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Abstract

Stochastic resonance is investigated in a system of threshold elements located at nodes and
coupled along edges of a Barab#asi–Albert network, driven by a common subthreshold periodic
signal and independent noises. Array-enhanced stochastic resonance is observed, i.e., increase
of the spectral power ampli,cation evaluated from the mean output of the network due to
proper coupling. This enhancement occurs though the response of individual threshold elements
to the periodic signal is very diverse due to a power-law distribution of their connectivity.
Numerical results are qualitatively explained using simple linear response theory in the mean
,eld approximation.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic resonance (SR) [1] is a phenomenon where noise plays a constructive role
by enhancing response of a nonlinear system to a periodic signal (for review see Refs.
[2–4]). This response can be characterized, e.g., by spectral power ampli,cation (SPA)
de,ned as the ratio of the output signal power at the periodic stimulation frequency to
the power of the input periodic signal; in systems with SR the SPA shows maximum as
a function of the noise intensity [5]. SR was demonstrated in various low-dimensional

∗ Tel.: +48-22-660-79-58; fax: +48-22-628-21-71.
E-mail address: akraw@if.pw.edu.pl (A. Krawiecki).

0378-4371/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2003.09.067

mailto:akraw@if.pw.edu.pl


506 A. Krawiecki / Physica A 333 (2004) 505–515

systems, e.g., bistable [5,6] and monostable [7] potential systems, dynamical [8] and
non-dynamical [9] threshold-crossing systems, threshold elements [10], etc. An im-
portant property of SR is that it can be enhanced due to proper coupling between
low-dimensional stochastic resonators, i.e., the maximum SPA can be substantially
increased in comparison with that in a single uncoupled resonator. This eAect of
array-enhanced SR was shown in stochastic systems with mean-,eld coupling [11],
including models of neural networks [12,13], as well as in periodic networks of cou-
pled units, e.g., in chains and lattices of bistable [14–16], monostable [17] and threshold
[18] elements with nearest-neighbour coupling, in the Ising model on regular lattices
in various dimensions [19,20], etc.

In the last years interest in networks with non-trivial topology, much more complex
than simple periodic lattices, has increased rapidly [21,22] (for review see Ref. [23]).
It has been motivated by the desire to understand the origin and properties of such we-
blike structures as social networks, the Internet, world-wide web, spreading of diseases,
etc., which are of high importance for the modern society. Apart from the topological
properties of complex networks, dynamical phenomena in coupled systems de,ned on
them also received considerable attention. For example, in small-world networks [21],
which are created from regular lattices by cutting and rewiring at random a given
fraction of connections (edges), phase transitions in the Ising model [24,25], chaos
[26], and SR in networks of bistable elements or Ising spins were studied [27–29].
Another important class of networks are evolving networks, ,rst proposed by Barab#asi
and Albert (BA) [22], in which newly added nodes are connected to the existing
ones according to a probabilistic rule, preferring connections to nodes which already
have many edges. Such networks are scale-free, i.e., the connectivity (number of edges
of individual nodes) has a power-law distribution. In this case, much less is known
about dynamics on such networks: e.g., synchronization [30], and ferromagnetic phase
transition in the Ising model [31,32] were investigated.

In this paper, SR is studied in threshold elements (TE) located on the nodes and
coupled along the edges of the BA network, driven by independent noises and a weak
periodic signal. The response of individual TE to the periodic stimulation, characterized
by their SPA, is highly non-uniform due to the power-law connectivity distribution,
which results in a broad distribution of the SPA values. Anyway, numerical simulations
and qualitative analysis based on linear response theory in mean-,eld approximation
show that the eAect of array-enhanced SR takes place in the BA network, like in
networks with more uniform topology. Both the SPA from the average output of all
TE and the mean SPA from individual TE can be signi,cantly increased due to proper
coupling. Thus, this paper extends the concept of array-enhanced SR to the case of
scale-free networks of coupled stochastic resonators.

2. The model and methods of analysis

In order to de,ne the model, ,rst the BA network is created. At the ,rst step, a
small number m of fully connected nodes is ,xed. Then, step by step, new nodes are
added, and each new node is connected to existing nodes with m edges according to the
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following probabilistic rule: probability of linking to a node i is pi=ki=
∑

i ki, where ki
is the actual connectivity of the node i, and

∑
i ki is the actual number of edges in the

whole network. Multiple connections between nodes are allowed. The growth process
is continued as long as the total number of nodes N is reached, when the network
structure is frozen. For large N , this “preferential attachment” rule results in the network
with the mean connectivity 〈k〉 = 2m and the connectivity distribution P(ki) = 2m2k−3

i
[22,23,33–35]. Then, at each node a TE is located, and the network edges are treated
as mutual symmetric connections between TE, of a kind typical of arti,cial neural
networks. Finally, the TE are subject to external noise and a subthreshold periodic
signal.

The output yi(t) of each TE i, i = 1; 2; : : : ; N , at discrete time steps t is given by

yi(t + 1) =�


A sin!0t + D�i(t) +

w
〈k〉

ki∑
j=1

yj(t) − b

 ; (1)

where � denotes the Heaviside function, A is the amplitude and !0 is the frequency
of the input periodic signal, D is the noise strength, �i(t) are Gaussian noises with unit
variance, uncorrelated in space and time, w is the coupling strength, the summation
runs over all nodes connected to the node i, and b is the threshold, with b¿A. The
TE are updated at random, according to the thermal-bath dynamics, and one full-time
step consists in updating all TE. It should be noted that uncoupled TE driven by
subthreshold periodic signals exhibit SR [10]; moreover, coupled TE were often used
to study SR and many related phenomena in coupled systems [18,36,37]. Besides, TE
can be used as qualitative models for SR in biological neurons [38]. Finally, the use
of TE with discrete time and simple dynamics speeds up numerical simulations and
allows the study AB networks with relatively large N .

In order to show numerically SR in the global response to the periodic signal of the
model (1), the SPA vs. D is evaluated from the time-dependent mean response of all
TE 〈y(t)〉 = N−1 ∑N

i=1 yi(t) as

SPA = |P1|2=A2; P1 = lim
T→∞

1
T

T−1∑
t=0

〈y(t)〉e−i!0t : (2)

The numerical results are compared to the predictions of the linear response theory
in the mean ,eld approximation. Besides, the SPAi from the individual signals yi(t)
are also evaluated numerically according to the above de,nition, and the mean SPA
is obtained as their average over N nodes. The mean SPA vs. D and the distribution
of SPAi for ,xed D are analysed for various w. In numerical simulations the signal
parameters A= 0:01, !0 = 2�=128, b= 0:6, and the networks with m= 5 and N up to
104 were used. The numerical SPA was averaged over several random realizations of
the BA network and initial conditions for the individual TE.

3. Spectral power ampli�cation from the linear response theory

Before the numerical results are presented, in this section qualitative theory for SR in
the BA network of coupled TE is presented. It is known that in systems with global or
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nearest-neighbour coupling SR can be analysed theoretically using the linear response
theory in the mean-,eld approximation [11,19,20]. Using similar approximations, here
the response of the model (1) to the weak periodic signal is obtained in a form of
small oscillations of the mean 〈y(t)〉 around stable stationary states existing for a given
noise intensity in the absence of the periodic modulation.

3.1. Mean-5eld approximation

In order to obtain stationary states of 〈y(t)〉 for a given noise intensity D, Eq. (1)
is ,rst rewritten as

yi(t + 1) =�


A sin!0t + D�i(t) +

ki
〈k〉

w
ki

ki∑
j=1

yj(t) − b

 : (3)

Introducing the quantity �i=ki=〈k〉=ki=2m, assuming that the mean-,eld approximation
k−1
i

∑ki
j=1 yj(t) ≈ 〈y(t)〉 is valid on the right-hand side, and averaging Eq. (3) over

N nodes yields

〈y(t + 1)〉 =
1
N

N∑
i=1

�[A sin!0t + D�i(t) + w�i〈y(t)〉 − b] : (4)

For the scale-free network with the power-law connectivity distribution, the above
mean-,eld approximation is a strong simpli,cation, since the network consists of
highly non-equivalent nodes whose ability to perceive the mean behaviour of the net-
work much depends on the number of connections they possess (for more elaborate
mean-,eld approach applied to the Ising model on the BA network see Ref. [32]).
Replacing the average over N nodes by the average over the distribution of �i, which
is P(�i) = �−3

i =2, yields

〈y(t + 1)〉 =
∑
�i

P(�i)P(yi(t + 1) = 1 | �i)

=
1
2

∑
�i

P(�i)
[
1 − erf

(
b− A sin!0t − w�i〈y(t)〉√

2D

)]
; (5)

where P(yi(t)=1 | �i) is the probability that yi(t)=1 if the connectivity of the node i is
ki = �i〈k〉, and the sum runs over a discrete set of �i, 1

2 6 �i6N=2m. When obtaining
Eq. (5) again a strong approximation was made that the probability to have yi(t)=1 is
equal for all nodes with the same �i, though in fact it depends also on the connectivity
kj of the nodes connected to the node i. The next step is to change to continuous
distribution of �, denoted as �(�) = �−3=2, and to continuous time, and consider the
limit N → ∞, which yields the following equation for the mean 〈y(t)〉:

d〈y〉
dt

= −〈y〉 +
1
2

∫ ∞

1=2
d��(�)

[
1 − erf

(
b− A sin!0t − w�〈y(t)〉√

2D

)]
: (6)
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Fig. 1. Graphical solution of Eq. (7) for (a) w=0:6, (b) w=1:3, (c) w=1:5, (d) w=2:0; thick line—right-hand
side of Eq. (7) for D = 0:2, thin line—for D = 0:4, dashed line—for D = 1:6; intersection points with the
diagonal yield the stationary states 〈y〉0 of the mean-,eld theory.

In the absence of the periodic forcing, stationary (possibly stable) states 〈y〉0 of
Eq. (6) for given D can be obtained as solutions of the equation

〈y〉0 =
1
2

∫ ∞

1=2
d��(�)

[
1 − erf

(
b− w�〈y〉0√

2D

)]
: (7)

For the parameters from Section 2, the following cases are possible (Fig. 1). For small
and moderate w there is only one stable solution: 〈y〉0 ≈ 0 for small D, corresponding
to approximately ordered phase, rising to 〈y〉0¿ 0 for moderate and large D, which
corresponds to increasing disorder (Fig. 1(a), (b)). For large w there are three or
one solutions. For small D there are two asymmetric stable solutions 〈y〉0 ≈ 0 and
〈y〉0 ≈ 1, corresponding to approximately ordered phases, separated by one unstable
solution 0¡ 〈y〉0¡ 1 (Fig. 1(c), (d)). As D increases, the stable solutions approach
each other, but usually do not merge: in contrast, one of the solutions disappears, and
only one stable solution 〈y〉0¿ 0 remains, corresponding to the disordered phase.
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3.2. Linear response theory

For given noise intensity it can be assumed that under the inKuence of the periodic
signal with A → 0 the mean value 〈y(t)〉 oscillates around the stable stationary state,
i.e., 〈y(t)〉 = 〈y〉0 + �(t), where �(t) → 0. Inserting this into Eq. (6), and expanding
the error function on the right-hand side in the Taylor series with respect to a small
quantity w��(t) + A sin!0t yields

d�
dt

= −�
�

+
A√
2�D

∫ ∞

1=2
d��(�) exp

[
− (b− w�〈y〉0)2

2D2

]
sin!0t ; (8)

where � is the relaxation time,

�=
{

1 − w√
2�D

∫ ∞

1=2
d��(�)� exp

[
− (b− w�〈y〉0)2

2D2

]}−1

: (9)

The well-known solution of Eq. (8) is [20]

�(t) = �0 sin(!0t − �0) ;

�0 =
A√
2�D

�√
1 + !2

0�2

∫ ∞

1=2
d��(�) exp

[
− (b− w�〈y〉0)2

2D2

]
;

�0 = arctan(!0�) ; (10)

thus the SPA evaluated from 〈y(t)〉 in the linear response approximation is

SPA = �2
0=(4A

2) : (11)

For �(�)=�−3=2 the integrals in Eqs. (7), (9), and (10) can be evaluated numerically.
Eq. (11) is valid only in the limit of vanishing A. Moreover, the above theory neglects
the possibility that if two stable stationary states of Eq. (7) coexist, as in Fig. 1(c),
(d), the periodic signal with ,nite amplitude can remove this bistability, and the system
can jump between the two states which leads to dramatic increase of the SPA. Another
problem in the case of asymmetric bistable stationary states is the choice of 〈y〉0 for
the evaluation of the SPA from Eqs. (10), (11). Since, as mentioned in Section 3.1,
only one stable stationary solution usually exists in the whole range of D, and the
other one vanishes as the noise intensity increases, the value of 〈y〉0 corresponding to
the former solution is always taken to obtain SPA for any D. However, even for small
A the SPA averaged over many realizations of the network can result from oscillations
around both stationary states.

4. Results and discussion

Typical numerical results for the SPA vs. D from 〈y(t)〉 in system (1) with N =
10 000 are shown in Fig. 2. For a wide range of the coupling strength w these curves
show maxima at D¿ 0, thus SR is found. For small and moderate w¿ 0 the SPA
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Fig. 2. Results of numerical simulations: SPA vs. D from the time-dependent mean response 〈y(t)〉 for the
BA network with N = 10 000 and various connection strength w (see legend for explanation of symbols,
solid lines are guides to the eye).

is enhanced due to coupling, while too large coupling decreases the SPA in compar-
ison with that in an uncoupled TE. For a particular choice of w the SPA becomes a
monotonically decreasing function of D and SR disappears. Thus, qualitative depen-
dence of SR on the coupling strength resembles that in a regular chain of TE with
nearest-neighbour coupling [18]. The array-enhanced SR eAect can be also explained
similarly as in systems on regular lattices [14]. Since all TE are driven by the same
periodic signal, for all i maximum probability that yi(t) = 1 occurs when the periodic
signal is also maximum. Hence, small or moderate coupling is equivalent to providing
additional signal with a noticeable periodic component at the input of each TE. This
increases the probability that the output of all TE is synchronized with the periodic
signal, and enhances SR. In contrast, when w is too large, random Kuctuations at the
output of each TE inKuence strongly the activity of the coupled TE, correlation between
the output of all TE and the periodic signal is diminished, and SR is deteriorated. Be-
sides, the simulations show that for a particular w the system becomes very sensitive to
small periodic signals even in the limit D= 0, which leads to the monotonic decrease
of the SPA with D.

Taking into account the simpli,cations used to derive Eq. (11), the qualitative agree-
ment between the numerical and theoretical curves SPA vs. D is good (Fig. 3). For
small and large w both kinds of curves agree even quantitatively. The most striking
discrepancy occurs for moderate w; nevertheless, the theory predicts correctly ,rst the
enhancement and then the decrease of the SPA with the rise of the coupling strength.
However, the disappearance of SR for a certain moderate w is not predicted. Instead,
optimum w is expected to exist for which the maximum SPA at D¿ 0 reaches supre-
mum value, comparable with the coupling strength for which SR disappears in the
numerical simulations. For the optimum w, the amplitude �0 (10) of the linearized
response to the periodic signal is very high, hence the SPA is strongly increased.
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Fig. 3. Results of the theory from Section 3: SPA vs. D from the time-dependent mean response 〈y(t)〉 for
the BA network with various connection strength w (given by numbers close to the respective curves).

It should be noted that numerical simulations revealed that for A = 0 the system
(1) in fact reached a stationary state, with the value 〈y(t)〉 = const dependent on D
and w, although possibly diAerent from 〈y〉0 from Eq. (7). For A¿ 0 the mean 〈y(t)〉
showed oscillations around the stationary state; the increase of the SPA was related
to the increase of the amplitude of these oscillations. Hence, the theory of Section 3
provides good qualitative explanation of the origin of the array-enhanced SR eAect in
system (1). Numerically, it was also found that the disappearance of SR for particular
w was caused by a very strong response of the system to the periodic signal at D= 0.
The latter eAect is beyond the limits of applicability of the linear response theory, and
can be probably attributed to the jumps of 〈y(t)〉 between diAerent stationary states
under the inKuence of the periodic signal with ,nite amplitude.

Recent investigation of the ferromagnetic transition in the Ising model on the BA
network has shown strong dependence of the critical temperature on the logarithm of
the network size [31,32], which suggests that dynamical phenomena in systems on the
BA network can be sensitive to the number of nodes. However, numerical simulations
in system (1) do not show strong dependence of the SPA on N . In contrast, the curves
SPA vs. D for a given w seem to saturate with rising N (Fig. 4). Such a result is
typical in coupled systems, where it can be usually ascribed to the suppression of
Kuctuations in large systems. This shows that the theory of Section 3 can be used to
describe qualitatively SR in system (1) independently of its size. Hence, further studies
are necessary to ,nd the possible inKuence of the network size on SR in other systems
de,ned on the BA network.

The mean SPA vs. D, evaluated as the average of the SPAi, i = 1; 2; : : : ; N , has
similar properties as the SPA from the mean 〈y(t)〉 (Fig. 5(a)). The distribution of the
individual SPAi is rather broad (Fig. 5(b)); this is in contrast with systems on networks
with more uniform topology, where all coupled stochastic resonators can be treated as
equivalent. Fig. 5(b) shows that in this paper array-enhanced SR was observed in a
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Fig. 4. Results of numerical simulations: SPA vs. D from the time-dependent mean response 〈y(t)〉 for
the BA network with (a) N = 1000 and (b) N = 100 and various connection strength w (see legend for
explanation of symbols, solid lines are guides to the eye).
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Fig. 5. Results of numerical simulations: (a) mean SPA vs. D, averaged over all network nodes (see legend
for explanation of symbols, solid lines are guides to the eye); (b) probability distributions P(SPA) of the
values of SPAi from individual nodes for the BA network with various connection strength w (given by
numbers close to the respective curves); for each w, the distributions were obtained for D corresponding to
the maxima of the respective mean SPA in (a); these distributions in some cases show power-law behaviour
with a non-universal exponent, shown with straight lines (the slope for w = 0:2 is −5:2 ± 0:8, for w = 0:6
it is −2:3 ± 0:5). The results were obtained for the BA network with N = 10 000.

system of coupled TE with strongly non-uniform response to the periodic stimulation.
No particular form of the probability distribution P(SPA) of the SPAi could be found.
It seems that over small intervals this distribution can be approximated by a power law,
with a non-universal scaling exponent dependent on w. However, in other cases the tails
of this distribution decay faster (Fig. 5(b)). Since the SPAi is obviously not directly
proportional to ki, it is not surprising that the power-law connectivity distribution P(k)
is not simply transferred to P(SPA).
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5. Conclusions

SR was investigated in a BA network of coupled TE driven by a common periodic
signal and independent noises. The enhancement of SR due to coupling was observed,
as in systems of coupled stochastic resonators on networks with more uniform topology.
Both the SPA from the mean response of the system to the periodic signal, and the
mean SPA averaged over all TE were signi,cantly increased for the proper coupling
strength. This result shows that SR can be enhanced due to coupling between highly
non-equivalent stochastic units, with a broad distribution of the individual values of
the SPA. No clear dependence of SR on the network size was observed, and the SPA
saturated with the increasing number of TE. Simpli,ed theory based on the mean-,eld
approximation and the linear response assumption provided good qualitative, and in
some cases quantitative, explanation of the numerical results.

This paper extends the investigation of the eAect of coupling on SR to a rapidly
developing area of scale-free networks. Possible applications of the obtained results
include, e.g., the study of SR in social sciences, where the structure of the collabo-
ration networks, and thus of the professional information-spreading channels between
individuals (actors, scientists, etc.) is believed to be scale-free [23], investigation of SR
in the Ising model on the BA network (with potentially strong size dependence), etc.
From a more general point of view, it can be interesting to compare various networks
to ,nd optimum coupling topologies for processing weak periodic signals immersed in
the noisy background via SR. In this context, the BA networks seem to have an impor-
tant property that the distribution of the output SPA from individual units is broad, and
the performance of a certain fraction of units can be highly improved due to proper
coupling.
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