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An approach is discussed and tested associated with application of criteria of available energy in description of complex macroscopic systems. Thermal fields can be optimized with the help of the available energy lagrangians and variational principles involving suitably constructed potentials rather than original physical variables. The limiting reversible case is a reference frame which is generalized to reversible situations. 


Extending our earlier approaches to evolution presented at CSSNS workshops, we consider cases with significant role of environment. It is then shown that exergy-like functions rather than entropy-like functions have to be applied to properly describe an open complex system. In particular we apply the principle of extremum behavior of exergy to biological systems with variable number of states, thus attempting to test processes of biological development. The results show that the environment may hamper or  accelerate the effects of evolution depending on the type of  internal instabilities and mode of the external action. 

1. Introduction

Exergy and entropy are two basic functions associated with availability of a thermodynamic system to produce the mechanical energy (work). While entropy is usually designated by S, designations for exergy are diverse, for example A or R (in physics; availability, work), B or Ex (in engineering). According to the exergy definition it may be regarded as reversible or minimum work related to a production of a substance from common constituents of the environment. That production requires sequential  action of Carnot  heat pumps, that supply work. In a inverse process, when engines are used in sequential process, work is released. In both cases work These two cases are illustrated in Fig. 1. Importantly, exergy is a non-equilibrium work yield or consumed by a system. Hence its relation to the entropy produced due to irreversibilities in the system, S = -B/Te, where Te is temperature of environment.




Fig. 1: Two works accompanying work consumption and production. 

2. Ecological applications of exergy

In view of ecological aspects of energy conversion [1] ecological  applications of exergy are becoming more and more important [2]. Traditionally, energy limits are derived from exergy analyses that include ecological applications of exergy in a natural way. A basic notion therein that is supposed to be of value in thermal technology is the so-called cumulative exergy cost defined as total consumption of exergy of natural resources necessary to yield the unit of a final product [2]. Also introduced is the notion of cumulative exergy loss, as the difference between the unit cumulative exergy consumption and exergy of the considered product. In ecology, ecological counterparts of these quantities are introduced. Consequently, in ecology, the ecological cost is used as the cumulative consumption of exergy of unrestorable resorces burdening a definite product. Also, so-called pro-ecological tax can be imposed as the penalty for negative effects of action causing exhaust of natural resources and contamination of natural environment [2]. All these applications involve non-equilibrium processes in which the use of sole notion of the classical exergy is insufficient without including the associated notion of minimal (residual) dissipation of this exergy. 

Dynamic energy limits are, in fact, the realm into which we are driven with many analyses that lead to non-equilibrium applications of the exergy. They emerge since engineering processes must be limited by some irreversible processes allowing a minimum entropy production rather than by purely reversible processes. However, these limits cannot be evaluated from the method of cumulative exergy costs, as it has its own imperfections and disadvantages. Its definition of the sequential process, no matter how carefuly made, is vague. The total consumption of exergy of natural resources, necessary to yield a product which defines the cumulative exergy cost, is burden by signs, locations and dates of various technologies, the property that usually changes process efficiencies, semiproducts, controls, etc., and thus influences the cost definition. One way to improve the definition would be to deal with statistical measures of the process and its exergy consumption. Yet, a statistical procedure leading to an averaged sequence process, that would add the rigor to the definition of cumulative exergy costs, is not defined in the original work [2]. Moreover, in the current definitions of the cumulative exergy cost and ecological cost, the mathematical structures of these costs and related optimal costs remain largely unknown. In fact, cumulative costs are not functions but rather functionals of controls and state coordinates. To ensure potential properties for optimal costs, their definition should include a method that would eliminate the effect of controls. Yet, the original definition of the cumulative exergy cost does not incorporate any approach of this sort, the property that makes this definition inexact. On the other hand, in FTT [3], the potential cost functions can be found via an optimization. One can thus find various potential functions of diverse engineering operations. Suitable averaging procedures were proposed along with methods that use averaged criteria and models in optimization [3]. Most importantly, it was shown that any optimal sequential process has a quasi-Hamiltonian structure that becomes Hamiltonian in the special cases of processes with optimal dimensions of stages and in limiting continous processes [1, 4]. This means that the well-known machineries of Pontryagin’s maximum principle [5] and dynamic programming [6] can effectively be included to generate optimal cost functions in an exact way [3, 4]. 

3. Exergy-based approach to irreversible dynamics

The relation relation to the entropy produced due to irreversibilities in the system, S = -B/Te, makes it possible to use either entropy produced, S , or dissipated exergy, B, as an evolution criterion for the development of the irreversible process. Below we present some details of the associated variational formalism in which equations of irreversible dynamics are derived from a Lagrangian. We consider a nonequilibrium system with differences in temperatures and Planck chemical potentials, Fig.2. These appear within two subsystems („phases”) separated by an interface. Each phase has different intense parameters, hence the flow of energy and matter between these phases. A variational principle will serve to set the structure of the exchange equations. 

The nonequilibrium change of exergy in entropy units is used in the analysis below, i.e. the quantity  S = - B/ Te is applied.  

Motivation: A number of exchange equations, especially those for multiphase systems, have forms  which seem at most only indirectly related to the Onsager's theory. Explanation of the origin of this feature is the task of our work.  
Mode of the approach:
Comparison of the same process described in terms of the dependent and independent variables

Abbreviations:

DVA-dependent variables approach

IVA-independent variables approach

(the classical Onsagerian description dels with IVA)  
The process considered: 

The nonreacting heat and mass exchange between two subsystems  and  separated by an interface with negligible thermodynamic properties. The process is described by dependent state coordinates connected by simple conservation laws. 

The subsystems are not in thermodynamic equilibrium, which means that they differ in values of their intense parameters, such as temperatures and chemical potentials. We assume that the both subsystems compose an isolated system. We revisit the classical problem of irreversible thermodynamics, which is the relaxation of the lumped subsystems to equilibrium. This process involves the simultaneous heat and mass transfer between the subsystems.

The working state variables of the process, are components of the vector variables, x and x, which describe the "charges" of energy and mass in the subsystems  and . These charges are devations of the original variables of the subsystems (mole numbers and energies) from equilibrium   

Original variables of state  
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 = (n, e) and their thermodynamic conjugates


 EMBED Word.Picture.8  


Fig. 2 The lumped system under consideration

The potentials pi and pi(different in each phase) are the Planck potentials (the ratios of the chemical potentials and T), and the temperature reciprocals.

The "reduced" (usual) state variables: xi and xi are deviations from equilibrium
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The rates of change for the coordinates xand x,




v= dx/dt  and  v = dx/dt, 

are the control variables of a problem in which the total dissipation is minimized. They satisfy the simple balance constraint 
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Onsager (1931) formulation in terms of independent variables, x, first eliminates the constraint (3). This approach leads to the relaxation dynamics via unconstrained minimization of the integral of the entropy production s over the time, whose integrand is taken necessarily as sum of the two dissipation functions  and . Onsager's restricted extremum principle then follows (from the HJB approach) from which phenomenological equations are obtained via variations of rates in the expression which is the difference between the quadratic dissipation function (d/dt) and the total derivative of entropy, dS/dt = (∂S/∂)d/dt, under  assumption of the fixed state 




(the "power expression" or a truncated form of the HJB equation). In terms of the conductance matrix L = R-1 the minimum condition of Ps is 
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Because of "frozen" , this extremum principle is not a variational principle but a local extremum condition. One can ask several basic questions, e.g.:



.is the local extremum condition of Ps related to any exact variational principle?


.if the answer is yes, whose role plays Eq. (5) in a complete set of extremum conditions, and which are the Euler-Lagrange equations of the problem?


.which is the generalization of the underlying VP to the case when the state variables are dependent? This is just the ("original") case in which there are physical constraints linking the coordinates of the vector x.

Answer

The VP expresses the second law of thermodynamics in the form which uses the Lagrangian representation of the entropy production as the sum of the two dissipation functions, L 
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 s =  + 



In each case (constrained or not) the restricted Onsager's principle is an equivalent or truncated form of the Hamilton-Jacobi-Bellman equation for the functional of the generated entropy
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he VP shows that the entropy of an isolated system grows in time with rates making the final entropy the minimum. In the case of dependent variables, the minimum is subject to the conservation constraints.

4. Comparison of approaches based on dependent and independent variables

The conservation constraints can be taken into account before the variational procedure (IVA), in which case the dependent state variables are eliminated (Onsager), or they can be treated within the variational procedure (DVA), in the rate form (3). 

The principal function found via minimization of the integral over the quadratic lagrangian is the change of the entropy between the initial and final instant of time. The square approximation of the DVA entropy is
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is a suitable potential function for the linear dynamics. The s+1 dimensional vector p0 is the common value of the equilibrium transfer potentials in each subsystem, or the derivatives of the entropy around the equilibrium. Off equilibrium, the potentials of subsystems are different for each subsystem.
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Their deviations from the common equilibrium values, vector p0, are the thermodynamic forces, X = (X , X). In the framework of the linear theory X = (X, X) can be evaluated as linear functions of the state variables x
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and 
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Moreover, from Eq. (7)
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and
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In the DVA case all the (dependent) state variables are treated on equal footing, and then,
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and for the linear dynamics, 
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In the IVA case the entropy production exploits in advance the link between the state coordinates, and has the form
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Only in the IVA the explicit difference of potentials p appears which drives the fluxes. For linear dynamics and quadratic S, the constraint-incorporating entropy production is
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Here the coordinates of the first subsystem, x, are the independent variables. Making the identification  
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 x, one gets the entropy production in terms of the Onsager's independent variables 
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where , the positive matrix. The product - is the difference X = p - p of transfer potentials p in both phases. This is the interphase driving force, which is not the same as the driving force X and X, Eqs. (10) and (11). 

The restricted entropy of IVA is a different mathematical function than S of DVA, Eq. (7), first because it contains different variables (the independent variables  
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 x), and, second and more importantly, because it does not contain any linear terms since such terms have been eliminated a priori, by the application of the conservation-law constraint. The square approximation of the IVA entropy is  
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where  
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  + . While S(x) of DVA is the complete (nontruncated) entropy function of the two-phase system, the Onsagerian entropy, S() of IVA, is a restricted entropy function or a pseudoentropy. It resembes the availability function divided by the equilibrium temperature. Yet, both phases are taken in finite amounts, hence the equilibrium temperature is that of the internal equilibrium.

The partials of S(x) and S() with respect to their variables differ substantially. The components of ∂S/∂x = p describe the absolute values of the Planck potentials and temperature reciprocals in each phase. Otherwise, the partial derivative ∂S/∂ = X = p - pis the interphase driving force. 

From Onsager's (1931) theory, the evolution of the variables i, i.e. the dynamics 
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, satisfies the flux-force relation 


 EMBED Word.Picture.8  


in which the conductance matrix L=M-1 or (its reciprocity) the resistance matrix R=M-1, are symmetric. Through its relation to Hessians of the entropy in each phase, the static matrix  is also symmetric. Nothing can be said about the symmetry of the relaxation matrix M; thus the physical theories are usually formulated with the matrices  and R, in terms of which M =R-1.    

The DVA functional, which is minimized, describes the second law between the two times, t1 and subsequent t2, 
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The optimal control formulation, which we use as the basis, requires the minimization of Eq. (21) subject to the simple equations of state 
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Dynamic programming considers the minimum value of the functional (21) in terms of the final state and the final time
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(initial state not specified). Due to possible dependence of I on the process duration, the extremal function S need not always be the increment of the entropy, which has to be a time-independent state function. In general, the integration of Eq. (21) along extremals generates S = S as the increment of the entropy or its time-dependent generalization. The former is obtained for the quadratic and time-independent dissipation functions and, and for  being the Legendre transformation of  expressed in terms of the state. These conditions assure vanishing of the "thermodynamic hamiltonian" -  and the time independent S and S. 

The change of this generalized entropy-like function is
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and the Hamilton-Jacobi-Bellman equation for this minimization problem is
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where ∂S/∂t = 0 for the physical entropy. Hence the "power criterion" of DVA
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as a generalization of the Onsager's local-extremum principle to the case of dependent state variables. For the physical entropy Eq. (24) takes the special form of the time independent relationship  


 EMBED Word.Picture.8  


Conclusion: the power criteria are essentially Hamiltonians of suitable HJB equations for problems of minimum entropy generation (with two dissipation functions).

5. Dynamics of energy and mass exchange from the power-type criterion

The variation of Ps, Eq. (25), with respect to all control type variables, the rates v, v and the multiplier ', yields the expressions equivalent with the phenomenological equations of heat and mass exchange
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where L =  + . These equations should be solved with respect to v, v and '. In the above set, one may interpret the Lagrange multiplier ' as an interphase transfer potential, and consistently use further the new symbol p* for '.  For the quadratic dissipation
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This leads to the standard kinetics and conservation laws
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Substituting two first equations into the constraint yields the Lagrange multiplier p*
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where L 
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 (R)-1 and L
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 (R)-1. 

This formula makes it possible to eliminate the Lagrange multiplier p* from the transfer equations. In conclusion, in the DVA theory, corresponding with the entropy production
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the HJB formalism of DVA yields the dependent set 
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Example: Ohm's law for pure heat transfer
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and 
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(R may be the state dependent).

For the extremal process the s has the form
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These kinetic equations contain the overall transfer resistance matrix R = R + Ror the overal conductance matrix L 
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 R-1 such that  L-1 = (L)-1 + (L)-1. The conservation laws are satisfied identically. The DVA Euler-Lagrange equations are: 
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plus constraint. With Eqs. (12), (28') and (28"), Eq. (37) may be written as (M =L)
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Moreover,  after using Eq. (12) again 
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the state relaxation is recovered in the usual form 
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 as consistent with the relaxation of the thermodynamic adjoints p and p. In terms of the original state vector  
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 = (n, e), and for the Gibbs equation
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(the same for phase ). This shows that the linear relaxation of the extended state is governed by the matrix M =Land  that of the adjoint state by its transpose MT =L. This also shows the coherence and elegance of the DVA. The consistency condition, M = M, or
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must hold. With the second dissipation function (obtained from the condition H= 0 in the extremum HJB)
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the Hamilton-Jacobi equation of the dependent variable theory describes the DVA entropy
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where W = 
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, W= 
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 and L-1 = (L)-1 + (L)-1.

Case of IVA
The second law functional
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is minimized. For the Onsager's description (IVA) with  
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 x, one gets from Eqs. (16) and (32) the single (independent) phenomenological equation
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It will be shown below that Eq. (47) follows from HJB. Its entropy representation (in terms of the restricted S) is different from that for the unrestricted S. The related entropy production is (X= ∂S/∂)
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We shall find the proper dissipation function . The perfect differential of the extremal performance function
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shows that in order to assure the time independent S and S, the thermodynamic Hamiltonian or the Legendre transform of the dissipative lagrangian L must vanish
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This means the equality of the kinetic and potential dissipation functions. For the Onsager's model 
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Substituting to this H the dynamics d/dt = - M= - L yields the second dissipation function (with the overall coefficients). The Onsagerian () is quadratic


 EMBED Word.Picture.8  


The Hamilton-Jacobi-Bellman equation for the IVA in terms of the (restricted) entropy itself rather than the entropy production Sreads
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This is the Onsager's restricted principle in which the kinetic equation (47), i.e. 
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, is obtained from the variation of Ps with respect to the independent rates 
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 at the fixed state variables, . The corresponding Hamilton-Jacobi equation is
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with the quadratic , Eq. (51). 

This PD equation has the solution
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6. Concluding remarks
The Onsager's theory can be stated in terms of the global, classical variational principles, either as the DVA or (Onsager's) IVA.  

For the dependent variables (DVA case) we established the power criterion from which a thermodynamic description complementary with respect to the Onsager's (IVA case) follows. 

The new description involves: DVA variational principle, (dependent) phenomenological equations, DVA entropy production,  DVA Lagrange and HJB eqs. and DVA Hamilton-Jacobi theory. 

For more details of this approach we refer the reader to our paper with Beris [8]. Extensions to distributed systems (Eulerian fields) are also known [9, 10].
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