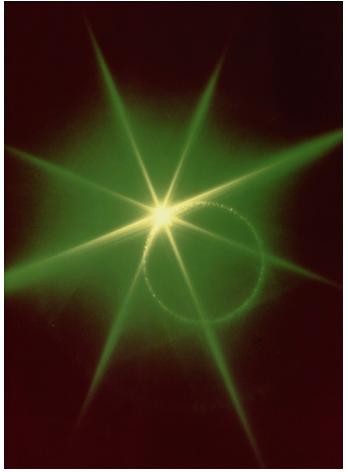
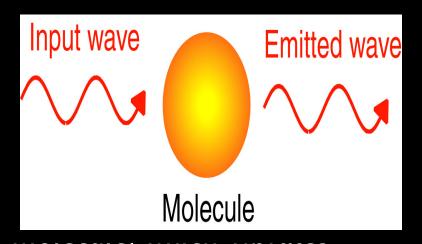
Nonlinear effects in anisotropic materials

MILESTONES

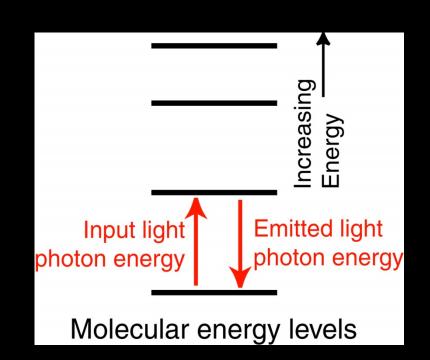
- 1961 Discovery of Optical second harmonic generation.
- 1962 Discovery of Stimulated Raman scattering.
- 1964 Stimulated Brilloiun scattering. It is now an efficient technique to generate or amplify coherent optical radiation with small frequency shift.

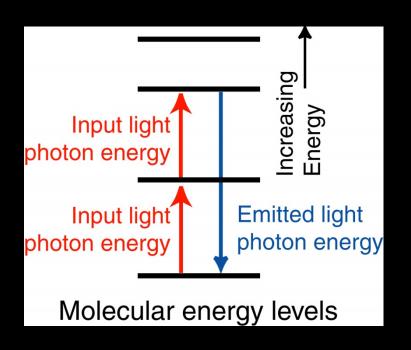

Linear Optics vs Non Linear Optics

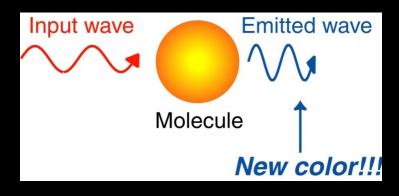
- Linear optics 'Optics of weak light': Light is deflected or delayed but its frequency is unchanged.
- <u>Non-Linear optics</u>-'Optics of intense light': We are concerned with the effects that light itself induces as it propagates through the medium.


<u>Non-Linear optics produces many</u> <u>exotic events</u>

•Nonlinear optics allows us to change the color of a light beam, to change its shape in space and time, to switch telecommunications systems, and to create the shortest events ever made by Man


Ex: Sending infrared light into a crystal yielded this display of green light


In Linear optics



and then emits its own light wave that interferes with the original light wave.

In Non-Linear Optics

If irradiance is high enough vibrations at all frequencies corresponding to all energy differences between populated states are produced.

Importance of 'NLO'

- Optical wave manipulation is one of the future technologies for optical processing.
- It has various applications in fiber-optic communications and optoelectronics which makes it an increasingly important topic among electrical engineers.

Polarization Linear

Non-linear

 P: induced polarization of medium
 ε₀: dielectric constant of vacuum
 Ε: electric field
 χ⁽ⁱ⁾: succeptibilities of 'i' order.

<u>Phenomenon Associated With Non-</u> linear Optics

- Second harmonic generation.
- Sum frequency generation.
- Difference frequency generation.
- Optical parameter amplification.
- 'N' wave mixing.

Second Harmonic Generation

$$P = \varepsilon_0 \left[\chi^{(1)} E + \chi^{(2)} E^2 + \chi^{(3)} E^3 + \dots \right]$$

What are the effects of such nonlinear terms? Since $E(t) \propto E_0 \exp(i\omega t) + E_0^* \exp(-i\omega t)$, $E(t)^{2} \propto E_{0}^{2} \exp(2i\omega t) + 2|E_{0}|^{2} + E_{0}^{*2} \exp(-2i\omega t)$ 2m = 2nd harmonic! Second-order non-linear crystal 532 nm 1064 nm 1064 nm

Sum and Difference Frequency Generation

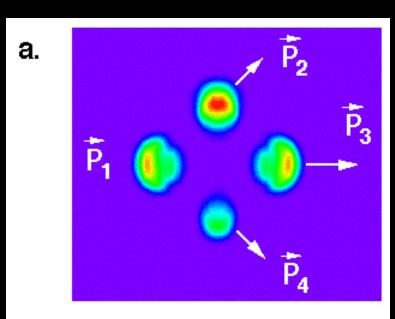
Suppose there are two different-color beams present:

 $E(t) \propto E_1 \exp(i\omega_1 t) + E_1^* \exp(-i\omega_1 t) + E_2 \exp(i\omega_2 t) + E_2^* \exp(-i\omega_2 t)$ So:

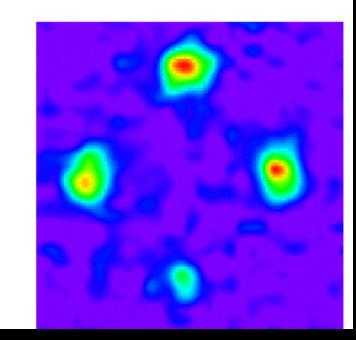
$$E(t)^{2} \propto E_{1}^{2} \exp(2i\omega_{1}t) + E_{1}^{*2} \exp(-2i\omega_{1}t)$$

$$+ E_{2}^{2} \exp(2i\omega_{2}t) + E_{2}^{*2} \exp(-2i\omega_{2}t)$$

$$+ 2E_{1}E_{2} \exp(i[\omega_{1} + \omega_{2}]t) + 2E_{1}^{*}E_{2}^{*} \exp(-i[\omega_{1} + \omega_{2}]t)$$


$$+ 2E_{1}E_{2} \exp(i[\omega_{1} - \omega_{2}]t) + 2E_{1}^{*}E_{2}^{*} \exp(-i[\omega_{1} - \omega_{2}]t)$$

$$+ 2|E_{1}|^{2} + 2|E_{2}|^{2}$$


$$2nd-harmonic gen
2nd-harmonic gen
Sum-freq gen
Diff-freq gen
dc rectification$$

Four Wave mixing (FWM)

In this three optical fields mix in a nonlinear medium and create a four wave.

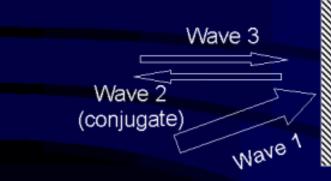
b.

Materials applied in Non-Linear

optics

Title	•	Transmission Range, m	m Typical Applications
<u>LBO</u> pump	ed by	0.16 - 3.3	High power lasers harmonics generation and OPO Nd:YAG harmonics
<u>BBO</u> with o	utputin	0.19 - 3.3	- Solid State and Dye laser harmonics generation the range 200-532 nm; - OPO/OPA pumped by Nd:YAG harmonics with 295 - 3000 nm output
<u>KTP</u>		0.38 - 4.4	Harmonics generation in UV and VIS
KD*P	0.26 - 1.6		Harmonics generation in VIS
LiNbO ₃	0.4 - 4.5		SHG and OPO pumped by Nd:YAG laser
<u>LilO</u> ₃ <u>ÅgGa</u> output		0.53 – 12	SHG and THG of Nd:YAG, DFM with output in 3 - 5 μm range Harmonics generation and DFM with wide tunable 9 μm, IR visualization
<u>AgGaSe₂</u>	0.73 – 18		SHG of CO ₂ lasers, OPO with 3 - 12 μ m output
GaSe	0.65 – 18 0.75 – 25		SHG of CO and CO_2 lasers, DFM with output in 7 - 16 μm CdSe DFM with tunable output up to 25 μm
AgAsS ₃	0.6 – 13		IR visualization, DFM, OPO
Те	3.8 - 32		DFM with output in 15 - 30 μm

Tabela 4.1. Parametry niektórych materiałów nieliniowych					
Materiał	$n_2, m^2/W$	α , cm ⁻¹	τ _R , s	$\Delta n/\lambda \alpha$	
Półprzewodnik GaAlAs (λ = 810 nm)	-10-15	18	10-8	2,5	
Szkło SiO ₂	10-20	10-6	10-14	1000	
Polimer PTS ($\lambda = 1,06 \ \mu m$)	10-15	0,8	10-12	100	
Ciekły kryształ PCB	10-8	10	10- ³	300	


Typ nieliniowości Elektronowa		$n_2, m^2/W$	Czas τ_R ps
		10-16	
Reorientacyjna	w fazie izotropowej	10-13	100 ns
	w fazie nematycznej	10-8	μs
	· zjawisko Janossy'ego	10-6	μs
Termiczna	w fazie izotropowej	10-10	< 100 µs
	w fazie nematycznej	10 - 9	> 100 µs

Applications:

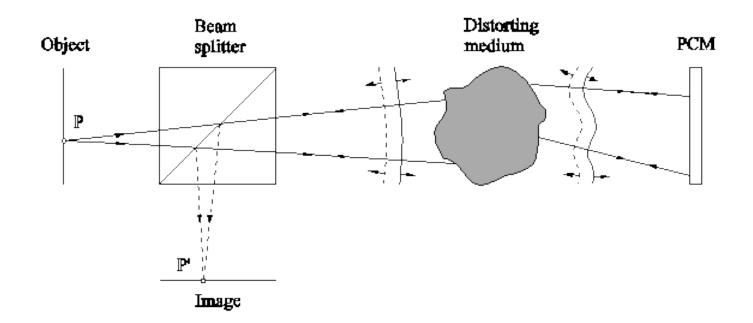
- Optical phase conjugation
- Optical parametric oscillators
- Optical computing
- Optical switching
- Optical data storage

Optical phase conjugation

- An optical phase conjugator can be used to unravel distortions that occur in passing through a distorting medium
- Optical phase conjugation occurs when we have four wave mixing with all four waves of the same frequency

Wave 4

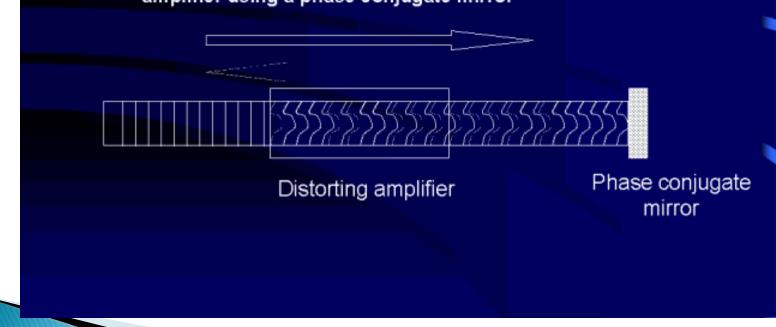
Phase grating created by waves 1 and 4


Phase-matching

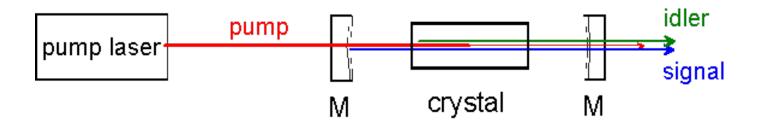
Nonlinear medium

 $\underline{\mathbf{k}}_1 = -\underline{\mathbf{k}}_4$ $\underline{\mathbf{k}}_2 = -\underline{\mathbf{k}}_3$

- Waves 1 and 4 create an interference pattern
- This builds up an intensity dependent refractive index
- This looks like a phase grating
- Wave 3 creates a phase conjugate of wave 1


Imaging and Aberration correction using PCM

Basic two-pass geometry for imaging and aberration correction using a PCM(Phase conjugate mirror).


Image restoration by phase conjugation

- Severely distorted laser beams can be corrected for distortions in passing through imperfect optics
- High power amplifiers often distort laser beams
 - the distortions can be corrected by double passing the amplifier using a phase conjugate mirror

Optical Parametric Oscillators

- Converts the pump wave into two coherent light waves with longer wavelengths.
- Applications: Light detection and ranging (LIDAR), High-resolution spectroscopy, Medical research, Environmental monitoring, Display technology, and Precision frequency metrology.

Optical Computing

- Optical Techniques can provide a number of ways of extending the information processing capability of electronics.
- Large quantities of data can be generated from different resources and powerful computer is required to process them.
- Just electronics are not enough for this and therefore OPTICS can provide some solutions.
- Digital Optical computer requires the use of nonlinear optics.

Future Scope

- The field of Nonlinear Optics today has grown into a vast enterprise with a considerable potential for technological applications.
- The nonlinear optical (NLO) materials needed for optimized components , however, have not yet been realized.
- New nonlinear optical materials and devices are in various stages of development.
- Organic nonlinear optical materials are thought to play a key role in the future of NLO.
- Purely optical information processing looms on the horizon".