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Stochastic resonance consists in the maximization of the response of a (nonlinear) system to a
periodic stimulation by addition of noise at the input [R. Benzi, A. Sutera, and A. Vulpianl, Phys. A14, L453
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Example Overdamped particle in a bistable potential well

Escape rate from the
right or left potential well
Is given by the Kramers
formula and is
asymetrically modulated
by the periodic signal
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For optimum noise
intensity D the position of
the particle in the two
potential wells is
synchronized with the
periodic signal
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Characterization of stochastic
resonance

Output signal

C[-1da x(t)<0
y(t)_{+1dla x(t) > 0

Measures:
e Signal-to-noise ratio (S\R)
» Spectral power amplification (SPA)

SNR-100g %)
S{(2

SPAF—%(CZ%)
A

Typical power spectrum density of the output
signal from a system exhibiting stochastic
resonance (top) and dependence of the SNR and
SPA on the noise intensity D (bottom).



Motivation for the study of stochastic resonance in system s with the structure
of complex networks

» Coupling bistable elements driven by a periodic signal an d noise can lead to
the enhancement of stochastic resonance (e.g., array enha  nced stochastic
resonance in spatially extended systems).

» Can suitably chosen structure of the coupling lead to qualitatively new
phenomena in stochastic resonance?

e Example: structural stochastic multiresonance can occur in the Ising model

on certain scale-free networks  (the curves SPA vs. T show double maxima)
[A. Krawiecki, European Phys. J. B69, 81 (2009)].

« Example: structural stochastic multiresonance can also occur in  systems of
coupled passive threshold elements on hierarchical netwo rks, e.g., tree-like
networks or Ravasz-Barabasi networks  [M. kaim and A. KrawieckiPhys. Lett. A374, 4814 (2010) ].

Stochastic multiresonance (concept):  J.M.G. Vilar, J.M. Rubi, Phys. Rev. Lett. 78,
2882 (1997); Physica A264, 1 (1999).



Stochastic resonance in the Ising model

 Periodic signal: oscillating magnetic field,
» Noise: thermal fluctuations (proportional to the temperature),
» Output signal: the time-dependent order parameter (e.g., magnetization).

The Ising model is treated as a complex system which consists of coupled bistable
elements (spins), and its response to the periodic signal is studied as a function of
the temperature and frequency of the magnetic field.

Exemplary results

* SR in the 1-dimensional Ising model (the paramagnetic phase) J.J. Brey and A. Prados, Phys.
Lett. A216, 240 (1996); U. Siewert and L. Schimansky-Geier, Phys. Rev. E58, 2843 (1998);

* SR in the 2- and 3-dimensional Ising model (Monte-Carlo simulations and theory in the mean-
field approximation): Z. Neda, Phys. Rev. E51, 5315 (1995), K.-T. Leung and Z. Neda, Phys.
Lett. A246, 505 (1998) et al.;

» Connection with dynamical phase transitions: B.J. Kim et al., Europhys. Lett. 56, 333 (2001);

* SR in the Ising model on complex networks: H. Hong et al., Phys. Rev. E66, 011107 (2002)
(Watts-Strogatz small-world networks), A. Krawiecki, Int. J. Modern Phys. B18, 1759 (2004)
(Barabasi-Albert scale-free networks).

« Structural stochastic multiresonance in the Ising model on scale-free networks: A. Krawiecki,
Eur. Phys. J. B69, 81 (2009).



Complex networks

/node
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Regular lattice Complex network
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Connectivity of the node i: the number of edges attached to the node i

Quantity of interest: distribution of connectivity p, (= probability distribution that a
randomly selected node has connectivity k)



» Networks with complex topology are ubiquitous in real world . An
important class of complex networks are scale-free networks which
look similar at any scale; e.g., the distribution of connectivity  k obeys a
power scaling law , p, O k.

» Examples of scale-free networks comprise, e.g.,

* the internet activity,

e the www links,

* networks of cooperation (between scientists, actors, etc.),

« traffic networks (airplane & railway connections, city transport schemes),

* biological networks (sexual contacts, protein interactions, certain neural
networks), etc.



Examples of scale-free networks: internet connections

Snapshot view of
intfernet connections

Imported' from:
http://www.nd.edu/~networks/gallery.ht




Examples of scale-free networks: Map of protein-protein interactions.
The colour of a node signifies the phenotypic effect of removing the corresponding protein (red,

lethal; green, non-lethal; orange, slow growth; yellow, unknown).

http://www.nd.edu/~networks/gallery.htm

Imported from:
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The Ising model on complex networks

The spins s are located in the nodes i and edges between the nodes correspond to
non-zero exchange interactions between the corresponding spins.

Hamiltonian

1 _ e - - 4
H=-=YJss —h,sinwt J;=J if there is an edge between nodes i ],
<k>,zjl SRNILEEE Zsﬁ J;=0 otherwise

The local field acting on spin i Glauber dynamics (heat bath algorithm)

i - The transition rate between two spin
()= <k>zjl JyS; + Ny sin @t configurations which differ by a single flip of one

spin, e.g., that in node |
The order parameter

S(t)= N]<-k>zi: K:S, Wi(Si):;{l—Si tanh(li_l_(t)ﬂ

Ferromagnetic phase transition Spectral Power Amplification (SPA)
Critical temperature: maximum

2
fluctuations of the order parameter _|R A e
SPA = P, = lim tZ(; S(t)exp(—iawgt)

2
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Creating scale-free networks
[A.-L. Barabasi and R. Albertcience 286, 509 (1999) (foB=0, )=3); S.N. Dorogovtsev, J.F.F. Mend@ésly. Phys. 51, 1079 (2002)]

» The algorithm starts with a small number m of fully connected nodes.
» Evolving network: New nodes are added step by step,

» Preferential attachment: From each new node m new links are created to the
existing nodes, and the probability to create an edge to the node i is

P :(ki T B)/Zi:(ki T B); B>-m

where k; is the actual number of edges attached to the node i.

» The network grows until a given number of nodes N is added.

» Evolving network + preferential attachment = scale-free network. The distribution of
the degrees of nodes is

p. O(k+B)” O]

— k_y, y:3+ B/m

—




Structural stochastic multiresonance in the Ising model o n scale-free networks

Multiresonance
(two maxima of the SPA)
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« Structural stochastic
multiresonance occurs for 2 < y< 3 Te
provided that the power-law tails of

10 -
* It can be seen that the occurrence :
of stochastic multiresonance - '3
[n'H) s
depends on the structure of P . i
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the distribution of the degrees of T
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W. Zduniak and A. Krawiecki Signal processing in complex networks: many faces of structural stochastic multiresonance

Creating coupled scale-free networks

Network A Network B Subnetwork A, Subnetwork B,

N, nodes, N nodes, Rewiring probability 7#% Rewiring probability 7£8)

exponent y, exponent )4 N, nodes, exponent j5,  Ngnodes, exponent J;
Q_o—9 o o9

¢

cutting rewiring

Rewiring probability (in a given network) =
= number of rewired edges (in a given network) / number of edges (in a given network).

Cutting and rewiring do not change the distribution of degrees of nodes in the subnetworks.

For small rewiring probabilities the composite network consists of separate, densely connected
subnetworks with few inter-subnetwork links, so it has modular structure;
For increasing rewiring probabilities the network structure becomes more and more uniform

Summer Solstice 2011 International Conference on Discrete Models of Complex Systems 6-10 June 2011, Turku, Finland



The Ising model on coupled scale-free networks

The spins s are located in the nodes i and edges between the nodes correspond to non-zero
exchange interactions between the corresponding spins. The sysyem is subject to the oscillating
magnetic field

Order parameters
For the composite network For the subnetworks

N:NA+NB 1 NA

S(t)_ <k> ;kisi SA(t):W;kis’ SB(t) <> Iz_llks

Critical temperatures for the uncoupled subnetworks (ferromagnetic transition)

i 5 3-VaB
2 < e T(A (3 =] (yA,B 2) A’B_, e
By <k2>A’B Vas (VA,B _1)(3_ yA,B) A Yas~l Y 00
C <k>i,B , (yA,B = 2)2

S S TR =
s X (yA,B _1)(3_ yA,B)
» Phase transitions in the Ising model on coupled scale-free networks (Barabasi-Albert ones) in
the absence of the magnetic field were considered by K. Suchecki, J.A. Hotyst,
Phys. Rev. E74, 011122 (2006), Phys. Rev. E80, 031110 (2009).
* In general, there is ferromagnetic transition as the temperature decreases (spins in both
subnetworks are aligned in parallel), although special preparation of the initial condition can lead
to antiparallel alignement of spins in the two subnetworks.
* In the analysis based on the mean-field and linear response theory approximations it will be
assumed that the ordered stationary state is the ferromagnetic one.



Mean field approximation
Equations of motion for the order parameter

N

» The Master equation for the d P(s,S,,... ,S,;t) = ZW( ) ( sz,...,sj,...,sn;t)+

probability that at time the dt i1
system is in the spin 5 F _
configuration §, S, ..., S,) ol JZ:lW ( ) (Sl'SZ’ T ’Sn’t)

w,(s)== {1 S, tanh(l?()ﬂ 1 (t)= <k>z J;s; + hysin wt

» Multiply both sides bys and perform an ensemble average (denote@)hyi.e., summation over all
possible spin configurations of the composite network

98) — o)+ (41 = 22, =, o,

» The aboveN equations can be formally separated into two grouds,aindNg equations, for the mean
values of spins belonging to the sunbentwodk8, respectively

@ = —(s®)+ <tanh(@j>, i=12,...N,; @ = ~(sP))+ <tanh(@j>, i=12,...Ng

» Make the following mean-field approximation

(a8 (t) < A, B)(t)> - L(MZK;A)@ > + ,-DZK%B><Sj >J + h, sin w,t= <tanh( Ii(A,:)(t)j> = tanh(@}

(k)




* Divide the nodes of the subnetworliscording to their degred&sand assume that the average values of

spins located in the nodes belonging to the class with édgaee equal tds,)
* Replace the sums over the nodes of the subnetweitkssums over the classes of nodes, e.g.

<S(A)(t)> L ﬁiw@y)&»’ <S(B)(t)> a ii?ii )<S£B)(t)>

k(8)

< > J{( A))ix kp(A)<Sk (t)>+ 7t kz_;nIZiiB)< B)( )> +h, sin w,t =
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W(t)+ h, sin w,t,

-— << >> e ﬂ(A)XS(A)(t» PR SiRn) S
and similarily for the networlB.

In the above equations it was taken into account that tblegiility that a nodewith degreek; belonging
to the subnetworld is connected to a node with degiledelonging to

(A) kp (B)
* subnetworkA s (1— ﬂ(A))—IZi‘SA + subnetwori@is 77" —<i;
A B

and similarily for a node belonging to the subnetwoik



« Multiply both sides of the equations of motion f&*®) by k., perform the sum over all nodes of the
respective subnetwork and replace it with a sum over thssels of nodes,

d/s? kA A (A) i
< >=—<S(A)>+Z P K onpl _JaK (A>(t)+ﬂsin wit |,
dt k=m <k>A <k>AT T

d/s®) k&) (8) 3
< >=-<5(B)>+Z P K onhl ek (B)(t)+ﬂsin wit
dt k=m <k>B <k>BT T

Stationary values of the order parameters and magnetizations for the subnetworks

o tanh( ke §O<A>(t)],

<S(B)>O ; <k> k tanh{<i> kT §O(B)(t)J




The case of two coupled scale-free networks

1
pIEA) = Ak _yA’ Va = 2 kr(na2< =mN KA_l’ A= — +1yA (]A-) yatl
1
pIEB) eIy Va < 2, kr(na2< = mMN Ié/B_l’ B = 17 1yB( (:||3-)) Y+l
e
Replacing summation with integration, one gets
ki) A < (A) A B
(sM) = thanh S T (8%, (s,
iy e (k)T 1
T =(8)
<S(B)>o - Bk—tanh JekS dk
m <k>B <k>BT TC T
K(A)
8\ = \N¥ 4(») ks
<M >0 - kZ: P tanh[ <k> T ] For non-zero rewiring probability there is a common
= "

critical temperature for both subnetworks T..
k(A k~( A) For T<T,the mean-field stationary values of the order
L <|v| (A)> — J' Ak /A tanh{ ‘]A So ]dk parameters deviate from zero and there is a
0

<k> T ferromagnetic transition, but the critical behaviour in
A

k{E) 3 kS be different.
<|v| (B)>0 - J' Bk e tanh =822 |dk Below the critical point the magnetizations in both

4 the vicinity of the critical point for both subnetworks can

<k> BT subnetworks are parallel.




Linear response theory

d/{s” kA (A) -
In order to solve the <dt > 3 _<S(A)> i Z ?‘E—>tanh <|;]>AkT S(A)(t)+ Tk s
=i A A
equations of motion (B) ()
d(S St (N -
< > - <S(B)>+ Z P« tanh JeK S(B)(t)+ 9 sin [N
dt k=m < >B <k>BT

let us assume that the external magnetic field forces tiiergrarameters of the subnetworks to perform
small oscillations around their stationary values

O ach il < AL SO :
<S(A)(t)>:< A)> "’é";\(t):> dt TR b LR
(s®It)=(s®)) +& () 96 - e _ €a , Qe NSt
dt )7 A
F @ S (a) =
> S () .JA < (A), 2 -2 JAkSO b 7T 1
= _1 (1 T )T<k>i 2 P ’K* cosh k)T et s, e ety (TAA 1) :
I ) =B (8) =
= 1_ 1_ (B) JB (B)k2 h_2 JBkSO N 7T -1 _1
T'sp ] ( 44 )T<k>28 kZ,n 2o O (). T _ Tea = | 7 7(6) (TBB )




The case of two coupled scale-free networks

In the ordered state, fdr< T,

= ) ) 25,
(k)u(8™), (k)T

R <S~(A)>o - 7™y, - 2)}—1

s\M
AT &85 J kA g(a) E 3 msS® <M (A)>
L k(A) V2™ sanhl A max 2o —m™ " tanh| 22> = N
QA JA<S(A)>O [( max) an [ <k>AT J m an ( <k>AT j+ (yA ) JASO(A)

In the disordered state, for> T,

The parametergsg, Qg are obtained in a similar way.



Spectral power amplification SPA as a function of temperature

Solution of the equations of motion in the linear respongag@amation is
é,=a,Sinat+a,cosat
g = [, Sin wyt + B, cosw,t

where the coefficients can be obtained from the systenmei equations

T;i ~ W T/:é 0 _al_ &ho
_1 O _1 a T
W T an I g 2 0
=) &
Tgn 0 lgg ~ Wy /81 ﬁho
= b | T
L 0 g W, [ gg __/82_ 0

Spectral power amplification for the subnetworks is

2 + 2 2 + 2
SPAA:SPAA(T):al 20'2, SIDAB:SPAB(T):'B1 2'82
4h; 4h;
and for the composite network
NA NB

SPA(T):WSPAA(T)+WSPAB(T)




Structural stochastic multiresonance Wi
in the Ising model on two coupled ]
scale-free networks Lo

Networks with the same number of nodes,
N, = Ng, and different exponents ), Zk.

» Coupling networks with different critical
temperatures results in the curves SPA vs. T
with two distinct maxima.

* As the rewiring probability increases the

0.1 5

maxima approcah each other and the 001
maximum at lower temperature gradually
disappears.

Signal Jt)

N,= N;=5000

m= 5,

w=27512 h,= 0.0],

for different probabilities of rewiringr® = 77® = v (see
legends); 1
Subnetwork AB =10 (y,=5), 01
Subnetwork BB = -3 (,=2.5) :
(a) Theoretical results in the mean-field and linear respo

100 5

theory approximations, 0.01
(b) Numerical results from Monte Carlo simulations,



The same system as on the previous slide, but 1000
apart from SPA vs. T for the whole network
also SPA, g vs. T for the two subnetworks are
shown. 10
» For small rewiring probability the network has

modular structure and the curves SPA g Vs. T = 1
resemble those for uncoupled networks. Two
maxima of SPAg vs. T are observed for the
network with jg <3. 0.01
* As the rewiring probability increases and the
density of inter-subnetworks links becomes
higher the curves SPA vs. T for the two
subnetworks approach each other and double
maxima of the SPA, appear also for the
network with ,>3,

» The curve SPA vs. T for the composite 10
network resembles in general that for the

100

0.1

0.001

100

subnetwork with higher critical temperature. g 1

Black symbols/line -SPAvs. T for the whole network, »w =
Blue symbols/line -SPA, vs. T, .
Red symbols/line SPA, vs.T, 0.1 2
Upper panels: Theoretical results in the mean-field amebli .
response theory approximations, 001 |

Lower panels: Numerical results from Monte Carlo
simulations
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Networks with different number of nodes, "y

NA # Ng, and the same exponents ), = .

» Coupling networks with different critical
temperatures can result in the curves SPA vs. ]
T with two or even three distinct maxima for % U=
small to moderate rewiring probability, :
* Two maxima are located close to the critical
temperatures for the two uncoupled
subnetworks, and one deep in the
ferromagnetic phase, i
* As the rewiring probability rises the two 0
former maxima usually merge into one, 10 5
located close to the higher of the two critical ;
temperatures

0.1 4

N, = 3000 N; =5 00Q m=5, =277512, h,= 0.0,
™™ =0.02,7® =0.012

B=-3 (= y;=2.5)

(a) Theoretical results in the mean-field and linear respo 0.1 4

theory approximations,
(b) Numerical results from Monte Carlo simulations,

SPA

Black symbols/line -SPAvs. T for the whole network,
Blue symbols/line -SPA, vs. T, : ' 1
Red symbols/line SPA; vs. T.

e



Conclusions

» Stochastic multiresonance can be observed in the Ising model on scale-free networks with 2 <
y< 3, for small and moderate frequencies of the oscillating magnetic field and for a large enough
number of interacting spins N. One maximum of the curve SPA vs. T (a trivial one) appears at

T =T, and the other one usually at T<< T, .

» The necessary condition for the occurrence of stochastic multiresonance is the presence of the
fully developed power-law tails in the distribution of the degrees of nodes p, (structural
stochastic multiresonance).

» Coupling scale-free networks with different critical temperatures (different number of nodes or
exponents )) also leads to the occurrence of structural stochastic multiresonance. Curves SPA
vs. T exhibit two or three maxima.

» The maxima of the SPAvs. T for the composite network can be related to those for the
uncoupled subnetworks if the rewiring probability is small to moderate and the composite
network has modular structure.

* As the rewiring probability increases and the structure of the composite network becomes

more uniform the curve SPA vs. T for the composite network becomes similar to that for the
subnetwork with higher critical tempetrature.









