
Analysis of phase synchronization of coupled chaotic oscillators with empirical
mode decomposition

A. Goska and A. Krawiecki
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland

�Received 16 December 2005; revised manuscript received 14 March 2006; published 30 October 2006�

Empirical mode decomposition is investigated as a tool to determine the phase and frequency and to study
phase synchronization between complex chaotic oscillators. Within this approach, the oscillator is character-
ized by a spectrum of frequencies corresponding to the empirical modes. First, the phase and frequency of the
oscillators resulting from two well-known methods, based on modified variables and the Poincaré surface of
section, are compared with those obtained using empirical mode decomposition. Next, for both parametrically
and essentially different chaotic oscillators coupled as a drive-response system, transition to phase synchroni-
zation between corresponding empirical modes is investigated, defined as an adjustment of the mode frequen-
cies of the response oscillator to those of the drive oscillator as the coupling is increased. In particular,
anomalous and imperfect phase synchronization between modes is observed.
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I. INTRODUCTION

Recently, increasing interest in synchronization phenom-
ena in periodic and chaotic oscillators has been observed
�1,2�. Generally, synchronization means an adjustment of the
states of the interacting systems. According to different types
or levels of this adjustment, e.g., complete �3�, lag �4�, gen-
eralized �5�, marginal �6�, and phase synchronization �PS�
�7,8� can be specified.

PS is a weak form of synchronization. It is characterized
by an adjustment of phases, while amplitudes of the oscilla-
tions can remain uncorrelated �7�. However, phase can be
unambiguously determined only for linear oscillators. Also
in simple chaotic oscillators �e.g., Rössler system� the phase
can be easily approximated due to the existence of a unique
center of rotation �9,10�. However, for more complex chaotic
oscillators �e.g., Lorenz �11�, Chen �12�, and Lü �13� sys-
tems� determining the phase is difficult. The main problem is
to find the proper center and direction of rotation, because a
set of saddle cycles, present in the chaotic state, introduces
various rotation centers �14�. Thus there is no unique method
to determine the phase in complex chaotic oscillators, and
different definitions of the phase can be found �14–16�.
Moreover, coupling between different chaotic systems can
cause significant deformation of their attractors even in the
case of simple chaotic oscillators, which also makes impos-
sible defining the phase and studying PS on the basis of
simple physical intuitions.

Chaotic time series can be decomposed into a finite sum
of empirical modes, each with a unique center and direction
of rotation, using a procedure called empirical mode decom-
position �EMD� �17�. For each mode, the phase and instan-
taneous frequency can be unambiguously defined; though the
latter can vary significantly in time, by definition the average
frequency is decreased when going from lower to higher
modes. In Ref. �18� the idea was put forward to use EMD to
study PS bewteen coupled chaotic oscillators, or between
periodic forcing and a chaotic oscillator. PS was defined as
phase locking of the empirical modes of the response oscil-
lator with corresponding modes of the drive oscillator, or

directly with the periodic forcing. As examples, PS between
parametrically different chaotic forced van der Pol oscillators
and between electroencephalographic signals from different
regions of the brain of an epileptic patient were investigated.
In both cases phase diffusion, intermittent PS, and phase
locking between corresponding modes, with close average
frequencies, of the signals under study were observed.

The purpose of this paper is to further study EMD as a
tool for determining the phase and frequency in complex
chaotic oscillators and to compare systematically the results
with those from other methods. The focus is to identify spec-
tral components of the chaotic signal �e.g., empirical modes
in the case of the EMD method� and to determine their fre-
quencies. It is shown that both methods based on the
Poincaré surface of section �PSS� and EMD reveal the pres-
ence of several intrinsic frequencies in the chaotic oscilla-
tions, but only in the latter case can both the phases and
average frequencies of the empirical modes be unambigu-
ously evaluated. Next, the transition to synchronization with
increasing coupling strength between complex chaotic oscil-
lators, both parametrically different and with topologically
different attractors, is investigated by means of the EMD
method. In contrast with Ref. �18�, PS is defined as a process
of merging of the frequencies of the corresponding modes in
the time series of the two oscillators �frequency entrain-
ment�. Certain aspects of this PS—e.g., its relationship to the
generalized synchronization �5� as well as anomalous �8,19�
and imperfect �20� synchronization between modes—are
briefly discussed.

II. PHASE AND INTRINSIC FREQUENCY SPECTRUM
OF COMPLEX CHAOTIC OSCILLATORS

A. Lorenz system

The Lorenz system �11� ẋ=��y−x�, ẏ=rx−y−xz, ż=xy
−bz is a generic model to illustrate difficulties in defining the
phase and frequency as well as in studying PS of complex
chaotic oscillators. So far, phase has been defined for the
Lorenz system using modified variables �MV’s� �15� and
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PSS �14,16�. Recently, another definition of the phase using
EMD has been introduced �21�.

The main idea behind the MV method for the Lorenz
system ��=10, r=28, b=8/3, Fig. 1� is that its dynamics in
the variables u=�x2+y2 ,z looks like rotation around some
center point up=12, zp=r−1 �15�. Phase can be defined as
�=arctan�z̄ / ū�, where ū=u−up, z̄=z−zp. Then, the instanta-

neous frequency is �MV=
żuū−z̄�xẋ+yẏ�

u�ū2+z̄2� . Hence, the MV method

yields a single frequency �MV �Table I�.
The definition of phase in the PSS method is based on the

geometric properties of the attractor. In this method a general
assumption is made that every new rotation increases the
phase by 2�. Rotation is understood as two consecutive in-
tersections �from the same direction� of the surface of section
by the phase trajectory. Certainly, this method provides no
information about the evolution of the phase in time, since
phase is defined with 2� accuracy; however, it is enough to
determine the mean frequency. For this purpose, time inter-
vals �i, i=1,2 , . . . ,N, are counted between the intersections,
and the system is characterized by a frequency distribution
���i�, where �i=�i

−1, and by the mean frequency �PSS

=������d�.
The outcome of the above-mentioned procedure depends

on the choice of the surface of section. Let us first consider

the surface conditioned by z=r−1 �Fig. 1�, with the intersec-
tions counted only when dz /dt�0 �16�. The resulting fre-
quency distribution is unimodal �Fig. 2�a�� and the mean
frequency �PSS

�0� agrees well with the frequency �MV from the
MV method �Table I�. However, with the surface set at x
=0 �Fig. 1� and the intersections counted only when dx /dt
�0, the frequency distribution exhibits multiple distinct
peaks �Fig. 2�b��. This means the presence of several spectral
components in the system, which is thus characterized by
an intrinsic frequency spectrum, with the frequencies
�PSS

�1� ,�PSS
�2� , . . . evaluated as averages over the separate

maxima of the distribution. It can be seen that �PSS
�0� ��PSS

�1�

��PSS
�2� �¯. This is so because �PSS

�0� results mainly from fast
rotations of the trajectory around symmetric unstable foci
�Fig. 1�, while �PSS

�j� , j=1,2 , . . ., are related to slower jumps
between the two symmetric parts of the attractor with x�0
and x�0. Moreover, each jump can occur after the trajectory
performs one, two, or more rotations around one of the un-
stable foci, which explains the multiple peaks of the fre-
quency distribution in Fig. 2�b�.

EMD is based solely on the chaotic signal under study
and does not require any knowledge of the geometry of the
attractor. Generally speaking, it results in the decomposition
of a given signal x�t� into a number of intrinsic modes Ck�t�,
k=0,1 , . . . ,L, each with its proper center and direction of
rotation �21� �for details of the method see Ref. �17��. This is
achieved by means of the following iterative procedure. In
order to obtain Ck�t� an input signal x̃k�t� is needed, which
depends on the previous k−1 iterations of the procedure; to
start the EMD, x̃0�t�=x�t� is assumed. In the first step, two
smooth splines x̃k,min�t� and x̃k,max�t� connecting all the
minima and all the maxima of x̃k�t�, respectively, are con-
structed. In the second step, the mean mk�t�= �x̃k,max�t�
+ x̃k,min�t�� /2 and the difference 	x̃k�t�= x̃k�t�−mk�t� are
evaluated. If 	x̃k�t� corresponds to a proper rotation, the em-
pirical mode is assumed as Ck�t�=	x̃k�t�; if not, the two
above-mentioned steps are iterated with the input signal de-
fined as x̃k�t�=	x̃k�t� until the resulting signal is a proper
rotation. In practice, the signal is considered to be a proper
rotation if a number of its maxima, minima, and zero cross-
ings differs at most by 1 and if its mean mk�t� is close to 0.

FIG. 1. Chaotic attractor of the Lorenz system with �=10, b
=8/3, and r=28. The lines show location of the Poincaré surfaces
of section z=r−1 �dotted line� and x=0 �dashed line�; the crosses
show locations of the symmetric unstable foci.

TABLE I. Frequencies for two �uncoupled� Lorenz systems with
�=10, b=8/3, and r given in the table, obtained using different
methods �for explanation of symbols see text�.

j

r=29, �MV=1.39 r=26, �MV=1.30

�PSS
�j� �EMD

�j� �PSS
�j� �EMD

�j�

0 1.36±0.03 1.70 1.27±0.03 1.60

1 0.64±0.02 0.84 0.59±0.02 0.77

2 0.44±0.01 0.54 0.40±0.01 0.51

3 0.33±0.01 0.29 0.31±0.01 0.28

4 0.27±0.01 0.17 0.25±0.01 0.16

5 0.10 0.09

6 0.05 0.05

FIG. 2. Frequency distributions ���i� of two different uncoupled
Lorenz oscillators with �=10, b=8/3, and r=26 �thin line� or r
=29 �thick line�. The surface of section is conditioned by �a� z=r
−1 and �b� x=0.
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The parameters determining when to stop this iteration pro-
cess are assumed as in Ref. �22�: the so-called evaluation
function

�k�t� = �mk�t�/ak�t�� ,
where

ak�t� = �x̃k,max�t� − x̃k,min�t��/2,
must fulfill the condition �k�
1 for some prescribed fraction
�1−�� of the total signal duration, while �k�
2 for the re-
maining fraction, with �=0.05, 
1=0.05, and 
2=10
1. In
this way, Ck�t� is evaluated. Next, in order to obtain Ck+1�t�
the input signal is defined as x̃k+1�t�= x̃k�t�−Ck�t�, and the
whole procedure continues until the mode CL�t� shows no
apparent variation. For every point in time the phases
�EMD

�k� �t� are then defined using Hilbert transforms of each
mode Ck�t�. The frequencies �EMD

�k� are obtained by averaging
the instantaneous frequencies d�EMD

�k� /dt, separately for each
mode. Although the instantaneous frequency of each mode
can vary in time, by definition the fast oscillations present in
the signal are in general extracted into the lower and the slow
oscillations into the higher modes so that �EMD

�0� ��EMD
�1�

� ¯ ��EMD
�L� . Moreover, the mode amplitudes usually decay

fast with k so that the signal can be decomposed into a small
number of empirical modes. In this approach, the system is
characterized by the intrinsic frequency spectrum �EMD

�k� ,
k=0,1 , . . . ,L.

Examples of the lowest EMD modes obtained from the
variable x�t� of the Lorenz system versus their Hilbert trans-
forms are shown in Fig. 3. In contrast with the original vari-
able x�t� it can be seen that the empirical modes are in fact
proper rotations with unique centers and directions of rota-
tion. The average frequencies of the empirical modes are
given in Table I. Although it is not always possible to find
connection between the consecutive empirical modes and the
physical processes underlying the signal under study or its
characteristic features �17�, it is interesting to compare the
results obtained from the EMD and PSS methods for the
Lorenz oscillator. Since the C0�t� mode in general captures
the fastest oscillations present in the system, it is tempting to
identify it with the fastest rotations of the trajectory around

the symmetric unstable foci characterized by the frequency
�PSS

�0� . Similarly, the higher modes capturing slower oscilla-
tions may be associated with the less frequent jumps between
the symmetric parts of the Lorenz attractor characterized by
the frequencies �PSS

�j� , j=1,2 , . . .. However, an inspection of
Table I shows that the corresponding frequencies from the
EMD and PSS methods systematically deviate. Thus there is
no direct correspondence between the fast oscillations and
slower jumps in x�t�, which can be distinguished using the
geometric approach based on the PSS, and the empirical
modes obtained solely from the signal, without any prior
knowledge of the geometry of the chaotic attractor. Never-
theless, in the case of the Lorenz oscillator both approaches
show that multiple spectral components with distinct fre-
quencies are present in the dynamics of the system and the
whole complexity of its oscillations cannot be captured by
only one frequency, as suggested by the MV method.

B. Chen system

The Chen system �12� ẋ=��y−x�, ẏ= ��−r−z�x+ry, ż
=xy−bz, with �=35, b=3, and r=28, has a chaotic attractor
with more complex topology than that of the Lorenz system
�Fig. 4�. For the Chen oscillator no transformation of vari-
ables is known, resulting in a phase trajectory rotating
around a unique center point; in particular, the u-z transfor-
mation of Sec. II A is not useful for this purpose. Hence, the
frequency and phase for the Chen system can be obtained
only from the PSS and EMD methods.

Let us start with the PSS method. In contrast with the
Lorenz system, the phase trajectory of the Chen system can-
not be easily decomposed into fast rotations around unique
rotation centers on each of the two symmetric parts of the
attractor with x�0 and x�0 and jumps between these parts.
After a large rotation the phase trajectory can perform a se-
ries of smaller loops, which can end in another large rotation
on the same or the other part of the attractor. The small loops
are distributed over a wide interval of the z variable �Fig. 4�.
Hence, if the PSS is set as z=r−1, the resulting frequency
distribution ���i�, obtained as in Sec. II B, is not unimodal

FIG. 3. �a� The original signal x�t� and its Hilbert transform
H(x�t�) from the Lorenz system with �=10, b=8/3, and r=28.
�b�–�d� The empirical modes Ck�t� and their Hilbert transforms
H(Ck�t�), k=0,1 ,2, from the Lorenz system.

FIG. 4. Chaotic attractor of the Chen system with �=35, b=3,
and r=28. The lines show location of the Poincaré surfaces of sec-
tion z=r−1 �dotted line� and x=0 �dashed line�.
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�Fig. 5�a��, and the same is true if the PSS is shifted along
the z axis over a wide interval within the attractor limits.
Defining the frequency �PSS

�0� as the mean over the whole
distribution ���i� or a part of it is problematic; thus, the PSS
method does not yield unambiguously the basic frequency of
the Chen oscillator. If the PSS is set as x=0, the frequency
distribution exhibits multiple peaks �Fig. 5�b��, related both
to the jumps between the two parts of the attractor and to
smaller loops performed by the phase trajectory. However, in
contrast with the Lorenz system �Fig. 2�b�� these peaks,
though distinct, are superimposed on a broad frequency
background and the frequency spectrum �PSS

�j� , j=1,2. . ., can-
not be easily evaluated by averaging ���i� over separate
maxima. Thus, the PSS method shows only qualitatively the
existence of the multiple spectral components in the dynam-
ics of the Chen oscillator. In contrast, the EMD method al-
lows decomposition of the x�t� variable into a number of
empirical modes with distinct average frequencies �EMD

�0�

��EMD
�1� � ¯ ��EMD

�L� �Table II�.

III. APPLICATION OF EMPIRICAL MODE
DECOMPOSITION TO THE STUDY OF PHASE

SYNCHRONIZATION BETWEEN COUPLED
COMPLEX CHAOTIC OSCILLATORS

A. Phase synchronization between parametrically different
Lorenz oscillators

In the study of PS, each oscillator is usually characterized
by a single phase and frequency. In the synchronized state

the phase difference between the oscillators is bounded and
the frequency difference is zero �7�, or at least close to zero
�20�. In contrast, in this paper each oscillator is characterized
by its frequency spectrum obtained using the EMD method,
and the transition to PS is basically analyzed as a process of
merging of the frequencies of the corresponding modes as
the coupling strength is increased.

The first system under study consists of two parametri-
cally different Lorenz oscillators coupled according to a
drive-response scheme,

ẋd = ��yd − xd� ,

ẏd = rdxd − yd − xdzd,

żd = xdyd − bzd,

ẋr = ��yr − xr� + ��xd − xr� ,

ẏr = rrxr − yr − xrzr,

żr = xryr − bzr, �1�

with �=10, b=8/3, and, in general, rd�rr. Using the MV
method to determine the phase in the response oscillator is
inconvenient, because the attractor is modified with changing
the parameters �, r, b, or �, and, as a result, the center of
rotation �up ,zp� is shifted accordingly. In contrast, the EMD
method makes it possible to observe and describe quantita-
tively PS in systems with a set of saddle cycles �18�. For this
purpose, the phases �EMD

�d,k� �t� and �EMD
�r,k� �t� and frequencies

�EMD
�d,k� , �EMD

�r,k� , k=0,1 , . . . ,L, are evaluated from the variables
xd�t� and xr�t�, separately for the drive �d� and response �r�
oscillators, for every point in time and for the consecutive
modes Cd,k�t� and Cr,k�t�. The parameters rd and rr are cho-
sen so that for zero coupling and for each k there is ��EMD

�d,k�

−�EMD
�r,k� � ��EMD

�d,k� −�EMD
�r,k±1��; thus, the modes from the drive

and response signals with the same index k can be treated as
corresponding ones.

In the following the analysis of PS using EMD is con-
strained to the lowest �most significant� modes with the high-
est amplitudes. For higher modes, with significantly smaller
amplitudes, qualitatively similar scenarios of the transition to
PS with increasing coupling strength were observed. A quan-
titative description of PS using the EMD is based on the
study of the adjustment of frequencies of the corresponding
modes of the drive and response systems with the increase of
� �frequency entrainment�. In Figs. 6�a�–6�c�, this process is
illustrated for the lowest modes with the fastest intrinsic fre-
quencies.

If rd=rr, numerical simulations show that the frequencies
of all modes of the response system adjust to those of the
corresponding modes of the drive system at the same cou-
pling �=7.25 �Figs. 6�a�–6�c��. The transition to PS is dis-
tinct, and above the transition point the frequencies of the
corresponding modes are equal. Above this point complete
synchronization between the two Lorenz oscillators occurs;
i.e., the trajectories of the two coupled systems merge.
Hence, for identical oscillators the transition to PS takes

FIG. 5. Frequency distributions ���i� of the uncoupled Chen
oscillator with �=35, b=3, and r=28. The surface of section is
conditioned by �a� z=r−1 and �b� x=0.

TABLE II. Frequencies for the �uncoupled� Chen system with
�=35, b=3, and r=28, obtained using the EMD method �for expla-
nation of symbols see text�.

j �EMD
�j� j �EMD

�j�

0 1.87 4 0.19

1 0.96 5 0.11

2 0.55 6 0.06

3 0.32
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place simultaneously for all empirical modes and is equiva-
lent to transition to complete synchronization. As a result, PS
between empirical modes cannot be observed before the am-
plitudes of the system variables become correlated.

In contrast, for rd�rr the frequencies of the correspond-
ing modes are not exactly equal even at high coupling. In
this case PS is imperfect, with small, but nonzero differences
between the frequencies of the corresponding modes. This
resembles imperfect PS between the Lorenz system and pe-
riodic forcing �20�. In general, perfect PS between periodic
forcing and complex chaotic oscillators with a broad distri-
bution of intrinsic frequencies cannot be reached. Probably,
the same is true for PS between corresponding empirical
modes of the coupled complex chaotic oscillators, whose in-
stantaneous frequencies are also relatively broadly distrib-
uted.

Moreover, the imperfect adjustment of the frequencies of
different corresponding modes of the two systems occurs in-
dependently, at a different coupling strength. This can be
seen, e.g., in Figs. 6�a�–6�c� for rd=27 and rr=29: �EMD

�r,0� is
almost equal to �EMD

�d,0� ca. for ��8.5, and �EMD
�r,2� is almost

equal to �EMD
�d,2� ca. for 4���8, while �EMD

�r,1� is not adjusted
to �EMD

�d,1� ca. for ��10.5. Hence, for parametrically different
oscillators the transition to an imperfectly synchronized state
takes place independently for different pairs of correspond-
ing modes. A related observation of the phase locking be-
tween certain pairs of corresponding empirical modes, with
other pairs exhibiting only intermittent PS or no apparent
synchronization, has been reported for coupled, parametri-

cally different chaotic forced van der Pol oscillators �18�.
The study of the relationship between PS and generalized

synchronization between different chaotic oscillators is diffi-
cult, because PS is imperfect and there is no distinct transi-
tion from the nonzero to zero frequency difference between
corresponding modes. Nevertheless, numerical simulations
show that this relationship need not be universal. In the case
of generalized synchronization the phase trajectories of the
coupled systems do not merge, but a one-to-one function
mapping the points of the trajectory of the drive system on
those of the response system exists, which can be detected
using the auxiliary system approach �5�. It was verified that
for rd=27 and, e.g., rr=25 the transition to generalized syn-
chronization between the two Lorenz systems is distinct and
occurs at �=8.5. This is simultaneously or slightly before the
frequencies of the modes Cd,0 and Cr,0 approximately merge
�Fig. 6�a��. On the other hand, for rr=29 generalized syn-
chronization appears at �=10.5, after the state of imperfect
PS between the k=0 modes is established. It is well known
that for parametrically different Rössler oscillators, depend-
ing on the topological properties of the attractors of the
coupled systems, PS can occur before or after generalized
synchronization �23�. Also for coupled essentially different
chaotic oscillators generalized synchronization usually pre-
cedes PS �8�. Thus, the relationship between the generalized
synchronization and PS defined on the basis of the EMD
method deserves further investigation.

Note that with increasing � the frequency difference be-
tween the corresponding modes of the drive and response
systems can rise before PS occurs at strong coupling �Figs.
6�a� and 6�b��. This phenomenon is analogous to anomalous
PS found in coupled chaotic oscillators using different defi-
nitions of the phase �8,19�. Anomalous synchronization be-
tween the corresponding modes occurs even if rd=rr, when
the mode frequencies in the uncoupled oscillators are equal.
This is in contrast with the case of coupled identical Rössler
oscillators, where PS appears always, for any coupling �7�.

In Fig. 6�d� the dependence of the frequency �MV
�r� of the

response system on the coupling strength is shown for com-
parison. As mentioned above, the frequency evaluated from
the MV method is approximate due to the changes in the
attractor of the response system introduced by coupling it to
the drive. In particular, this is the reason for a rapid decrease
of �MV

�r� for small coupling in the case of rr=25. Nevertheless,
the results of the study of PS between the parametrically
different Lorenz systems based on the MV method show
many analogies with those obtained using the EMD method.
For rd=rr—i.e., for identical drive and response systems—
the MV method reveals the occurrence of PS at �=7.25,
where the frequencies �MV

�r� and �MV
�d� become equal, exactly at

the threshold for complete synchronization, where also PS
between all empirical modes occurs. For rd�rr, even for
strong coupling, the frequencies �MV

�r� and �MV
�d� are again at

most approximately equal and only imperfect PS is observed.
Anomalous PS can be also seen in Fig. 6�d�, both in the
cases of identical and in parametrically different Lorenz sys-
tems, though for slightly different ranges of the coupling
strength than anomalous PS between the corresponding em-
pirical modes.

FIG. 6. �a�–�c� Frequencies �EMD
�d,k� and �EMD

�r,k� of the lowest em-
pirical modes of the Lorenz drive �lines� and response �lines with
symbols� oscillators in Eq. �1� vs the coupling strength �: �a� k=0
mode, �b� k=1 mode, and �c� k=2 mode. �d� Frequencies �MV

�d� and
�MV

�r� of the same oscillators vs the coupling strength �; in all cases,
rd=27, rr=25 ��� rr=27 ���, and rr=29 ���.
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B. Phase synchronization between essentially different
complex chaotic oscillators

The second system under study consists of two coupled
essentially different oscillators �i.e., oscillators with topo-
logically different attractors�: the Chen oscillator acting as a
drive �d� for the Lorenz response �r� oscillator,

ẋd = �d�yd − xd� ,

ẏd = �rd − �d − z�xd + rdyd,

żd = xdyd − bdzd,

ẋr = �r�yr − xr� + ��xd − xr� ,

ẏr = rrxr − yr − xrzr,

żr = xryr − brzr, �2�

with �d=35, bd=3, rd=28, �r=10, br=8/3, and rr=27. In
Fig. 7 the dependence of the frequencies of the lowest em-
pirical modes of the Lorenz oscillator on the coupling
strength is shown. For �=0 the frequencies �EMD

�d,k� and �EMD
�r,k� ,

k=0,1 ,2, are close to each other �Fig. 7�; thus, the modes
Cd,k�t�, Cr,k�t� of the drive �Chen� and response �Lorenz�
oscillator with the same index k are corresponding modes.
With increasing coupling the frequencies of the correspond-
ing modes can merge, though they usually do not become
equal and only imperfect PS is established �Figs. 7�a�–7�c��.
PS occurs separately for different pairs of the corresponding
modes; e.g., the modes Cd,1�t� and Cr,1�t� do not show even
imperfect PS for any � �Fig. 7�b��, in contrast with the k=0

and k=2 modes, whose frequencies are relatively close for
strong coupling. Hence, the definition of PS between com-
plex chaotic oscillators as a process of merging of the fre-
quencies of the corresponding empirical modes with the rise
of the coupling strength can be extended to the case of
coupled essentially different oscillators. Also anomalous syn-
chronization between the corresponding modes can be ob-
served in this case �Figs. 7�a�–7�c��.

IV. CONCLUSIONS

EMD is an instrument for determining the phase and fre-
quency and its application in this field has many advantages.
In this paper the relationship between the EMD method and
the well known MV and PSS methods for determining the
phase and frequency of the complex chaotic oscillators was
investigated. The MV method is applicable only in the case
of the Lorenz system and characterizes the oscillator with a
single frequency. In contrast, both the PSS and the EMD
methods unveil the presence of several spectral components
with different frequencies in the dynamics of the complex
oscillators. However, the peaks in the frequency distribution
obtained using the PSS method, corresponding to the intrin-
sic frequencies, are separate only in the case of the Lorenz
system. In the case of the Chen system, whose attractor has
more complex topology, these peaks are superimposed on the
broad frequency background; moreover, the PSS method
does not yield unambiguously the basic frequency of the
Chen oscillator. In contrast, the EMD method always enables
decomposition of the chaotic signal into a set of spectral
components �modes� with distinct frequencies.

Application of EMD in the investigation of PS between
complex chaotic oscillators looks promising. The EMD
method enables description of PS not only in terms of merg-
ing of the average frequencies of the coupled oscillators, but
also in terms of merging of the frequencies of their empirical
modes with increasing coupling. The transition to PS can
appear independently between different pairs of the corre-
sponding empirical modes, for different ranges of the cou-
pling strength, both in the case of parametrically and in es-
sentially different drive and response systems. The
established synchronized state is usually that of imperfect
PS, with small but nonzero differences between the frequen-
cies of the corresponding modes. Other interesting
phenomena—e.g., anomalous PS between the corresponding
modes—can also occur. EMD is a signal-based method and
does not require any knowledge of the investigated system or
the chaotic attractor. Hence, it is frequently used in the
analysis of empirical data �18,24�, where it can become
widely applicable in the quest of PS between experimentally
measured time series.
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FIG. 7. �a�–�c� Frequencies �EMD
�d,k� and �EMD

�r,k� of the lowest em-
pirical modes of the Chen drive �lines� and Lorenz response �lines
with symbols� oscillators in Eq. �2� vs the coupling strength �: �a�
k=0 mode, �b� k=1 mode, and �c� k=2 mode.
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