataset
	DefaultMeterDataset
	DefaultPieDataset
	DefaultValueDataset
	DefaultWindDataset
	DomainInfo
	Function2D
	HighLowDataset
	IntervalCategoryDataset
	IntervalXYDataset
	IntervalXYZDataset
	JDBCCategoryDataset
	JDBCPieDataset
	JDBCXYDataset
	KeyedObject
	KeyedObjects
	KeyedObjects2D
	KeyedValue
	KeyedValueComparator
	KeyedValueComparatorType
	KeyedValueDataset
	KeyedValues
	KeyedValuesDataset
	KeyedValues2D
	KeyedValues2DDataset
	LineFunction2D
	MeanAndStandardDeviation
	MeterDataset
	MovingAverage
	MultiIntervalCategoryDataset
	NonGridContourDataset
	PieDataset
	PowerFunction2D
	Range
	RangeInfo
	Regression
	Series
	SeriesChangeEvent
	SeriesChangeListener
	SeriesDataset
	SeriesException
	SignalsDataset
	SubseriesDataset
	TableXYDataset
	TimeSeriesTableModel
	Value
	ValueDataset
	Values
	Values2D
	WindDataset
	XisSymbolic
	XYBarDataset
	XYDataItem
	XYDataset
	XYSeries
	XYSeriesCollection
	XYZDataset
	YisSymbolic

	Package: org.jfree.data.gantt
	Introduction
	GanttCategoryDataset
	Task
	TaskSeries
	TaskSeriesCollection

	Package: org.jfree.data.statistics
	Introduction
	BoxAndWhiskerCalculator
	BoxAndWhiskerCategoryDataset
	BoxAndWhiskerItem
	BoxAndWhiskerXYDataset
	DefaultBoxAndWhiskerCategoryDataset
	DefaultBoxAndWhiskerXYDataset
	DefaultStatisticalCategoryDataset
	HistogramBin
	HistogramDataset
	HistogramType
	StatisticalCategoryDataset
	Statistics

	Package: org.jfree.data.time
	Introduction
	Day
	FixedMillisecond
	Hour
	Millisecond
	Minute
	Month
	Quarter
	RegularTimePeriod
	Second
	SimpleTimePeriod
	TimePeriod
	TimePeriodAnchor
	TimePeriodFormatException
	TimePeriodValue
	TimePeriodValues
	TimePeriodValuesCollection
	TimeSeries
	TimeSeriesCollection
	TimeSeriesDataItem
	Week
	Year

	Package: org.jfree.data.xml
	Introduction
	Usage
	CategoryDatasetHandler
	CategorySeriesHandler
	DatasetReader
	DatasetTags
	ItemHandler
	KeyHandler
	PieDatasetHandler
	RootHandler
	ValueHandler

	JCommon
	Introduction
	PublicCloneable
	RectangleAnchor
	RectangleEdge
	Spacer
	TextAnchor

	The GNU Lesser General Public License
	Introduction
	The License
	Frequently Asked Questions

