Depolarization of light

Depolarization

- It is not so easy to depolarize light,
- A total depolarization is rather not possible,
- There are some methods to immitate disorder in oscillations of E vector,

Rys. 10.10. a) Depolaryzator Lyota, b) depolaryzator Hanlego, c) depolaryzator Cornu

Depolarization

- Lyott depolarizer
 - Used for depolarization of non-monochromatic light,
 - it consists of two uniaxial plates, where one is twice times thicker than second one,
 - Both are cutted pararelly to the optical axis,
 - The binormal axes forms a 45 degrees angle,
 - When polichromatic linearly polarized light propagates through depolarizer, then each wavelengths gains new polarization,
 - As a result, we get an immitation of depolarized light beam,
 - Redundant polarization is 1%

Hanle depolarizer

- It consists of crystallic wedge, with its axis lays in incidential plane and is aligned under 45 degrees,
- Second glass wedge is for compensation of the beam direction,
- Each ray changes its polarization state depending on thickness of the wedge,
- Redundant polarization is 1%

Cornu depolarizer

- The idea is similar to Henle depolarizer,
- It consists of two wedges made of optically active crystals: one lefthanded and second righthanded,
- The light beam at the output consists of beams with different aximuths but the same ellipticity,

Depolarization of partially coherent light

- Is defined in many ways (C.Brosseau, R.A. Chipman, S.N. Sasenkov),
- Is described by many mathematical theories,
- Can be considered as a result of light scattering in optical medium,
- 1997 r. This phenomena was analyzed in context of isotropy,

Depolarization of partially coherent light

• For anisotropic depolarization:

$$P = \left[2\left[\frac{\|\mathbf{K}\|_F}{Tr(\mathbf{K})}\right]^2 - 1\right]^{\frac{1}{2}}$$

1

Coherence of light

- Spatial transversal,
- Temporal longitudinal has influence on depolarization,
- Temporal coherence can be expressed by complex degree of coherence,

$$\gamma(\tau) = \frac{\langle E^*(t)E(t+\tau)\rangle}{\langle |E(t)|^2 \rangle} \quad \longleftarrow \quad \text{Complex degree of coherence}$$

$$\gamma(\tau) = \int_{0}^{\infty} \widehat{G}(\nu) \exp(-i2\pi\nu\tau) \, d\nu \quad \longleftarrow$$

Based on properties of self coherence function

$$\widehat{G}(v) = \begin{cases} \frac{G(v)}{\int_0^\infty G(v)dv} & dla \ v > 0\\ 0 & dla \ v \le 0 \end{cases}$$

Coherence of light

Distribution of spectral light intensity:

- Gauss function
- Lorentz function

$$\widehat{G}(\nu) = \frac{2\sqrt{\ln(2)}}{\sqrt{\pi}\Delta\nu} \exp\left[-\left(2\sqrt{\ln(2)}\frac{\nu-\bar{\nu}}{\Delta\nu}\right)^2\right]$$
$$\widehat{G}(\nu) = \frac{2(\pi\Delta\nu)^{-1}}{1+4\left(\frac{\nu-\bar{\nu}}{\Delta\nu}\right)^2}$$

$$\bar{v} = \frac{c}{\bar{\lambda}}$$
 Central frequency

 $\Delta \nu = \frac{c\Delta\lambda}{\bar{\lambda}^2 - \frac{1}{4}\Delta\lambda} \approx c \frac{\Delta\lambda}{\lambda^2} \qquad \text{Half width of frequency}$

Z Central wavelength

∆λ Shalf width of light

It is correct for quasi-monochromatic light sources

Light coherence

Gaussian light sources

Lorentzian light sources

$$\Delta L_{G} = c\tau_{eG}$$

 $\Delta L_{L} = c \tau_{cL}$

$$P = \sqrt{1 - \frac{4 \det[K]}{(J_{xx} + J_{yy})^2}} = \sqrt{1 - \frac{4(1 - |\gamma(\tau)|^2)}{\left(\frac{E_{0x}}{E_{0y}} + \frac{E_{0y}}{E_{0x}}\right)^2}}$$

$$P_{G} = \sqrt{1 - \frac{4\left(1 - exp\left[-2\left(\frac{\pi\Delta\nu\tau}{2\sqrt{\ln(2)}}\right)^{2}\right]\right)}{\left(\frac{E_{0x}}{E_{0y}} + \frac{E_{0y}}{E_{0x}}\right)^{2}}} \qquad P_{L} = \sqrt{1 - \frac{4(1 - exp[-2\pi\Delta\nu\tau])}{\left(\frac{E_{0x}}{E_{0y}} + \frac{E_{0y}}{E_{0x}}\right)^{2}}}$$

Depolarization of light

- light in birefringent medium will experience phase shift in both eigenwaves
- For completely coherent light P = 1,
- for partially coherent light, phase shift may be high enough that P \rightarrow 0
- as a result of partial temporal coherence (and finished dimension of spectral width) light is propagating in wavepackets,

$$c\tau = \Delta n l$$

Depolarization of light

$$P_{G} = \sqrt{1 - \frac{4\left(1 - exp\left[-2\left(\frac{\Delta nl}{\Delta L_{G}}\right)^{2}\right]\right)}{\left(\frac{E_{0x}}{E_{0y}} + \frac{E_{0y}}{E_{0x}}\right)^{2}}}$$

• a Muller-Stokes formalism extended by depolarization matrix is very suitable for description of depolarization phenomena,.

$$\begin{bmatrix} S^{wy} \end{bmatrix} = \begin{bmatrix} D_n \end{bmatrix} \begin{bmatrix} M_n \end{bmatrix} \dots \begin{bmatrix} D_2 \end{bmatrix} \begin{bmatrix} M_2 \end{bmatrix} \begin{bmatrix} D_1 \end{bmatrix} \begin{bmatrix} M_1 \end{bmatrix} \begin{bmatrix} S^{we} \end{bmatrix}$$
$$\begin{bmatrix} D_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & P_c & 0 & 0 \\ 0 & 0 & P_c & 0 \\ 0 & 0 & 0 & P_c \end{bmatrix}$$

Depolarization phenomena

• for linearly polarized light:

$$P_{G} = \sqrt{1 - \left(1 - exp\left[-2\left(\frac{\Delta nl}{\Delta L_{G}}\right)^{2}\right]\right)}sin^{2}(2\theta)$$

$$P_{L} = \sqrt{1 - \left(1 - exp\left[-2\frac{\Delta nl}{\Delta L_{L}}\right]\right)sin^{2}(2\theta)}$$

where:
$$\theta = arctg\left(\frac{E_{0y}}{E_{0x}}\right)$$

For 45° angle

$$P_{G\min} = exp\left[-\left(\frac{\Delta nl}{\Delta L_G}\right)^2\right] \qquad \qquad P_{L\min} = exp\left[-\frac{\Delta nl}{\Delta L_L}\right]$$

Depolarization phenomena

 $[S^{wy}] = [D_n][M_n] \dots [D_2][M_2][D_1][M_1][S^{we}]$

• depolarization can have an nfluence on results obtained from method)polarizer and QWR)

$$\begin{split} [S^{p}]_{1} &= \left[D_{\frac{\lambda}{4}}\right] \left[M_{\frac{\lambda}{4}}\right] [M_{0^{\circ}}][S] \\ [S^{p}]_{2} &= \left[D_{\frac{\lambda}{4}}\right] \left[M_{\frac{\lambda}{4}}\right] [M_{45^{\circ}}][S] \\ [S^{p}]_{3} &= \left[D_{\frac{\lambda}{4}}\right] \left[M_{\frac{\lambda}{4}}\right] [M_{90^{\circ}}][S] \\ [S^{p}]_{4} &= \left[M_{45^{\circ}}\right] \left[D_{\frac{\lambda}{4}}\right] \left[M_{\frac{\lambda}{4}}\right] [S] \\ [S^{p}]_{4} &= \left[M_{45^{\circ}}\right] \left[D_{\frac{\lambda}{4}}\right] \left[M_{\frac{\lambda}{4}}\right] [S] \\ [S^{p}]_{4} &= \left[M_{45^{\circ}}\right] \left[D_{\frac{\lambda}{4}}\right] \left[M_{\frac{\lambda}{4}}\right] [S] \\ [S^{p}]_{4} &= \left[M_{45^{\circ}}\right] \left[D_{(0^{\circ}, 0^{\circ}) - I(90^{\circ}, 0^{\circ})} \\ I(0^{\circ}, 0^{\circ}) - I(90^{\circ}, 0^{\circ}) \\ I(45^{\circ}, 90^{\circ}) - I(0^{\circ}, 0^{\circ}) - I(90^{\circ}, 0^{\circ}) \\ I(45^{\circ}, 90^{\circ}) - I(0^{\circ}, 0^{\circ}) - I(90^{\circ}, 0^{\circ}) \\ \end{bmatrix} = \begin{bmatrix} S_{0}^{p}|_{1} + S_{0}^{p}|_{3} \\ S_{0}^{p}|_{1} - S_{0}^{p}|_{3} \\ 2S_{0}^{p}|_{4} - S_{0}^{p}|_{1} - S_{0}^{p}|_{3} \\ 2S_{0}^{p}|_{4} - S_{0}^{p}|_{1} - S_{0}^{p}|_{3} \\ \end{bmatrix} = \begin{bmatrix} S_{0} \\ S_{2} \\ S_{2} \\ S_{2}^{p}|_{4} - S_{0}^{p}|_{1} - S_{0}^{p}|_{3} \\ S_{0}^{p}|_{4} - S_{0}^{p}|_{1} - S_{0}^{p}|_{3} \\ \end{bmatrix}$$

$$P_{zmierzone} = \frac{\sqrt{S_1^2 + S_2^2 + P_c S_3^2}}{S_0} = P_{rzeczywiste} \frac{\sqrt{S_1^2 + S_2^2 + P_c S_3^2}}{\sqrt{S_1^2 + S_2^2 + S_3^2}} \le P_{rzeczywiste}$$

Depolarization in Lithium Niobate LiNBO₃

Tabela 3: Wyniki pomiarów depolaryzacji światła częściowo koherentnego w niobianie litu (LiNbO₃, Δn=0.086, l=10 mm).

				n).	J,086, I=10 mn) 3, ∆n=(IITU (LINDO		
		P zmierzone	P _c wyliczone *Gauss **Lorentz	θ	$\frac{\Delta n \cdot l}{\Delta L}$	Δ <i>n·l</i> [μm]	$\Delta L = \frac{\lambda^2}{\Delta \lambda}$ [µm]	Δλ zmierzone [nm]	prąd diody laserowej [mA]
1,0 18,5mA - 29mA 35mA 35mA 40mA		0	~ 0* 1*	0° 45°	48	860	18	25	24
Q 0.5	- - - -	0	~ 0* 1*	0° 45°	48	860	18	25	29
	-	0,6±0,1 1	> 0,58** 1**	0° 45°	< 0,54	860	> 1600	<0,30	37,5
0,0 600 620 640 660 680 700 720 744 długość fali λ [nm]		0,8±0,1 1	> 0,76** 1**	0° 45°	< 0,27	860	> 3200	< 0,15	40

Depolarization in liquid crystals

• Nematic liquid crystals

5CB, komórka 80 µm. źr. światla – dioda SLED

5CB, komórka 80 µm. źr. światla – dioda laserowa

5CB, komórka 80 µm. źr. światla – dioda SLED

Depolarization of light in photonic crystal fibers

Depolarization of light in photonic crystal fibers

Δλ	Ośrodek		Długość	Azymut	DOP
0,058 <u>nm</u>	Światłowód fataniazni	600 mm	0°	0,94	
	Swiatiowod Totomczn		45°	0,95	
	Ciekłokrystaliczny 5CB światłowód fotoniczny 6CHBT	5CB	595+5 mm	0°	0,93
				45°	0,35
		CUDT	594+6 mm	0°	0,96
		0CHB1		45°	0,20
	V1		1000 mm	0°	0,99
	Klasyczny swiatic	owod HB		45°	0,94

• Measurement of coherence length of light,

	Dioda laserowa emitująca	Dioda laserowa emitująca		
	zieloną wiązkę	czerwoną wiązkę		
	$(\lambda = 532,230 \text{ nm}; \Delta \lambda = 0,136 \text{ nm})$	$(\lambda = 637,424 \text{ nm}; \Delta \lambda = 0,154 \text{ nm})$		
$\Delta L_L = \frac{\lambda^2}{\Delta \lambda} \frac{1}{\pi}$	$\Delta L_L = \frac{\lambda^2}{\Delta\lambda} \frac{1}{\pi} = 0,714 \times 10^{-3} m$	$\Delta L_L = \frac{\lambda^2}{\Delta \lambda} \frac{1}{\pi} = 0,839 \times 10^{-3} m$		
Metoda depolaryzacyjna	$\Delta L_L = 0,662 \times 10^{-3} m$	$\Delta L_L = 1,171 \times 10^{-3} m$		

Group birefringence measurement in photonic crystal fibers,

$$G = \Delta n_{eff} = -\frac{\Delta L_L \cdot \ln(P_{L_{PCF}})}{l_{PCF}}$$

Nd:YAG

PLCF

Influence of depolarization on different optical phenomena

- electrooptical and megnetooptical effects,
- fiber optic sensors,
- influence on polarization dispersion in telecommunication lines,

