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Many systems of different nature exhibit scale free behaviors. Economic systems with power law
distribution in the wealth is one of the examples. To better understand the working behind the com-
plexity, we undertook an empirical study measuring the interactions between market participants.
A Web server was setup to administer the exchange of futures contracts whose liquidation prices
were coupled to event outcomes. After free registration, participants started trading to compete
for the money prizes upon maturity of the futures contracts at the end of the experiment. The
evolving ‘cash’ flow network was reconstructed from the transactions between players. We show
that the network topology is hierarchical, disassortative and scale-free with a power law exponent
of 1.02±0.09 in the degree distribution. The small-world property emerged early in the experiment
while the number of participants was still small. We also show power law distributions of the net
incomes and inter-transaction time intervals. Big winners and losers are associated with high de-
gree, high betweenness centrality, low clustering coefficient and low degree-correlation. We identify
communities in the network as groups of the like-minded. The distribution of the community sizes
is shown to be power-law distributed with an exponent of 1.19±0.16.

PACS numbers: 89.65.Gh, 89.75.Da, 89.75.Fb

I. INTRODUCTION

Many complex systems exhibit distributions of observ-
ables that are not characterized by a single scale. Ex-
amples include net wealth, earthquake magnitudes and
gene expression [1]. Heterogeneity in system constituents
and/or in the interactions among them might under-
lie the complexity. Continuing advances in information
technology have facilitated acquisition and analysis of
sheer amounts of data, unraveling the interacting net-
works of different kinds ranging from the transportation
network of airlines in technology [2], collaboration net-
works of scientists in sociology [3] and binding networks
of proteins in biology [4]. Network topologies evolve to
fulfill system requirements. Studies of networked systems
thus help better understand complex systems. Among
the encouraging examples are the jamlessness of scale-free
communication networks [5], short separation of small-
world acquaintance networks [6] and robustness against
random mutations of scale-free biological networks [7].
Further applications of network analysis involve demar-
cation between social and nonsocial networks by an at-
tribute that measures the correlation between the de-
grees of interacting nodes [8]. The finding of hierarchical
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structures in metabolic networks also has implications for
functional categorization of metabolites [9].

Financial markets, consisting of such heterogeneous
agents as investors, hedgers and arbitragers, show styl-
ized distributions of returns and wealth [10, 11]. In-
trigued by the universal behavior, physicists have applied
the methodologies of nonequilibrium statistical mechan-
ics to elucidating the mechanisms underlying the com-
plexity [12]. Examples include critical phenomenon [13]
and self-organized criticality [14] modeling of economic
systems.

In line with the network approach to technological, so-
cial and biological complex systems, we designed an ex-
perimental market, recording every transaction between
pairs of participants during the experiment. Transac-
tions (edges) hold information on the flow of assets from
sellers to buyers (nodes). Characterization of the evolv-
ing topology of the resulting network helps shed light on
the emergence of complexity in financial markets. The
unique feature of our experiment is that no parallel can
be easily undertaken in the real market. We describe the
experimental settings and market rules in Sec. II, fol-
lowed by characterization of the network by mean short-
est path lengths and degree and wealth distributions of
Sec. III. Further analysis in Sec. IV unravels subtle net-
work structures including hierarchy, dissortativity and
community. We argue that an integrated model of fi-
nancial markets should accommodate the results of our
empirical study.

http://arxiv.org/abs/0705.2551v1
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FIG. 1: (Color online) Price and volume time-series. The
time resolution is one minute. Prices (volumes) from multiple
transactions within one minute are averaged (summed).

II. EXPERIMENT

A 24-hour exchange market was established on the
Web, accepting bid and ask orders from registered play-
ers via the Internet [15, 16, 17]. Upon registration, which
was anonymous and free, an account with 30,000 units
of fictitious money was allocated to the player on the
exchange server. The futures contracts that our mar-
ket issued were tied to the candidates running for the
Taipei mayoral election which took place on December 9,
2006[26]. The liquidation price of each futures contract
was determined by the percentage of votes the candidate
received on the election day. Such an experiment was
run continuously for 30 days, ending on the election day.
After the experiment, any contracts in the players’ ac-
counts were liquidated using the official counts released
by the government. Money prizes were awarded to the
top ten winners determined by the accumulated wealth
in the players’ accounts. In a previous publication [17],
we demonstrated that such a market, which drew typi-
cally 400 participants, exhibited power-law distributions
of price changes, net wealth and inter-transaction times
that are characteristic of real world markets. Further-
more, predictions of the market have so far been consis-
tent with election outcomes. In this paper, we examine
the evolving network of ‘cash’ flow recorded along the
experiment.

Five candidates ran for Taipei mayor. We included a
sixth futures contract to account for invalid ballots. The
sum of the six prices should be 100 if the players were
rational or the market was efficient. Figure 1 plots this
price and volume time series throughout the experiment.
The intermittence of price spikes may be attributable
to a multiplicative process with additive noise which is
known to yield power law distributions in the fluctuations
[18, 19]. From the number of time points where the trad-
ing volumes are nonzero, we determine that the market
was active 12.7% of the time. We advertised the experi-
ment by constant posts to the electronic bulletin boards
of the colleges throughout Taiwan during the experiment.
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FIG. 2: The trading network on day 3 consisting of 40 inter-
connected nodes. 15 isolated nodes are not shown.
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FIG. 3: (Color online) Characteristic path length and clus-
tering coefficient as a function of network size.

The number of registrants increased roughly monotoni-
cally with time, topping at 628 in the end of the experi-
ment. Trading orders submitted by players were stored in
the orderbooks on the server with the continuous double
auction mechanism for order matching and price finding.
The number of successful transactions in the experiment
totaled 8,563. Information on each of the transactions,
including price, volume, contract, buyer, seller and time,
was recorded.

III. RESULTS AND ANALYSIS

A. Small World Cash Flow Networks

When the bid order of player i was matched with the
ask order of player j at a price p and specified volume v
of a futures contract, an amount of cash p × v flew from
player i to j. Every day, the server output the cumulative
cash flow between any pair of players, from which we
reconstructed 30 networks of cash flow, one for each day.
On average, 23±2% of the nodes in the networks were
isolated, corresponding to those who registered but had
never traded with others. Figure 2 shows the network on
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FIG. 4: (Color online) Degree distribution of the cash flow
network on the last day. Black dots are from undirected edges.
Solid lines are least-squared fits to the data.
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FIG. 5: (Color online) Probability densities of the cumulative
cash flow on the edges of the networks on days 3, 5 and 30.
Solid lines are fits to the data.

day 3. The day 1 network consists only of three isolated
nodes. The day 2 network has 11 nodes with 8 connected
shown in Fig 10. We exclude the isolated nodes in the
following analysis. The average number of (undirected)
edges per node <k> in the network increased with day to
about 6 within the first 10 days and saturated at around 8
in the final days. Inspection of the networks such as Fig. 2
by eyes identifies hubs which usually confer the small
world property. To confirm the property, we calculate
the characteristic path length of a network which is the
average of the smallest numbers of edges between pairs
of nodes. The slow increase of the characteristic path
length with network size in Fig. 3, together with the high
clustering coefficients (also shown in Fig. 3 but to be
elaborated later), demonstrates the small-worldness of
the cash flow networks. The emergence of the small world
property at early onset of the experiment suggests a low
quorum for such a market to function efficiently in terms
of opinion exchange.

B. Degree Distribution

The degree distribution p(k) of a network gives the
probability of a randomly chosen node to have k edges.
A power-law decay of p(k) with k indicates excessive pres-
ence of hubs in the network. To get the density distribu-
tion, we employ bin sizes that are even in the logarithmic
scale, with a binsize ratio of 2. Figure 4 shows the distri-
butions of in-degrees, out-degrees and undirected degrees
of the cash flow network in the end of the experiment. We
found that the degree distributions are well described by
a power-law with exponential cut-off,

p(k) ∼ k−γe−k/kc . (1)

The exponents for the in-, out- and undirected degree
are found to be γin = 1.10 ± 0.15, γout = 0.66 ± 0.13
and γ = 1.02 ± 0.09, respectively. The power laws in
Fig. 4 show that the cash flow network from our experi-
ment is scale free. Note however that the small values of
the exponents are in contrast to those of other real world
networks found typically in the range 2 < γ < 3. Hubs
play a pivotal role in opinion/information collection and
dissemination. If consensus is to be reached independent
of the network size, we would expect a wide range of
node degrees (corresponding to small γ’s) [20]. As we
found that, despite transient spikes, the prices of indi-
vidual contracts were stationary as new players joined
throughout the experiment[27], this property may ex-
plain the small exponents. The exponential cut-off could
be due to such finite size effects as the limited time frame
and trade activity of the experiment.

C. Weighted Networks and Wealth Distribution

Flow of cash between players accumulated as time went
on. We assign the cumulative flow of cash to the edge.
The networks are therefore weighted. The frequency dis-
tributions of the weights in Fig. 5 show that the weights
are power-law distributed with an exponent of 0.69±0.11.
Furthermore, the power-law weights behavior emerged in
early stages of the experiment as seen from the distribu-
tions accumulated up to days 3 and 5 in Fig. 5.

We sum the weights on the directed edges pointing to
(leaving from) a node to obtain the income (spending)
of the node. The incomes (and spending) of the nodes
having the same degree are then averaged. A plot of the
averaged income versus degree is interesting in that it
tells if high in-degree players tend to have high incomes.
We found that the income and spending increase with
the in- and out-degree in a power law fashion,

< incomes>∼ k1.26±0.05
in

<spending>∼ k1.02±0.07
out .

(2)

The relations indicate that those who managed to get
more buyers (sellers) cashed in (spent) more. We found
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FIG. 6: (Color online) Probability density distributions of the
players’ incomes, spending and net incomes on the last day.
Solid line is fit to the data.

no simple functional form relating the in- and out-degrees
of the 496 active players up to the last day of the ex-
periment because of the divergence in the scatter plot.
However the nonparametric Spearman’s rank correlation
coefficient between the kin and kout is as high as 0.73.
The correlation indicates that those who cashed in more
tended to spent more. The same conclusion is reached if
we symmetrize the cash flow matrix. That is we replace
wij=A and wji=B with wij=wji=A+B where wij=A
means an amount of A had flown from player i to player
j since the experiment began. A+B is then the traded
amount between the two players. Using the symmetrized,
weighted cash flow matrix, we found a power law similar
to Eq. (2): <traded> ∼ k1.15±0.04 where k is undirected
degree.

To get the distribution of net incomes, we subtract the
spending from the income of each player. The probabil-
ity densities in Fig. 6 show power law behavior of the
incomes, spending, earnings (positive net incomes) and
losses (negative net incomes), reminiscent of the Pareto
distribution. The exponent of the earnings is 0.99±0.04.

IV. DISCUSSION

We have reconstructed the evolving network of ‘cash’
flow between the players who participated in the trading
experiment to compete for real money prizes. We showed
that the cash flow network was scale free with small world
properties that emerged very early in the experiment.
The distributions of the weights (incomes and spending)
are also power-law decaying.

A. Hierarchical Structure

To further characterize the cash flow network, we cal-
culate the clustering coefficient of a player ci which mea-
sures the propensity that her trading partners had traded
with one another. We use symmetrized adjacency aij and
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FIG. 7: (Color online) Decrease in the clustering coefficient
with degree. The clustering coefficients are calculated from
the cash flow network on day 30.
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FIG. 8: (Color online) Decrease in assortative mixing with
degree. The assortative mixings are calculated from the cash
flow network on the last day of the experiment.

cash flow wij matrices in the calculation of the weighted
clustering coefficient [21] which takes into account the
frequency or amount of trades between the players,

ci =
1

si(ki − 1)

∑

j,h

wij + wih

2
aijaihajh (3)

where

si =
∑

j

wijaij . (4)

The clustering coefficients of the players having the same
degrees are averaged to get c(k). The results in Fig. 7
show a power law decay of the average clustering coef-
ficients c(k) with increasing degree, suggesting a hier-
archical architecture in the cash flow network [22]. We
also calculated the average clustering coefficient <C>=
(1/N)

∑
i ci for each of the 30 networks and found that

the values stay rather constant independent of the net-
work size N (cf Fig. 3), the averages being 0.46±0.02
and 0.52±0.03 for the unweighted (Fig. 3) and weighted
versions of the coefficient.
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FIG. 10: (Color online) Communities in the cash flow network
on day 2. Labels of the same color form a community which,
by our construction, contains higher-than-average density of
links between communities and lower-than-average density of
links within communities.

B. Disassortative Mixing, Betweenness and Rank

We also calculate the assortative mixing knni
which

measures the similarity between player i and her trading
partners in terms of their degrees [21],

knni
=

1

ki

∑

j

aijwijkj . (5)

An analysis parallel to Fig. 7 shows a decaying degree-
correlation with increasing degree, indicating that the
cash flow network is disassortative. The dissortativity
may reflect the competitive nature of the market al-
though the dissortativity becomes insignificant consid-
ering the weights on the edges (Fig. 8).

Another quantity in network analysis is the between-
ness centrality of node i defined as the number of short-
est paths between two other nodes passing through i
weighted by the inverse of the number of redundancies
[23]. We found the mean betweenness centrality b(k) is
related to degree by b(k) ∼ k2.35±0.08.
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FIG. 11: (Color online) Distributions of the community sizes
from the cash flow networks on three terminal days. Solid line
is fit to the distribution on day 30, providing the exponent.
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FIG. 12: Power law decay of the time intervals between suc-
cessive transactions. Solid line is fit to the data.

Most of the properties of the node, such as clustering
coefficient and betweenness centrality, can be referred to
its degree. We rank the players according to their net
incomes and plot the degree against rank in Fig. 9. The
plot shows that high degree players reaped either victory
or debacle. The high degree players tend to have low
clustering coefficients as in Fig. 7. A low clustering coef-
ficient translates that, instead of trading within a clique
of partners, the player keeps searching for new investment
opportunities across cliques over the network. Whether
she wins or loses would then depend on her adaptability
to changing opinions.

C. Power-law Distribution of Community Sizes

In the context of our experiment, when the price of
a futures contract was considered too high (low), a sell
(buy) order was placed. An edge between two nodes
in the cash flow network therefore indicates that the
two players disagreed to the pricing of the futures con-
tract. In other words, players with no edges linking
them were those who thought alike. An algorithm to
find communities in the players is thus to partition the
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cash flow network so that the density of edges within
communities are lower and that between communities
are higher than average. An example of such a divi-
sion of the network is shown in Fig. 10 where it is clear
that the within-community edges are minimized while
the between-community edges are maximized. We ap-
plied the eigenvector-based partitioning algorithm of [24]
to the 30 networks and found that the number of commu-
nities grew logarithmically with the number N of active
players as −17+7 log(N). Furthermore, the distribution
of community sizes, shown in Fig. 11, is found power-
law distributed with an exponent of 1.19 ± 0.16. Figure
11 shows three distributions from three cash flow net-
works on day 19, 25 and 30. The day 19 and 25 networks
have, respectively, 20 and 33 communities, corresponding
to two maximal deviations (−5 and +7) from the above
best fit prediction. The distributions in the plot demon-
strate that they are power-law distributed. Moreover,
the largest communities encompass ∼61% of the players.

D. Distribution of Inter-transaction Time Intervals

We find the time intervals between successive transac-
tions from the ticks in the volume time-series in Fig. 1.
The distribution of the inter-transaction times shown in
Fig. 12 exhibits a truncated power law distribution with
exponent 1.28±0.17, consistent with our previous finding
[17]. This power law behavior, together with that in the

early-day cash flows of Fig. 5, may suggest a contribution
of human factors [25] to the origins of power laws.

In summary, in an effort to study financial markets
through network approach, we performed an online ex-
periment in the form of tournament. We recorded the
flow of fictitious cash between the 496 registered, active
participants throughout the 30-day course of the experi-
ment. The topology of the resulting cash flow networks
is found nonrandom with a power-law distribution in the
connectivity. The heterogeneity in the connectivity as
well as weights emerged early in the experiment. The
distribution of net incomes in the end of the experiment
is also power-law distributed. Network analysis indicates
that the cash flow network is hierarchical and disassorta-
tive. Communities in the network are defined and iden-
tified. The distribution of community sizes is power-
law distributed, so is the distribution of inter-transaction
time intervals. Our experimental platform offers a unique
chance of anatomizing such complex systems as financial
markets. A better understanding of the complexity calls
for models that account for the major findings in the
present study.
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