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Abstract. Random Boolean networks (RBN) have been extensively studied as 
models of genetic regulatory networks. While many studies have been devoted to 
the dynamics of isolated random Boolean networks, which may considered as 
models of isolated cells, in this paper we consider a set of interacting RBNs, 
which may be regarded as a simplified model of a tissue or a monoclonal colony. 
In order to do so, we introduce a cellular automata (CA) model, where each cell 
site is occupied by a RBN. The mutual influence among cells is modelled by 
letting the activation of some genes in a RBN be affected by that of some genes in 
neighbouring RBNs. It is shown that the dynamics of the CA is far from trivial. 
Different measures are introduced to provide indications about the overall 
behaviour. In a sense which is made precise in the text, it is shown that the degree 
of order of the CA is affected by the interaction strength, and that markedly 
different behaviours are observed. We propose a classification of these behaviours 
into four classes, based upon the way in which the various measures of order are 
affected by the interaction strength. It is shown that the dynamical properties of 
isolated RBNs affect the probability that a CA composed by those RBNs belongs 
to one of the four classes, and therefore also affects the probability that a higher 
interaction strength leads to a greater, or a smaller, degree of order. 

Keywords: genetic network model, random Boolean network, cellular automaton, 
interaction, cell-criticality.   

 
 



 
 
 
 
 
 
 
 

1 Introduction 

The idea that evolution drives living organisms in a “critical” region of parameter 
space which is intermediate between that of ordered behaviour and that of chaotic 
dynamics has been proposed by one of us (S.A.K.) as a powerful unifying principle 
for understanding some deep features of life. Biology could benefit much by such 
general hypotheses, which must however be carefully investigated. 

Random Boolean networks (briefly, RBN) are a classical, well-known 
representative of the “ensemble approach” to biological studies [Kauffman, 1971]. 
The statistical analysis of a collection of RBNs allows one to study the influence of 
the structural features of the networks (connectivity, topology, updating rules, etc.) 
on its dynamics [Kauffman, 1993; Kauffman, 1995]. It has recently been shown 
that these models provide a good description of the statistical features of changes 
in the expression of the whole set of genes of S. Cerevisiae after single knock-outs 
[Serra, Villani & Semeria, 2004; Serra, Villani, Graudenzi & Kauffman, 2007; 
Ramo, Kesseli & Yli-Harja, 2006]. Moreover, by analyzing these data it has been 
possible to start to address the important issue of cell criticality, since the 
distribution of avalanches in gene expression data turns out to be related to a 
parameter which also determines the network dynamical regime. 

The results of the previous studies (and of other attempts at analyzing 
experiments whose results are related to the issue of criticality [Shmulevich & 
Kauffman, 2004; Shmulevich, Kauffman & Aldana, 2005] indicate that cells seem 
to be in an ordered regime close to the critical boundary. They are however not 
conclusive, in part because of scarcity of suitable experiments. 

It has however been observed [Kauffman, 1993; 2000] that the remarks on the 
advantages of criticality apply to organisms as a whole, rather than to their 
individual cells. The distinction is obviously irrelevant for isolated unicellular 
organisms, but is important for those organisms which can live in colonies or for 
multicellular beings. It is indeed known that under these circumstances 
neighbouring cells communicate by means of chemical messengers, and are 
therefore not isolated. 

It is therefore extremely important to understand the relationship between the 
dynamics of a single, isolated RBN – which has been extensively studied in the 
past – and that of a collection of interacting networks. We describe below a model 
which is well suited for this purpose: it is a 2-D cellular automaton where each cell 
of the automaton (which simulates a biological cell) is occupied by a RBN. While 
a related issue has been addressed in the context of scale-free Random Boolean 
Networks [Kauffman, Peterson, Samuelsson & Troein, 2004], here we investigate 
the effects of interactions among neighbouring cells using “classical” random 
Boolean networks (which have proven well suited to describe the experimental 
avalanches in S. Cerevisiae [Serra, Villani & Semeria, 2004; Serra, Villani, 
Graudenzi & Kauffman, 2007]).  

In our model all the RBNs are structurally identical (same connections and same 
Boolean functions) and the interaction between neighbouring cells is modelled by 
allowing the activation of some nodes of the RBN in a given cell to depend upon 
the activation of some genes of a neighbouring cell (in a way which crudely 
simulates the fact that some proteins can cross the cellular membrane and influence 
the genes of another cell). 



 
 
 
 
 
 
 
 

This model could be regarded as a simplified description of a tissue in a 
multicellular organism, or of a colony of unicellular organisms: at this level of 
modelling the two cases are approached in the same way. It should be remarked 
however that, according to the usual biological interpretation of RBNs, the 
attractor of a given cell is associated to the cell type: therefore a tissue should be 
composed by cells which are all in the same attractor. Since this latter condition is 
not imposed in our model, we will refer to it sometimes as a “colony”. 

CA models of groups of interacting cells have been proposed for the study of 
morphogenesis in different organisms [Glazier and Graner, 1993, Marée and 
Hogeweg, 2001, Alber et al, 2004]. The model we consider here might be extended 
in order to deal with morphogenetic processes, e.g. by associating different 
attractors to a different cell types, and by studying the spatial arrangement of these 
different attractors. In the present study we limit to a simpler question, namely that 
of finding under which conditions a given set of  interacting cells can be found in 
the same attractor. While the analysis provides also information about conditions 
which allow the coexistence of different attractors, no attempt is made here to 
analyze the spatial patterns which may appear. 

The model has been already subject to a preliminary investigation [Villani, Serra, 
Ingrami & Kauffman, 2006] which showed that its dynamics is far from trivial. 
While one might have thought that interaction might either lead to a more ordered 
or a more disordered behaviour, the simulation results showed a more complicated 
behaviour. Different behaviours were indeed observed, either highly ordered or 
disordered. It was suggested, on the basis of preliminary data, that the dynamical 
regime of the isolated network might be related to the effects of the interaction, 
which might enhance the features of the isolated network. It is therefore necessary 
to provide an in-depth investigation of the relationship between the dynamics of an 
isolated network and that of a collection of interacting RBN, and the results given 
here aim at elucidating this relationship. 

The paper is organized as follows. In section 2 a brief description of RBN is 
given: since there are many excellent reviews we only introduce a few key 
definitions and properties. In section 3 our cellular automata model of interacting 
Boolean Networks is described. In section 4 the different variables which have 
been used to describe the aggregate behaviour of the colony are introduced. The 
way in which experiments were performed is described in Section 5, while the 
following section 6 is dedicated to the results of these experiments. The final 
section 7 includes critical comments and indications for further work.   

2 Random Boolean Networks  

For a complete description of the RBN model we refer the reader to [Kauffman, 
1993; Harvey & Bossomaier, 1997; Aldana, Coppersmith & Kadanoff, 2003]. In 
this section we will only outline its main features, which will be used in the rest of 
the paper.  

A RBN is an oriented graph composed by N Boolean nodes. Every node 
corresponds to a gene of a correspondent genetic network, and it is said to be active 
(value = 1) if its corresponding gene synthesises its protein; otherwise it is 
considered inactive and its value is 0. In real genetic networks, genes are able to 
influence the expression of other genes by means of their corresponding products 
and through the interaction of these products with other chemicals, by promoting 
or inhibiting the activation of target genes. In the RBN model this influences are 



 
 
 
 
 
 
 
 

represented by directed links (if the product of gene A influences the activation of 
gene B, node A will be an input of node B). Thus, the activation value of a certain 
node depends on the value of its input nodes, according a specific Boolean 
function. Each Boolean function is generated at random, assigning to any 
combination of its inputs the output value “1” with probability p (which is called 
the bias and has the same value for every node). The updating of the network is 
synchronous and the time is discrete. In the approach we used the so-called 
quenched model [Aldana, Coppersmith & Kadanoff, 2003]: both the topology and 
the Boolean function associated to each node do not change in time. Hence, the 
system is deterministic: if xi(t)∈{0,1} is the activation value of node i at time t and 
X(t)=[x1(t), x2(t) … xN(t)] is the vector of activation values of all the genes, once 
the connections and the Boolean functions of each node have been specified, X(t) 
uniquely determines X(t+1). 

The main structural features of RBNs are: average connectivity, ingoing and 
outgoing connectivity distribution, set of allowed Boolean functions and bias of the 
Boolean functions.  

In a so-called “classical” RBN each node has the same number of ingoing 
connections kin and its kin input nodes are chosen at random with uniform 
probability among the remaining N-1 nodes (self-coupling and multiple 
connections being forbidden). Consequently, outgoing connections follow a typical 
Poisson distribution [Kauffman, 1993].  

There is a wide literature about the dynamical regimes which can be observed in 
RBNs. We can distinguish two typical behaviours, which are called “ordered” and 
“chaotic” [Kauffman, 1993; Aldana, Coppersmith & Kadanoff, 2003]. If we 
observe, for instance, the average number of attractors and the average attractors’ 
length, we can note how in ordered regime networks these variables increase their 
values as a power law of N, while chaotic networks show an exponential 
divergence. The dynamical regime of a RBN depends primarily on two parameters, 
the average connectivity of the network <kin> and the bias p. The critical regime 
condition is described by the equation: <kin>-1=2p(1-p) [Aldana, Coppersmith & 
Kadanoff, 2003].  

While many theories and observations indicate that isolated biological cells tend 
to be found in the ordered region, rather close to the “edge of chaos”, i.e. the 
border between ordered and disordered regimes [Kauffman 1993; Kauffman 2000], 
in this research we are interested in understanding what happens when cells 
interact among them, in a upper-level organization like a colony. Does this 
interaction bring any change in the behaviour of the cells? Does the order of the 
system increase or vice versa? In order to find answers to these questions we 
introduced the model we present in the next section.  

3 RBN-CA 

In order to model the interaction of RBNs let us consider a 2D square lattice 
cellular automaton with M2 cells, each of them being occupied by a complete 
Random Boolean Network (in the text, it will be referred to as RBN-CA). The 
neighbourhood is of the von Neumann type (composed by the cell itself and its N, 
E, S, W neighbours). We assume wrap around so the overall topology is toroidal 
(Fig. 3.1).  



 
 
 
 
 
 
 
 

 

  
Figure 3.1. (a) Graphical visualization of a RBN-CA: each cell of the automaton hosts a 
complete random Boolean network; a subset of its nodes interacts with the first four 
neighbouring RBNs. (b) The spatial shape of the automata is that of a torus.  

Every RBN of the automaton is structurally identical, while the initial activation 
states of the various genes may differ. In particular, each of the RBNs owns the 
following common features:  

1. same number (N) of Boolean nodes; 
2. same ingoing and outgoing connections for each node of the network; 
3. same Boolean functions associated to each node. 

The use of homogeneous RBNs for all the cells of the automata is due to the fact 
that, in general, all the cells of a given multicellular organism or monoclonal 
colony share the same genetic material: therefore, in each cell we have to consider 
a copy of the same RBN. Hence, the above common features (1-3) of the RBN 
define its genome.  

A key aspect of the model is the representation of interactions: the fact that some 
proteins can pass from one cell to another is modelled by assuming that a cell can 
be affected by the activation of some genes of a neighbouring cell. 

In our model, nodes able to interact with other cells are defined as shared nodes 
and they are a subset of the total number of nodes of the RBN (not all the proteins 
can cross the cellular membrane). Since all the RBN are structurally identical, the 
subset of shared nodes is exactly the same for all the cells of the automaton. Let f 
be the fraction of interacting nodes. We define as elementary value of a certain 
node the value computed according its Boolean function and the value of its input 
nodes, belonging to the same RBN. The shared value of a shared node, instead, is 
calculated taking into account also the activation value of the corresponding shared 
nodes of its neighbouring cells, depending on a precise interaction rule. Note that 
shared nodes own an elementary value as well, depending on the value of their 
input nodes. The output nodes of a shared node will receive as input of their 
Boolean function the shared value of that node.  

It is possible to define different interaction rules. In this work we consider the 
rule “AT LEAST ONE ACTIVE” node (ALOA), according which the shared value 
of a node x in the cell A is 1 if its value or at least one of those of the nodes x in the 
four neighbouring cells is 1. See the figure 3.2. for an example.  
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Figure 3.2. Example of a 3*3 automaton. Networks in the automaton are identified by 
a number from 1 to 9. Gene 3 (pink coloured) is chosen to be shared. In the scheme on 
the right we can see a section of network number 5 (central one):  the input values for 
gene 2 are the elementary value of gene 1 and the shared value of gene 3 (gene 3 owns 
elementary value = 0 and shared value = 1). The shared value of gene 3 in the network 
5 is 1 because gene 3 of the neighbouring network number 2 is active.  

 
In order to use a consistent terminology, let us introduce the following definition. 

A G-automaton (or, equivalently, a G-colony) is a set of interacting cells (namely, 
a RBN-CA), defined by: 

• the dimension of the lattice M,   
• the topology of interaction T, 
• the interaction rule R, 
• the genome G of the RBNs which are placed in each cell of the automaton.  

Most of the studies have been made on single G-automata, observing their 
behaviour when the interaction strength is varied (being understood that G, M, T 
and R are kept fixed). The whole analysis has involved G-automata different in 
terms of the genome G.  

4 Analysis criteria 

It is necessary to define suitable aggregate descriptors for the dynamical behaviour 
of the colony as a whole. The analysis is mainly focused on the search of the 
features of the attractors of the RBNs belonging to the to automata. Since the 
updating of each node of each RBN in the automata depends on the elementary 
value of the not-shared input nodes and on the shared value of the shared input 
nodes, it would not be meaningful to look for an attractor only on the elementary 
value of nodes. For this reason, we introduce the concept of image of a RBN: the 
image of a specific RBN is the vector constituted by the elementary value of the 
non-shared nodes and by the shared value of the shared ones. Since shared input 
nodes determine the state of their output nodes by means of their shared value, the 
dynamic of the image is deterministic and, thus, it is better suited than the vector of 
elementary values to describe the dynamics. In particular, the search for the 
attractors is made on the image of the RBNs of the automata.  

Order in a spatial model like our RBN-CA may take two different (although not 
independent) meanings: temporal order, which is what is usually considered in 
isolated Boolean networks, has to do with the system attractors (number, period, 
basins of attraction), while spatial order refers to the fact that neighbouring cells 



 
 
 
 
 
 
 
 

may reach the same or similar attractors, or be in completely different states. In 
order to quantify the two kinds of order, the following variables (which will 
collectively be referred to as order indicators) have been considered: 

• the fraction of experiments α where all the cells of the automaton reach 
the same attractor; 

• the fraction of experiments β where all the cells of the automaton reach an 
attractor; 

• the fraction of experiments γ where no cell reaches an attractor1; 
and, for each experiment of each series: 

• the number of different attractors present in the automaton at the end of 
the experiment; 

• the number of cells of the automaton which do not reach any attractor at 
the end of the experiment; 

• the number of different periods present in the automaton at the end of the 
experiment; 

• the average length of the periods of the attractors on all the RBNs of the 
automaton at the end of the experiment; 

• the structural factor stfc at the end of the run. It is an aggregate variable 
which provides indications of the presence of homogeneous zones inside 
the colony. For each RBN of the automata, we compute the number of 
nearest neighboring RBNs that are in its same attractor, and sum the 
quantities of all the cells. If all the RBNs share the same attractor this 
variable reaches its maximum value (4*M2). 

5 Experiments  

In order to disentangle the effects of increasing interaction from the (possibly 
large) effects of G-automaton change, we decided to concentrate on the deep study 
of the specific behaviour of single G-automata: in particular the simulations have 
been made on a set of 150 G-automata, characterized by RBNs with different 
genomes G.  

The parameters of the RBNs placed in the cells of the G-automata are chosen in 
such a way that they are “in the critical regime”: this is of course a statistical 
property of these networks, and single realizations may have different number of 
attractors. In detail, the networks are “classical” RBNs, with an equal number of 
incoming connections per node (kin = K = 2). The input nodes are chosen at random 
with uniform probability among the remaining N-1 nodes, auto and multiple 
connections being forbidden. The Boolean functions are generated at random 
independently for every node, with no restrictions and bias = 0.5. The initial states 
of the nodes are chosen at random for every RBN, independently from those of the 
other cells.  

The G-automata are 20*20 square lattices, composed by RBNs with N = 100 
nodes.  

We set up 11 different sets of simulations, with different interaction strength f, 
ranging from 0 to 1, step 0.1 (f = 0, 0.1, 0.2, … 0.9, 1). For each G-automaton, 

                                                           
 
1 Due to computational limits, we consider as cells without attractor those cells whose 
attractors’ length is higher than a fixed value (see section 5). 



 
 
 
 
 
 
 
 

when the fraction of shared nodes is increased, say from 0.1 to 0.2, the shared 
nodes at f=0.2 are a superset of those which were shared at 0.1. It is therefore 
possible to observe the variation of the measures of order for the same G-
automaton according the different values of f. The search for an attractor starts 
after 200 time steps (a step being a complete update of each node of each RBN 
present in the automaton) and the maximum possible period (for attractor search) is 
set to 200: in this way, we do not consider attractors whose period is higher than 
200 steps. The search ends when an attractor is found or when the system reaches 
2000 steps (in this case we state that the RBN has found no attractor). 

The whole simulation ends in correspondence of the value of f = 1. Every 
simulation on every G-automaton is repeated 150 times2. All the order indicators 
are averaged on their value in these 150 runs.  

6 Results 

Several preliminary experiments showed a very weak dependence of the order 
indicators on the initial conditions of the value of the nodes in the RBNs of the 
automata. Note that one initial condition of an automata implies 400 different 
initial conditions of identical RBNs and, even though 400 surely represents an 
undersampling of all the possible configurations of a RBN of 100 nodes, they seem 
to allow sufficient variability to identify the most relevant attractors.  

Note however that the variance of the measured variables appears to increase 
with coupling strength f. 

Other extensive analyses have been made to study the impact of the choice of the 
specific set of shared genes. A large variability in all the measures of order has 
been observed for the same G-automaton, for each value of f, changing randomly 
the set of shared nodes. The choice of a particular shared node instead of another 
one can provoke dramatic differences in the dynamic of the automata. That is why, 
as discussed in section 5, when comparing results for different values of f, we 
decided to generate the sets of shared nodes as a superset of those with smaller 
values of f. 

In order to measure the influence of interaction on the degree of order, we 
introduced a further variable, defined as follows:  

Ω = DA + CWA, 
where DA is the number of different attractors of a definite G-automaton, while 
CWA is the number of cells whose RBN reached no attractors. The number of 
different attractors can be considered as an indicator of the homogeneity of the 
cells in the G-automaton. Yet, in many cases some cells could reach no attractors 
and their number would not be computed into this variable. Adding the numbers of 
cells with no attractor to the number of different attractors is a way to compensate 
this effect. Thus, Ω is a variable whose value is minimum (1) where the order is 
maximum (all the cells reach the same attractor) and is maximum (400) where the 
order is minimum (all the cells do not reach any attractors or reach different 
attractors).  

 
 

                                                           
 
2 The 150 runs of the simulations on the same G-Automaton differ for the choice of the 
subset of shared nodes and for the initial condition of the RBNs. 
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Figure 6.1. 12 example of G-automata: trend of Ω – mean on 150 simulation runs – (y 

axe) according different values of f (x axe).  

 
The analysis on several G-automata (whose RBNs are characterized by different 

genomes) demonstrates the presence of three recognizable kinds of behaviour, 
concerning the dependency of Ω upon f (see figure 6.1): 

• Ω constant and equal to 1: all the G-automata reach the same attractor, 
independently of the value of f and also in absence of interaction. The 
attractors of this class of G-automata are fixed points.  

• increasing Ω. 
• bell-shaped Ω: we define as bell-shaped a curve with a single maximum 

for { }1,0∉f .  
It has also proven convenient to introduce a further sub-distinction among the G-

automata characterized by a bell-shaped curve of Ω: 
• left-oriented bell-shaped: the maximum of the curve is for f ≤0.5.  
• right-oriented bell-shaped: the maximum is for f > 0.5. 

On this basis, we classified the set of G-automata in four groups: constant 
(briefly CO), growing (GR), left-oriented bell-shaped (LB), right-oriented bell-
shaped (RB). In the specific set of G-automata object of the study, we have:  

• CO G-automata: 11% of the total.  
• GR G-automata: 17% of the total. 
• LB G-automata: 55% of the total.  
• RB G-automata: 10% of the total. 
• not classifiable: 7% of the total. In this category we considered all the G-

automata which do not clearly belong to one of the groups above.  
Once the G-automata have been divided in homogeneous groups on the 

dependency of Ω on f, it has been possible to study the differences in behaviour 
according all the specific order indicators (see section 4). The analysis has been 
made on average values for every indicator on the G-automata belonging to each 
group. 

Exception made for the attractors mean period, if there is no interaction among 
the cells of the G-automata, the value of the order indicators are very close for all 
the three non-constant classes. If the interaction is turned on, i.e. for values f > 0, 
the various classes of G-automata manifest different order degree and tendency. In 



 
 
 
 
 
 
 
 

detail, for values of f > 0, the degree of order of CO G-automata is the highest3, 
followed by RB, LB and GR ones4. Furthermore, in correspondence of higher f the 
differences among the groups accentuate: in particular, GR G-automata decrease 
their degree of order; RB and LB, after an initial diminution, increase their state of 
order; lastly, the degree of order of CO G-automata remain fixed to the maximum, 
notwithstanding the value of f.  

In figures 6.2 (a)(b)(c) we can observe the dependency of Ω, stfc and α on f, for 
the four different G-automata classes. All the other indicators present similar 
shapes and give a support to the hypothesis of a different response to coupling 
strength for different classes of G-automata.  

 
 

VARIATION OF  Ω  IN DIFFERENT G-AUTOMATA CLASSES

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f

Ω
 

LEFT BELL
CONSTANT
GROWING
RIGHT BELL

VARIATION OF sfct  IN DIFFERENT G-AUTOMATA CLASSES

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f

sf
ct

LEFT BELL

CONSTANT

GROWING

RIGHT BELL

 

                                                           
 
3 Notice that an “increase of the degree of order” corresponds to a higher value of certain 
order indicators (e.g. stfc, α…) and to a lower value of certain other ones (e.g. Ω…). 
4 Note that for low values of f (f ≤ 0.2) we can observe some inversions in the relation of 
order between RB and LB, probably due to some experimental noise. 
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Figure 6.2. (a) Variation of Ω according different values of f for the 4 different classes 
of G-automata. (b) Variation of stfc according different values of f for the 4 different 
classes of G-automata. (c) Variation of α according different values of f for the 4 
different classes of G-automata.  

 
As stated above, attractors mean period (shortly, AMP) presents a different 

dependency on f compared to the other order indicators (see figure 6.3).  
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Figure 6.3. Variation of AMP according different values of f for the 4 different classes 
of G-automata. 

 
 In particular: 

• the value of the AMP in case of no interactions (f = 0) is significantly 
different among the four G-automata classes: GR G-automata own the 
highest value, respectively followed by RB, LB and CO ones. 

• in presence of interaction, AMP seems to be weakly dependent on the 
interaction strength5 for f ≥ 0.1. 

                                                           
 
5 Note that the collapse in the attractors mean period for growing G-automata is probably 
due to the fact that in case of interaction the first cells to lose the attractor are the ones with 



 
 
 
 
 
 
 
 

The significant difference in the value of AMP in case of no interaction suggests 
the existence of a relationship between the dynamics of the isolated cells (namely 
of the specific RBN hosted in the cell of the automata) and the different behaviours 
of the G-automata in response to the interaction. Moreover, they point to the 
possibility of using the value of the AMP in case of no interaction to estimate the 
probability that a given network belongs to one of the four classes and, as a 
consequence, to form meaningful expectations concerning their response to 
growing interaction. 

On the basis of the observed distribution of AMP in case of no interaction for 
each G-automata class, we partitioned the range of values of AMP in 4 intervals: 
equal to 1, between 2 and 10, between 10 and 30 and higher than 30. In figure 6.4 
one can see the relative frequency of G-automata of the four classes, in each of the 
four AMP intervals. The observed conditional frequencies of the various types of 
G-automata are the following: 

• AMP = 1:  CO: 94%, not classifiable: 6%. 
• AMP comprised among 2 and 10: LB: 70%, RB: 10%, GR: 12%, 8%: not 

classifiable; 
• AMP comprised among 10 and 30: LB: 50%, RB: 20%, GR: 27%; 3%: 

not classifiable; 
• AMP > 30: LB: 19%, RB: 9%, GR: 63%, 9% not classifiable.  
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Figure 6.4. Repartition of G-automata classes for different ranges of attractors mean 
period in case of no interaction (1; 2 – 10; 10 – 30; >30). 

                                                                                                                                      
 
the largest periods. In this way, just the mean of the periods of the attractors on the cells that 
still reach an attractor only is computed.  



 
 
 
 
 
 
 
 

7 Conclusions  

Let us first remark the difficulty in understanding in a clear way the influence of 
the interaction strength on the dynamics of the whole system. While one might 
have expected a well defined tendency, the phenomena which have been observed 
are definitely more complicated. 

On the basis of extensive simulations we could observe that different random 
Boolean networks can show substantially different behaviours when interacting 
with each other.  

We introduced different order indicators, and we tentatively identified four 
classes of G-automata, on the basis of the dependency of most of these variables 
upon the interaction strength.  

It was then found out that the average attractor period (AMP) of a single and 
isolated RBN seems providing fine indications on the behaviour of the automata in 
which this RBN would interact. RBNs that, taken singularly, present high values of 
AMP would, in fact, lead to a system of interacting RBNs tending to more 
disordered states while the interaction strength increases. On the contrary, RBNs 
characterized by AMP equal to 1 almost always lead to automata characterized by 
a constant and maximum state of order, unaffected by the interaction. Among these 
extreme dynamics, RBNs with intermediate values of AMP are likely to lead to G-
automata which belong to the most frequent class, which was called “bell-shaped”. 

Possible future directions of research in this area may include: 
• analyzing the behaviour of CA made by RBNs which have a non classical 

topology (e.g., scale free [Aldana, 2003; Darabos, Giacobini & 
Tomassini, 2006]); 

• studying the behaviour of CA with different interaction rules (e.g. 
majority) and interaction topologies; 

• studying the robustness of the behaviour of “artificial tissues”, where each 
RBN starts in the same attractor as the others, but there are random flips 
(a tissue would be stable if the networks continue to remain in the original 
attractor). 

    Another open issue concerns the possible meaning of our findings from the 
viewpoint of evolutionary theory. In the case of a tissue made by cells of the same 
type it may be supposed that they all are in the same attractor. Then it might be 
guessed [Kauffman, 1995] that the evolutionary pressure towards critical (or 
slightly subcritical) states should operate at the tissue level and not at the level of 
single cells. Our findings here point to the fact that the overall order at the 
collective level is highly sensitive to the dynamical properties at the level of single 
cells. Therefore there is no screening of the individual properties, and the selective 
pressure should favour the development of cells with appropriate individual 
dynamical properties. It would be interesting to consider a system endowed with 
some evolutionary dynamics to better understand the interplay between the 
evolution at the system level and that at the level of single cells. 
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