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MotivationMotivation

• Coupling bistable elements driven by a periodic 
signal and noise can lead to the enhancement 
of stochastic resonance (e.g., AESR in spatially 
extended systems). 

• Can suitably chosen structure of the coupling 
lead to qualitatively new phenomena in 
stochastic resonance?

• Example: structural stochastic multiresonance
can occur in the Ising model on certain scale-
free networks (the curves SPA vs. T show 
double maxima).

Stochastic multiresonance (concept): J.M.G. Vilar, J.M. Rubi, Phys. Rev. Lett.
78, 2882 (1997); Physica A264, 1 (1999).



•Periodic signal: oscillating magnetic field,
•Noise: thermal fluctuations (proportional to the temperature),
•Output signal: the time-dependent order parameter (e.g., 
magnetization).

Exemplary results
•SR in the 1-dimensional Ising model (the paramagnetic phase) J.J. Brey and 
A. Prados, Phys. Lett. A216, 240 (1996); U. Siewert and L. Schimansky-
Geier, Phys. Rev. E58, 2843 (1998);
•SR in the 2- and 3-dimensional Ising model (Monte-Carlo simulations and 
theory in the mean-field approximation): Z. Neda, Phys. Rev. E51, 5315 
(1995), K.-T. Leung and Z. Neda, Phys. Lett. A246, 505 (1998) et al.;
•Connection with dynamical phase transitions: B.J. Kim et al., Europhys. Lett.
56, 333 (2001);
•SR in the Ising model on complex networks: H. Hong et al., Phys. Rev. E66, 
011107 (2002) (Watts-Strogatz small-world networks), A. Krawiecki, Int. J. 
Modern Phys. B18, 1759 (2004) (Barabasi-Albert scale-free networks).

The Ising model is treated as a complex system which consists of
coupled bistable elements (spins), and its response to the periodic 
signal is studied  as a function of the temperature and frequency of 
the magnetic field.

Stochastic resonance in the Ising modelStochastic resonance in the Ising model



Complex networksComplex networks

Regular lattice Complex network

node

edge

Quantity of interest: distribution of connectivity pk (= probability 
distribution that a randomly selected node has connectivity k)  

Connectivity of the node i: the number of edges attached to the node i
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ScaleScale--free networksfree networks

• Networks with complex topology are ubiquitous 
in real world. An important class of complex 
networks are scale-free networks which look 
similar at any scale; e.g., the distribution of 
connectivity k obeys a power scaling law, pk ∝ k-γ. 

• Examples of scale-free networks comprise, e.g.,
• the internet activity, 
• the www links, 
• networks of cooperation (between scientists, 
actors, etc.), 
• traffic networks (airplane & railway 
connections, city transport schemes), 
• biological networks (sexual contacts, protein 
interactions, certain neural networks), etc.



ScaleScale--free networks: examplesfree networks: examples

Snapshot view of 
internet connections

Imported from:
http://www.nd.edu/~networks/gallery.htm

hubs



ScaleScale--free networks: examplesfree networks: examples

Imported from:
http://www.nd.edu/~networks/gallery.htm

Map of protein-protein interactions. The colour of a node signifies the 
phenotypic effect of removing the corresponding protein (red, lethal; green,
non-lethal; orange, slow growth; yellow, unknown).



Hamiltonian
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The local field acting on spin i
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Glauber dynamics (heat bath algorithm)

The order parameter
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Spectral Power Amplification (SPA)

The Ising model on scaleThe Ising model on scale--free networksfree networks

The transition rate between two spin 
configurations which differ by a single flip of 
one spin, e.g., that in node i

The spins si are located in the nodes i and edges between the nodes 
correspond to non-zero exchange interactions between the corresponding 
spins.

Ferromagnetic phase transition
Critical temperature: maximum 
fluctuations of the order parameter

222 SSS −=δ



Mean field approximationMean field approximation

• The Master equation for the probability that at time t the system is in the spin 
configuration (s1, s2, ..., sn) 
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• Multiply both sides by si and perform an ensemble average
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• Replace si �� si �, Ii �� Ii �

• Divide the nodes of the network according to their degrees k and assume that the average 
values of spins located in the nodes belonging to the class with degree k are equal to � sk 

�• Replace the sums over the nodes of the network with sums over the classes of nodes, e.g.
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• Multiply both sides of (�) by ki , perform the sum over all nodes of the network and 
replace it with a sum over the classes of nodes,.
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Stationary values of the order parameter and magnetization
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Mean field approximationMean field approximation

[A. Aleksiejuk, J.A. Hołyst, and D. Stauffer, Physica A310, 260 (2002); A. Aleksiejuk, 
Int. J. Modern Phys. C13, 1415 (2002); G. Bianconi, Phys. Lett. A303, 166 (2002); M. 
Leone, A. Vázguez, A. Vespignani, R. Zecchina, Eur. Phys. J. B28, 191 (2002); S.N. 
Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E66, 016104 (2002); F. Iglói, L. 
Turban, Phys. Rev. E66, 036140 (2002); C.P. Herrero, Phys. Rev. E69, 067109 (2004)]
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Linear Response TheoryLinear Response Theory
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In the paramagnetic phase, T > Tc
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Results: Mean field simulations and Linear Response TheoryResults: Mean field simulations and Linear Response Theory

Signal: S(t)
N = 10 000,
h0= 0.01,
(a) γ = 2.5,
(b) γ = 5

(b)

(a)Multiresonance
(double maximum 
of the SPA)

Thick: MF simulation,
Thin: LRT



• The algorithm starts with a small number m of fully connected 
nodes.

• Evolving network: New nodes are added step by step,

• Preferential attachment: From each new node m new links are 
created to the existing nodes, and the probability to create an edge 
to the node i is 

where ki is the actual number of edges attached to the node i.

• The network grows  until a given number of nodes N is added. 

• Evolving network + preferential attachment = scale-free network.
The distribution of the degrees of nodes is 
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[A.-L. Barabási and R. Albert, Science 286, 509 (1999) (for B=0, γ=3);  
S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)]

How to create scaleHow to create scale--free networks: Preferential attachmentfree networks: Preferential attachment



Results: Preferential attachmentResults: Preferential attachment

Signal: S(t)
N = 10 000,
m = 5,
h0= 0.01,
(a) B = -4 (γ =2.2),
(b) B = 10 (γ =5)

(a)

(b)

Multiresonance
(double maximum 
of the SPA)



How to create scaleHow to create scale--free networks: Configuration Model (CM)free networks: Configuration Model (CM)

[e.g., M.E.J. Newman, in Handbook of Graphs and Networks: From the Genome to the 
Internet, ed. S. Bornholdt and H. G. Schuster (Wiley - VCH, Berlin 2003), p. 35-68]

• The algorithm starts with assigning to each node i, in a set of N
nodes, a random number ki of „stubs” (ends of edges) drawn from a 
given probability distribution pk, with m � ki < N, (the maximum 
degree of node is N-1), with the condition that the sum �i ki is even.

• The network is completed by connecting pairs of these stubs chosen 
uniformly at random to make complete edges, respecting the 
preassigned sequence ki.

• Physical constraint: Multiple and self-connections are forbidden.

• For scale-free networks with pk ∝ k-γ , 2 < γ < 3, the latter constraint 
introduces correlations in the network, in the sense that, e.g., that 
the average degree of the nearest neighbours 

decreases with k (disassortative mixing - highly connected nodes are 
more probably linked to poorly connected ones)
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Results: CMResults: CM

Signal: S(t)
N = 10 000,
m = 5
h0= 0.01,
(a) γ = 2.5,
(b) γ = 5

Multiresonance
(double maximum 
of the SPA)

Split of the main
maximum of the
SPA at T� Tc

(origin unknown)

(a)

(b)



How to create scaleHow to create scale--free networks: Uncorrelated CM (UCM)free networks: Uncorrelated CM (UCM)

• The algorithm starts with assigning to each node i, in a set of N
nodes, a random number ki of „stubs” (ends of edges) drawn from a 
given probability distribution pk, with m � ki < N 1/2, (the maximum 
degree of node is N 1/2 -1), with the condition that the sum �i ki is 
even.

• The network is completed by connecting pairs of these stubs chosen 
uniformly at random to make complete edges, respecting the 
preassigned sequence ki.

• Physical constraint: Multiple and self-connections are forbidden.

• For scale-free networks with pk ∝ k-γ the resulting network is 
uncorrelated in the sense that, e.g., that the average degree of the 
nearest neighbours does not depend on k. However, for 2 < γ < 3 the 
power-law tails in the distribution pk ∝ k-γ are not fully developed.

[e.g., M. Catanzaro, M. Boguńá, and R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2005)]



Results: UCMResults: UCM

Signal: S(t)
N = 10 000,
m = 5,
h0= 0.01,
(a) γ = 2.5,
(b) γ = 5

(a)

(b)



ConclusionsConclusions

• Stochastic multiresonance is observed in the Ising model on scale-
free networks with 2 < γ < 3, for small and moderate frequencies of 
the oscillating magnetic field and for a large enough number of 
interacting spins N. One maximum of the curve SPA vs. T (a trivial one) 
appears at T � Tc and the other one usually at T << Tc. . 

• The necessary condition for the occurrence of stochastic 
multiresonance is the presence of the fully developed power-law tails 
in the distribution of the degrees of nodes pk (structural stochastic 
multiresonance).

• Open problem: the presence of double (or multiple) maxima of the
curve SNR vs. T in the Ising model on scale-free networks.

• Open problem: the presence of structural stochastic multiresonance 
in other complex systems (coupled bistable stochastic oscillators, 
etc.) .



Thank you for your attentionThank you for your attention



Results: Comparison for different methods of creating SF networkResults: Comparison for different methods of creating SF networkss

Signal: S(t)
N = 10 000,
h0= 0.01,
T0 = 128
(a) γ = 2.5,
(b) γ = 5

LRT
MF simulation
CM method
UCM method


