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Motivation

- Coupling bistable elements driven by a periodic
signal and noise can lead to the enhancement
of stochastic resonance (e.g., AESR in spatially
extended systems).

» Can suitably chosen structure of the coupling
lead to qualitatively new phenomena in
stochastic resonance?

-+ Example: structural stochastic multiresonance
can occur in the Ising model on certain scale-
free networks (the curves SPA vs. T show
double maxima).

Stochastic multiresonance (concept): J.M.G. Vilar, J.M. Rubi, Phys. Rev. Lett.
78,2882 (1997); Physica A264,1 (1999).



Stochastic resonance in the Ising model

‘Periodic signal: oscillating magnetic field,

‘Noise: thermal fluctuations (proportional to the temperature),
*Output signal: the time-dependent order parameter (e.g.,
magnetization).

The Ising model is treated as a complex system which consists of
coupled bistable elements (spins), and its response to the periodic
signal is studied as a function of the temperature and frequency of
the magnetic field.

Exemplary results

SR in the 1-dimensional Ising model (the paramagnetic phase) J.J. Brey and
A. Prados, Phys. Lett. A216, 240 (1996); U. Siewert and L. Schimansky-
Geier, Phys. Rev. E58, 2843 (1998);

SR in the 2- and 3-dimensional Ising model (Monte-Carlo simulations and
theory in the mean-field approximation): Z. Neda, Phys. Rev. E51, 5315
(1995), K.-T. Leung and Z. Neda, Phys. Lett. A246, 505 (1998) et al.;
-Connection with dynamical phase transitions: B.J. Kim et al., Europhys. Lett.
56, 333 (2001);

SR in the Ising model on complex networks: H. Hong et al., Phys. Rev. E66,
011107 (2002) (Watts-Strogatz small-world networks), A. Krawiecki, Int. J.
Modern Phys. B18, 1759 (2004) (Barabasi-Albert scale-free networks).



Complex networks
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Connectivity of the node i: the number of edges attached to the node i

Quantity of interest: distribution of connectivity p, (= probability
distribution that a randomly selected node has connectivity K)



Scale-free networks

-Networks with complex topology are ubiquitous
in real world. An important class of complex
networks are scale-free networks which look
similar at any scale; e.g., the distribution of
connectivity kobeys a power scaling law, p, O k.

« Examples of scale-free networks comprise, e.qg.,
* the internet activity,

* the www links,

* networks of cooperation (between scientists,
actors, etc.),

* traffic networks (airplane & railway
connections, city tfransport schemes),

» biological networks (sexual contacts, protein
interactions, certain neural networks), etc.



Snapshot view of
internet connections

Imported from:
http://www.nd.edu/~networks/gallery.htm
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Scale-free networks
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The Ising model on scale-free networks

The spins s are located in the nodes i and edges between the nodes
correspond to non-zero exchange interactions between the corresponding

spins.
Hamiltonian
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The local field acting on spin i

1. (t) = <i>z J;s; + h, sin wyt
J

The order parameter

S(t): N:;k>zi: ks,

Ferromagnetic phase transition

Critical temperature: maximum
fluctuations of the order parameter

" =(s%)- ()

J;=Jif there Is an edge between nodgs
J;=0 otherwise

Glauber dynamics (heat bath algorithm)

The transition rate between two spin
configurations which differ by a single flip of
one spin, e.g., that in node

= {1 stanh(l_l_(t)ﬂ

Spectral Power Amplification (SPA)

SPA =

5 P1 [T1 TZ;‘ S(t)exp(-iw,t)
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Mean field approximation

» The Master equation for the probability that atdt the system is in the spin
configuration ¢, S,, ...,S,)

dP(sl,Sz,.-., SLR)IE Z ( )P(sl,sz,...,sJ i

dt jl

+Z WG I (B S mo Wit )

« Multiply both sides bys and perform an ensemble average
e
dt T
* Replaces # PNs 7, |, # MM, 7
* Divide the nodes of the network according to tlieigrees and assume that the average
values of spins located in the nodes belongingéactass with degrdeare equal tof s,

of/PepIace the sums over the nodes of the networksuins over the classes of nodes, e.g.

kp, E () = K o kp, s 4+ h
S0=5"50. 10 =% 3% 50 n0

 Multiply both sides of ¢) by k;, perform the sum over all nodes of the network and
replace it with a sum over the classes of nodes,.

d's K(S) h, _
A (<k§T>+TS'”“’°t]




Mean field approximation

Stationary values of the order parameter and magnetization
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Critical (crossover) temperature for the ferromagnetic phase transition
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Mean field approximation

p, = Ak, y<2, K, =mMN & A:m_y};_]l; iy
(k)= —E=mr2 - i)
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[A. Aleksiejuk, J.A. Hotyst, and D. Stauffer, Physica A310, 260 (2002); A. Aleksiejuk,
Int. J. Modern Phys. C13, 1415 (2002); 6. Bianconi, Phys. Lett. A303, 166 (2002); M.
Leone, A. Vazguez, A. Vespignani, R. Zecchina, Eur. Phys. J. B28, 191 (2002); S.N.
Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E66, 016104 (2002); F. Iglai, L.
Turban, Phys. Rev. E66, 036140 (2002); C.P. Herrero, Phys. Rev. E69, 067109 (2004)]



Linear Response Theory

d(S) = p Kk Jk h, sin w,t
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Linear Response Theory

Linear response to the external periodic signal

E(t) =&, sin(a,t-6)

-1/2
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MF

SPA in the Linear Response approximation

2
S:)A:CTO2
4h,

In the paramagnetic phase, 7> Tc

T =k
SISO :(1— j

PA = PA(T) = 4%2 [( —ch2+w

T=T,= SPA(T,)=




Results: Mean field simulations and Linear Response Theory
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How to create scale-free networks: Preferential attachment

[A.-L. Barabdsi and R. Albert, Science 286, 509 (1999) (for B=0, )=3):
S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51,1079 (2002)]

» The algorithm starts with a small number mof fully connected
nodes.

* Evolving network: New nodes are added step by step,

 Preferential attachment: From each new node mnew links are
created to the existing nodes, and the probability to create an edge

to the nodei is
P 825 (B B340

where k is the actual number of edges attached to the node .

* The network grows until a given number of nodes N is added.

» Evolving network + preferential attachment = scale-free network.
The distribution of the degrees of nodes is

p. O(k+B)” 0 ~k”, y=3+Bm

—




Results: Preferential attachment
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How to create scale-free networks: Configuration Model (CM)

[e.g., M\.E.J. Newman, in Handbook of Graphs and Networks: From the Genome to the
Internet, ed. S. Bornholdt and H. G. Schuster (Wiley - VCH, Berlin 2003), p. 35-68]
» The algorithm starts with assigning to each node i, in a set of N
nodes, a random number k of ,stubs” (ends of edges) drawn from a
given probability distribution p,, with m © k <N, (the maximum
degree of node is N-1), with the condition that the sum K, k; is even.

* The network is completed by connecting pairs of these stubs chosen
uniformly at random to make complete edges, respecting the
preassigned sequence k.

» Physical constraint: Multiple and self-connections are forbidden.

* For scale-free networks with p 0kv, 2 <y < 3, the latter constraint
introduces correlations in the network, in the sense that, e.qg., that
the average degree of the nearest neighbours

k()= X KP(K k)

decreases with k (disassortative mixing - highly connected nodes are
more probably linked to poorly connected ones)




Results: CM
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How to create scale-free networks: Uncorrelated CM (UCM)

[e.g., M. Catanzaro, M. Boguhd, and R. Pastor-Satorras, Phys. Rev. E71,027103 (2005)]

» The algorithm starts with assigning to each node i, in a set of N
nodes, a random number k of ,stubs” (ends of edges) drawn from a
given probability distribution p,, with m © k <N 2, (the maximum
degree of node is N ¥2-1), with the condition that the sum K, k; is
even.

* The network is completed by connecting pairs of these stubs chosen
uniformly at random to make complete edges, respecting the
preassigned sequence k.

» Physical constraint: Multiple and self-connections are forbidden.

* For scale-free networks with p, 0 k¥ the resulting network is
uncorrelated in the sense that, e.g., that the average degree of the
nearest neighbours does not depend on k. However, for 2 <y <3 the
power-law tails in the distribution p, O k»are not fully developed.



Results: UCM
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Conclusions

- Stochastic multiresonance is observed in the Ising model on scale-
free networks with 2 < y< 3, for small and moderate frequencies of
the oscillating magnetic field and for a large enough number of
interacting spins N. One maximum of the curve SPA vs. T (a trivial one)
appears at T @ T, and the other one usually at T<< T, .

* The necessary condition for the occurrence of stochastic
multiresonance is the presence of the fully developed power-law tails
in the distribution of the degrees of nodes p, (structural stochastic
multiresonance).

- Open problem: the presence of double (or multiple) maxima of the
curve NRvs. T in the Ising model on scale-free networks.

- Open problem: the presence of structural stochastic multiresonance
in other complex systems (coupled bistable stochastic oscillators,
efc. i






Results: Comparison for different methods of creating SF networks

— LRT

— MF simulation
«— CM method
*— UCM method
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