Magnetooptic effects

•Solution from Maxwell's equations,

•Material parameters must be given,

$$\vec{\nabla} \times \vec{H} = \varepsilon_0 \vec{\varepsilon} \frac{\partial \vec{E}}{\partial t} \qquad \vec{\nabla} \times \vec{E} = \mu_0 \vec{\mu} \frac{\partial \vec{H}}{\partial t}$$
$$\vec{\nabla} \cdot \vec{H} = 0 \qquad \vec{\nabla} \cdot \vec{E} = 0$$
$$\vec{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix} \qquad \text{(unitar tensor, (commonly used term in analysis of optical fields (commonly used term))$$
$$\vec{\mu} = 1 \qquad \Delta \vec{E} - \nabla \cdot \nabla \vec{E} - \vec{\vec{\varepsilon}} \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

 $\Delta \vec{E} = \begin{bmatrix} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} & 0 & 0 \\ 0 & \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} & 0 \\ 0 & \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} & 0 \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$ $\vec{\nabla} \cdot \vec{\nabla} \vec{E} = \begin{bmatrix} \frac{\partial^2}{\partial x^2} & \frac{\partial^2}{\partial x \partial y} & \frac{\partial^2}{\partial x \partial z} \\ \frac{\partial^2}{\partial y \partial x} & \frac{\partial^2}{\partial y^2} & \frac{\partial^2}{\partial y \partial z} \\ \frac{\partial^2}{\partial z \partial x} & \frac{\partial^2}{\partial z \partial y} & \frac{\partial^2}{\partial z^2} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$

$$\Delta \vec{E} - \nabla \cdot \nabla \vec{E} - \vec{\vec{\varepsilon}} \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution :

$$\vec{E} = \vec{E}_0 \exp\left[i\left(\omega t - n\vec{k}_0 \vec{r}\right)\right] \qquad \text{gdzie:} \quad k_0 = \frac{2\pi}{\lambda_0}$$

Wektor falowy w próżni

Oznaczenia:

 $\cos(\alpha') = \alpha_c$ $\cos(\beta') = \beta_c$ $\cos(\gamma') = \gamma_c$

Direction Cosinuses of wave vector in respect to coordination axes

Product of wave vector and radios r can be expressed as:

$$\vec{k} \cdot \vec{r} = nk_0 (\alpha_c x + \beta_c y + \gamma_c z)$$

Tensor $\overline{\overline{\varepsilon}}$ under the influence of external magnetic field H_0 :

$$\mathbf{\tilde{\epsilon}} = \begin{bmatrix} \mathbf{\varepsilon}_{11} & \mathbf{\varepsilon}_{12} & \mathbf{\varepsilon}_{13} \\ \mathbf{\varepsilon}_{21} & \mathbf{\varepsilon}_{22} & \mathbf{\varepsilon}_{23} \\ \mathbf{\varepsilon}_{31} & \mathbf{\varepsilon}_{32} & \mathbf{\varepsilon}_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{\varepsilon}_{x} & -\mathbf{i}\delta & \mathbf{0} \\ \mathbf{i}\delta & \mathbf{\varepsilon}_{y} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{\varepsilon}_{z} \end{bmatrix}$$

$$\vec{\Delta}\vec{E} - \nabla \cdot \nabla\vec{E} - \vec{\bar{\epsilon}}\varepsilon_{0}\mu_{0}\frac{\partial^{2}\vec{E}}{\partial t^{2}} = 0$$

$$\vec{E} = \vec{E}_{0} \exp\left[i\left(\omega t - n\vec{k}_{0}\vec{r}\right)\right]$$

$$\left(\Delta - \vec{\nabla} \cdot \vec{\nabla} - \vec{\epsilon}\varepsilon_{0}\mu_{0}\omega^{2}\right)\vec{E} = 0$$

Considering $\bar{\bar{\mathcal{E}}}$

$$\begin{bmatrix} n^{2} (\beta_{c}^{2} + \gamma_{c}^{2}) - \varepsilon_{x} \end{bmatrix} - n^{2} \alpha_{c} \beta_{c} + i\delta & -n^{2} \alpha_{c} \gamma_{c} \\ - n^{2} \alpha_{c} \beta_{c} - i\delta & \left[n^{2} (\alpha_{c}^{2} + \gamma_{c}^{2}) - \varepsilon_{y} \right] & -n^{2} \beta_{c} \gamma_{c} \\ - n^{2} \alpha_{c} \gamma_{c} & -n^{2} \beta_{c} \gamma_{c} & \left[n^{2} (\alpha_{c}^{2} + \beta_{c}^{2}) - \varepsilon_{z} \right] \end{bmatrix} \begin{bmatrix} E_{x} \\ E_{y} \\ E_{z} \end{bmatrix} = 0$$

In order to solve this, the characteristic determinant must vanish

Eqiations for possible refractive indices:

$$n^{4} \left(\varepsilon_{x} \alpha_{c}^{2} + \varepsilon_{y} \beta_{c}^{2} + \varepsilon_{z} \gamma_{c}^{2} \right) - n^{2} \left[\left(\varepsilon_{x} \varepsilon_{y} - \delta^{2} \right) \left(\alpha_{c}^{2} + \beta_{c}^{2} \right) + \varepsilon_{z} \left(\varepsilon_{x} \alpha_{c}^{2} - \varepsilon_{y} \beta_{c}^{2} \right) + \varepsilon_{z} \left(\varepsilon_{x} + \varepsilon_{y} \right) \gamma_{c}^{2} \right] + \varepsilon_{z} \left(\varepsilon_{x} \varepsilon_{y} - \delta^{2} \right) = 0.$$

Two cases can be considered:

- Propagation along Oz axis along the direction of external magnetic field, (Faraday's rotation),
- 2). Propagation perpendicularly to the magnetic field vector (Cotton-Mouton effect)

Faraday's effect

$$\alpha_{c} = \beta_{c} = 0 \qquad \gamma_{c} = 1$$
To simplify:

$$\varepsilon_{x} = \varepsilon_{y} = \varepsilon_{F}$$

$$\cdot no-shape medium,$$
• crystal with regular structure,
• uniaxial crystal with optical axis
along OZ axis
$$n^{4} - 2 n^{2} \varepsilon_{F} + \varepsilon_{F}^{2} - \delta^{2} = 0$$
Solution:

$$n_{+}^{2} = \varepsilon_{F} \pm \delta$$

Faraday's effect

Two possible values of refractive index, so two eigenwaves can propagate in the medium,

$$\begin{bmatrix} \pm i\delta & -\delta & 0 \\ \delta & \pm i\delta & 0 \\ 0 & 0 & -i\varepsilon_z \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix} = 0$$
$$E_x^{\pm} = E_0^{\pm} \exp\left[i\left(\omega t - k_0 n_{\pm} z\right)\right],$$
$$E_y^{\pm} = \pm i E_0^{\pm} \exp\left[i\left(\omega t - k_0 n_{\pm} z\right)\right],$$

Two circularly polarized waves (left-handed and right-handed)

Faraday's rotation angle

$$\Theta_F = V H_0 \Delta z$$

٠

In paramagnetics and diamagnetics, the rotation angle is proportional to intensity of magnetic field

$$\Theta_F = \bigvee_{\uparrow} H_0 \,\Delta z$$

Verdett constant

Faraday's effect

For ferromagnetics and ferrimagnetics, rotation angle is larger and is not proportional to the intensity of magnetic field

$$\varphi_{H_0=H_{nas}} = \frac{\Theta_F}{\Delta z}$$

Proper rotation in total magnetic saturation state

It can be proved that nondiagonal elements of tensor $\bar{\bar{\varepsilon}}$ for medium ($\varepsilon_x = \varepsilon_y = \varepsilon_z = \varepsilon_F$)

$$\varepsilon_{12} = -\varepsilon_{21} = -i\delta = -i\frac{\omega\varepsilon_0\mu_0}{Ne}(\varepsilon_F - 1)^2\mu(H_0)H_0$$

where: N – Avogadro number, e – electron charge, ω – frequency of optical wave , $\mu(H_0)$ – magnetic permitivity of the medium,

Faraday's effect

For ferro- i ferrimagnetics, Faraday's rotation angle is defines as:

$$\Theta_{\rm F} = \pi \left(n_{+} - n_{-} \right) \frac{\Delta z}{\lambda_{0}} \approx \frac{\pi \delta \Delta z}{\lambda_{0} \sqrt{\varepsilon_{F}}} = \frac{\varepsilon_{0} \mu_{0} \varepsilon_{F} \pi}{\operatorname{N} e \lambda_{0} \sqrt{\varepsilon_{F}}} \left(\varepsilon_{F2} - 1 \right)^{2} \mu \left(H_{0} \right) H_{0}$$

$$\mathbf{V} = \frac{\omega \boldsymbol{\varepsilon}_0 \boldsymbol{\mu}_0 \boldsymbol{\pi}}{\mathbf{N} \, \mathbf{e} \, \lambda_0 \sqrt{\boldsymbol{\varepsilon}_F}} \left(\boldsymbol{\varepsilon}_F - 1 \right)^2 \boldsymbol{\mu} (H_0)$$

Verdett's constant for ferro- i ferrimagnetics

- For diamagnetics and paramagnetics, V does not depend on external field
- For ferro- and ferrimagnetics, V is changing with magnetic field intensity H up to saturation state,

Lp.	Material magneto- optyczny	Własności magnetyczne i struktura krystalograficzna	Długość fali λ [μm]	Stala Verdeta V [rad/A]	Tłumienność ξ [1/m]	Dobroć magnetooptyczna V / ξ [rad m/A] (*) φ / ξ [rd]	dla silnych magnetyków (*) φ=V×H _{max} [rad/ m]	źródło informacji
1.	FR-5	Szkło paramagnetyczne	0,633	-0,88·10 ⁻⁴	3	3,11·10 ⁻⁵	2	[28]
2.	EuSe	Kryształ paramagnetyczny	0,633	-2,82·10 ⁻⁴	1,73·10 ⁴	1,65·10 ⁻⁸	1	[29]
3.	FeBr ₂	Heksagonalne kryształy warstwowe ferromagnetyczno – antyferromagnetyczne	0,633	(*)	200	3,5 (*)	700	[30]
4.	PbMo04	Kryształ paramagnetyczny (akustooptyczny)	0,633	0,66.10-4	10	0,66.10 ⁻⁵	2	[31]
5.	KDP	Kryształy diamagnetyczne (elektrooptyczne)	0,633	0,046·10 ⁻⁴	10	0,46.10-5	1	[32]
6.	ADP	Kryształy diamagnetyczne (elektrooptyczne)	0,633	0,05.10-4	10	0,05.10-5	1	[32]
7.	Si02	Diamagnetyczne szkło "światłowodowe"	0,633	0,0476.10-4	0,1	4,76.10-5	1	[33]
<mark>8</mark> .	Cd _{0,55} Mn _{0,45} Te	Półprzewodnik "półmagnetyczny"	0,633	25.10-4	15	16,8·10 ⁻⁵	-	[34, 35]
9.	YFeO3	Kryształ ferrimagnetyczny o strukturze ortoferrytów	1,55	(*)	0,5	1050 (*)	525	[36]
10.	$Y_3 Fe_5 0_{12}$	Kryształ ferrimagnetyczny o strukturze granatu	0,633 1,15	(*) (*)	10 ⁵ 1	0,017 (*) 295 (*)	1700 295	[27] [27]
11.	(YbTbBi) ₃ Fe ₅ 0 ₁₂	Kryształ ferrimagnetyczny o strukturze granatu	1,3 1,55	(*) (*)	1	3150 (*) 2100 (*)	-3150 -2100	[37]

Attenuation (absorption coefficient) $I(z) = Iexp(-\xi z)$

Solution for
$$n = n_{\parallel}$$

 $E_x = E_y = 0,$
 $E_z = E_{0z} \exp \left[i \left(\omega t - n_{\Pi} k_0 \rho\right)\right] = E_{\Pi},$
 $\rho = \sqrt{x^2 + y^2} = \alpha_c x + \beta_c y$
Solution for $n = n_{\perp}$
 $E_z = 0,$
 $E_{\perp} = \sqrt{E_x^2 + E_y^2} = E_{0\perp} \exp \left[i \left(\omega t - n_{\perp} k_0 \rho\right)\right].$

- Inside of material, there are two orthogonal linear polarized waves,
- Phase velocities of both waves are different,

• The medium behaves as uniaxial crystal with optical axis parallel to vector H₀

• At every point of the crystal, whose alignment is defined by vector ρ , a elliptically polarized wave as a superposition of two orthogonal waves is observed,

- Magnetic birefringence Cotton-Mouton effect,
- Phase difference is calculated accordint to:

$$\Delta = k_0 (n_{\rm II} - n_{\perp}) \rho = k_0 \Delta n_{LB} \rho \approx k_0 \frac{\sqrt{\varepsilon_{CM}} \delta^2}{\varepsilon_{CM}} \rho$$

$$\Delta = \frac{\pi \omega^2 \boldsymbol{\varepsilon}_0^2 \boldsymbol{\mu}_0^2}{\operatorname{N} \boldsymbol{e} \lambda_0 \boldsymbol{\varepsilon}_{CM}^{3/2}} (\boldsymbol{\varepsilon}_{CM} - 1)^4 \boldsymbol{\mu}^2 (H_0) H_0^2 \boldsymbol{\rho}$$

 \bullet Cotton-Mouton effect is a second order phenomena, and phase difference is a nonlinear function of H_0

Other megnetooptic effects

Circular and linear dichroism

- observed together with Faraday's and Cotton-Mouton effects,
- in reality, components of electric permitivity tensor $ar{ar{ar{e}}}$ are complex,
- refractive index will be represented as: $n^* = n' in''$
- Faraday's rotation can be defines as:

$$\begin{bmatrix} E_x \\ E_y \end{bmatrix} = E_0 \begin{bmatrix} 1 \\ \pm i \end{bmatrix} \exp\left(-2\pi n_{\pm}'' z / \lambda_0\right) \exp\left[i\left(\omega t - 2\pi n_{\pm}' z / \lambda_0\right)\right]$$

Optical isolator

$$Isolation = 10 * \log\left(\frac{I_T}{I_R}\right)$$

Insertion $loss = -10 * \log\left(\frac{I_T}{I_O}\right)$

Optical isolator

Optical modulator

Optical modulator

Optical circulator

