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Stochastic resonance consists in the maximization of the response of a (nonlinear) system to a 
periodic stimulation by addition of noise at the input [R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A14, L453 
(1981).]
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Example Overdamped particle in a bistable potential well

For optimum noise
intensity D the position of
the particle in the two
potential wells is
synchronized with the
periodic signal

Escape rate from the
right or left potential well
is given by the Kramers
formula and is
asymetrically modulated
by the periodic signal
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Characterization of stochastic
resonance

Output signal

Measures:
• Signal-to-noise ratio (SNR)
• Spectral power amplification (SPA)
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Typical power spectrum density of the output
signal from a system exhibiting stochastic
resonance (top) and dependence of the SNR and
SPA on the noise intensity D (bottom).
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• Coupling bistable elements driven by a periodic signal an d noise can lead to 
the enhancement of stochastic resonance (e.g., array enha nced stochastic
resonance in spatially extended systems). 

• Can suitably chosen structure of the coupling lead to qualitatively new
phenomena in stochastic resonance?

• Example: structural stochastic multiresonance can occur in the Ising model 
on certain scale-free networks (the curves SPA vs. T show double maxima)       
[A. Krawiecki, European Phys. J. B69, 81 (2009)].

• Example: structural stochastic multiresonance can also occur in systems of
coupled passive threshold elements on hierarchical netwo rks , e.g., tree-like
networks or Ravasz-Barabási networks [M. Kaim and A. Krawiecki, Phys. Lett. A374, 4814 (2010) ].

Stochastic multiresonance (concept): J.M.G. Vilar, J.M. Rubi, Phys. Rev. Lett. 78, 
2882 (1997); Physica A264, 1 (1999).

Motivation for the study of stochastic resonance in system s with the structure
of complex networks
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• Periodic signal: oscillating magnetic field,
• Noise: thermal fluctuations (proportional to the temperature),
• Output signal: the time-dependent order parameter (e.g., magnetization).

Stochastic resonance in the Ising model

The Ising model is treated as a complex system which consists of coupled bistable
elements (spins), and its response to the periodic signal is studied as a function of
the temperature and frequency of the magnetic field.

Exemplary results

• SR in the 1-dimensional Ising model (the paramagnetic phase) J.J. Brey and A. Prados, Phys. 
Lett. A216, 240 (1996); U. Siewert and L. Schimansky-Geier, Phys. Rev. E58, 2843 (1998);

• SR in the 2- and 3-dimensional Ising model (Monte-Carlo simulations and theory in the mean-
field approximation): Z. Neda, Phys. Rev. E51, 5315 (1995), K.-T. Leung and Z. Neda, Phys. 
Lett. A246, 505 (1998) et al.;

• Connection with dynamical phase transitions: B.J. Kim et al., Europhys. Lett. 56, 333 (2001);

• SR in the Ising model on complex networks: H. Hong et al., Phys. Rev. E66, 011107 (2002)
(Watts-Strogatz small-world networks), A. Krawiecki, Int. J. Modern Phys. B18, 1759 (2004)
(Barabasi-Albert scale-free networks).

• Structural stochastic multiresonance in the Ising model on scale-free networks: A. Krawiecki, 
Eur. Phys. J. B69, 81 (2009).



Regular lattice Complex network

node

edge

Quantity of interest: distribution of connectivity pk (= probability distribution that a 
randomly selected node has connectivity k)  

Connectivity of the node i: the number of edges attached to the node i
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Complex networks



• Networks with complex topology are ubiquitous in real world . An
important class of complex networks are scale-free networks which
look similar at any scale; e.g., the distribution of connectivity k obeys a 
power scaling law , pk ∝ k-γ.

• Examples of scale-free networks comprise, e.g.,

• the internet activity, 

• the www links, 

• networks of cooperation (between scientists, actors, etc.), 

• traffic networks (airplane & railway connections, city transport schemes), 

• biological networks (sexual contacts, protein interactions, certain neural
networks), etc.

W. Zduniak and A. Krawiecki Signal processing in complex networks: many faces of structural stochastic multiresonance

Summer Solstice 2011 International Conference on Discrete Models of Complex Systems 6-10 June 2011, Turku, Finland



Snapshot view of
internet connections

Imported from:
http://www.nd.edu/~networks/gallery.htm

hubs
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Examples of scale-free networks: internet connections



Imported from:
http://www.nd.edu/~networks/gallery.htm

Examples of scale-free networks: Map of protein-protein interactions.
The colour of a node signifies the phenotypic effect of removing the corresponding protein (red, 
lethal; green, non-lethal; orange, slow growth; yellow, unknown).

W. Zduniak and A. Krawiecki Signal processing in complex networks: many faces of structural stochastic multiresonance

Summer Solstice 2011 International Conference on Discrete Models of Complex Systems 6-10 June 2011, Turku, Finland



Hamiltonian
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Glauber dynamics (heat bath algorithm)

The order parameter
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Spectral Power Amplification (SPA)

The transition rate between two spin 
configurations which differ by a single flip of one 
spin, e.g., that in node i

The spins si are located in the nodes i and edges between the nodes correspond to 
non-zero exchange interactions between the corresponding spins.

Ferromagnetic phase transition
Critical temperature: maximum
fluctuations of the order parameter

222 SSS −=δ

W. Zduniak and A. Krawiecki Signal processing in complex networks: many faces of structural stochastic multiresonance

Summer Solstice 2011 International Conference on Discrete Models of Complex Systems 6-10 June 2011, Turku, Finland

The Ising model on complex networks



• The algorithm starts with a small number m of fully connected nodes. 

• Evolving network: New nodes are added step by step,

• Preferential attachment: From each new node m new links are created to the
existing nodes, and the probability to create an edge to the node i is

where ki is the actual number of edges attached to the node i.

• The network grows until a given number of nodes N is added. 

• Evolving network + preferential attachment = scale-free network. The distribution of
the degrees of nodes is
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[A.-L. Barabási and R. Albert, Science 286, 509 (1999) (for B=0, γ=3);  S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)]
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Creating scale-free networks



Signal: S(t)
N = 10 000,
m = 5,
h0= 0.01,
(a) B = - 4 (γ =2.2),
(b) B = 10 (γ =5)

(a)

(b)

Multiresonance
(two maxima of the SPA)
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Structural stochastic multiresonance in the Ising model o n scale-free networks

• It can be seen that the occurrence
of stochastic multiresonance
depends on the structure of
connections, thus in (a) structural
stochastic multiresonance occurs,
• Structural stochastic
multiresonance occurs for 2 < γ < 3
provided that the power-law tails of
the distribution of the degrees of
nodes are fully developed, i.e., no 
artificial constraint is imposed on 
the maximum degree.
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cutting rewiring

Creating coupled scale-free networks

Network A
NA nodes,
exponent γA

Network B
NB nodes,
exponent γB

Subnetwork A,
Rewiring probability π(A)

NA nodes, exponent γA

Subnetwork B,
Rewiring probability π(B)

NB nodes, exponent γB

Rewiring probability (in a given network) = 
= number of rewired edges (in a given network) / number of edges (in a given network).

Cutting and rewiring do not change the distribution of degrees of nodes in the subnetworks.

For small rewiring probabilities the composite network consists of separate, densely connected
subnetworks with few inter-subnetwork links, so it has modular structure; 
For increasing rewiring probabilities the network structure becomes more and more uniform
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The Ising model on coupled scale-free networks
The spins si are located in the nodes i and edges between the nodes correspond to non-zero 
exchange interactions between the corresponding spins. The sysyem is subject to the oscillating
magnetic field
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• Phase transitions in the Ising model on coupled scale-free networks (Barabási-Albert ones) in
the absence of the magnetic field were considered by K. Suchecki, J.A. Hołyst, 
Phys. Rev. E74, 011122 (2006), Phys. Rev. E80, 031110 (2009).
• In general, there is ferromagnetic transition as the temperature decreases (spins in both
subnetworks are aligned in parallel), although special preparation of the initial condition can lead
to antiparallel alignement of spins in the two subnetworks.
• In the analysis based on the mean-field and linear response theory approximations it will be 
assumed that the ordered stationary state is the ferromagnetic one.
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• The Master equation for the
probability that at timet the
system is in the spin 
configuration (s1, s2, ..., sn) 
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• Multiply both sides by si and perform an ensemble average (denoted by 〈 〉), i.e., summation over all
possible spin configurations of the composite network

( )
BA

i
i

i NNNi
T

tI
s

dt

sd
+==







+−= ,,2,1,tanh K

• The aboveN equations can be formally separated into two groups ofNA andNB equations, for the mean
values of spins belonging to the sunbentworksA, B, respectively
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• Make the following mean-field approximation

Mean field approximation
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Equations of motion for the order parameter
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• Divide the nodes of the subnetworksaccording to their degreesk and assume that the average values of
spins located in the nodes belonging to the class with degree k are equal to 〈sk〉
• Replace the sums over the nodes of the subnetworkswith sums over the classes of nodes, e.g.
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and similarily for the networkB.
In the above equations it was taken into account that the probability that a nodei with degreeki belonging
to the subnetworkA is connected to a node with degreek, belonging to

• subnetworkA is • subnetworkB is

and similarily for a nodei belonging to the subnetworkB.
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• Multiply both sides of the equations of motion for 〈si
(A,B)〉 by ki , perform the sum over all nodes of the

respective subnetwork and replace it with a sum over the classes of nodes,
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Stationary values of the order parameters and magnetizations for the subnetworks
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The case of two coupled scale-free networks
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Replacing summation with integration, one gets
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For non-zero rewiring probability there is a common
critical temperature for both subnetworks Tc. 
For T<Tc the mean-field stationary values of the order 
parameters deviate from zero and there is a 
ferromagnetic transition, but the critical behaviour in
the vicinity of the critical point for both subnetworks can
be different. 
Below the critical point the magnetizations in both
subnetworks are parallel.  
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Linear response theory
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equations of motion
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let us assume that the external magnetic field forces the order parameters of the subnetworks to perform
small oscillations around their stationary values
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The case of two coupled scale-free networks
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In the disordered state, for T > Tc
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The parametersτBB, QB are obtained in a similar way.

(critical temperatue for the subnetwork
A in the case with no rewiring)
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Solution of the equations of motion in the linear response approximation is
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where the coefficients can be obtained from the system of linear equations

Spectral power amplification SPA as a function of temperature

Spectral power amplification for the subnetworks is

and for the composite network
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Structural stochastic multiresonance
in the Ising model on two coupled
scale-free networks

Networks with the same number of nodes, 
NA = NB, and different exponents γA ≠γB.

• Coupling networks with different critical
temperatures results in the curves SPA vs. T
with two distinct maxima.
• As the rewiring probability increases the
maxima approcah each other and the
maximum at lower temperature gradually
disappears.

Signal: S(t)
NA = NB = 5 000,
m = 5,
ωs=2π/512, h0= 0.01,
for different probabilities of rewiringπ (A) = π (B) = ν (see
legends);
Subnetwork A:B = 10 (γ A=5),
Subnetwork B:B = -3 (γΒ =2.5)
(a) Theoretical results in the mean-field and linear response
theory approximations,
(b) Numerical results from Monte Carlo simulations,
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The same system as on the previous slide, but 
apart from SPA vs. T for the whole network
also SPAA,B vs. T for the two subnetworks are
shown. 
• For small rewiring probability the network has
modular structure and the curves SPAA,B vs. T
resemble those for uncoupled networks. Two
maxima of SPAB vs. T are observed for the
network with γB <3.
• As the rewiring probability increases and the
density of inter-subnetworks links becomes
higher the curves SPA vs. T for the two
subnetworks approach each other and double 
maxima of the SPAA appear also for the
network with γA>3,
• The curve SPA vs. T for the composite
network resembles in general that for the
subnetwork with higher critical temperature.

Black symbols/line –SPA vs. T for the whole network,
Blue symbols/line –SPAA vs. T,
Red symbols/line –SPAB vs. T,
Upper panels: Theoretical results in the mean-field and linear
response theory approximations,
Lower panels: Numerical results from Monte Carlo
simulations

π(A) = π(B) =0
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π(A) = π(B) =0.06 π(A) = π(B) =0.3
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Networks with different number of nodes, 
NA ≠ NB, and the same exponents γA =γB.

• Coupling networks with different critical
temperatures can result in the curves SPA vs. 
T with two or even three distinct maxima for 
small to moderate rewiring probability,
• Two maxima are located close to the critical
temperatures for the two uncoupled
subnetworks, and one deep in the
ferromagnetic phase,
• As the rewiring probability rises the two
former maxima usually merge into one, 
located close to the higher of the two critical
temperatures

NA = 3000, NB = 5 000, m = 5, ωs=2π/512, h0= 0.01,
π (A) = 0.02, π (B) = 0.012

B = -3 (γA= γΒ =2.5)
(a) Theoretical results in the mean-field and linear response
theory approximations,
(b) Numerical results from Monte Carlo simulations,

Black symbols/line –SPA vs. T for the whole network,
Blue symbols/line –SPAA vs. T,
Red symbols/line –SPAB vs. T.
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• Stochastic multiresonance can be observed in the Ising model on scale-free networks with 2 <
γ < 3, for small and moderate frequencies of the oscillating magnetic field and for a large enough
number of interacting spins N. One maximum of the curve SPA vs. T (a trivial one) appears at
T ≈ Tc and the other one usually at T << Tc. . 

• The necessary condition for the occurrence of stochastic multiresonance is the presence of the
fully developed power-law tails in the distribution of the degrees of nodes pk (structural
stochastic multiresonance). 

• Coupling scale-free networks with different critical temperatures (different number of nodes or
exponents γ) also leads to the occurrence of structural stochastic multiresonance. Curves SPA
vs. T exhibit two or three maxima.

• The maxima of the SPA vs. T for the composite network can be related to those for the
uncoupled subnetworks if the rewiring probability is small to moderate and the composite
network has modular structure.

• As the rewiring probability increases and the structure of the composite network becomes
more uniform the curve SPA vs. T for the composite network becomes similar to that for the
subnetwork with higher critical tempetrature. 

Conclusions
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