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Abstract

Stochastic resonance is investigated in a generic system with spatiotemporal on–off intermittency: a chain of coupled

logistic maps with a time-dependent control parameter, driven by a spatiotemporal periodic signal. Spatiotemporal

correlation function between the periodic signal and the output signal, reflecting the occurrence of laminar phases and

chaotic bursts, has a maximum as a function of the mean value of the control parameter. For a given period and length

of the periodic signal the height of this maximum can be increased by choosing an optimum coupling strength between

maps. It is argued that the obtained result can be interpreted as an example of noise-free (dynamical) stochastic res-

onance in a system with spatiotemporal intermittency.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic resonance (SR) is a phenomenon occurring in systems driven by a combination of a periodic signal and

noise, in which the strength of a periodic component of a suitably defined output signal is maximum for optimum

nonzero noise intensity [1–3]. Nonlinear systems exhibiting SR comprise, e.g., bistable [4,5], dynamical excitable [6],

and nondynamical threshold-crossing systems [7]. A separate class of systems with SR is formed by chaotic models in

which, instead of external noise, the internal chaotic dynamics can be tuned to maximize the periodic component of

the output signal. This is achieved by varying a control parameter, and the corresponding phenomenon is called

noise-free (dynamical) SR [8–15]. In recent years, SR has been intensively studied in spatially extended stochastic

systems driven by signals periodic in time [16–21] as well as both in time and space [22–25]. In particular, arrays of

coupled elements exhibiting SR have been investigated, in which it has been shown that optimum values of both

coupling and noise exist, such that the maximum strength of the periodic component of the output signal can be

significantly increased in comparison with that from a single uncoupled element. For the optimum noise and coupling

the periodicity of the input signal is best reflected in the dynamics of elements forming the array. For example, in a

chain of bistable elements driven by the signal periodic in time and uniform in space the occupation of the two states

of individual elements oscillates almost periodically in time. This leads to strong enhancement of the periodic

component of the output signal from individual elements, as well as to maximum spatiotemporal synchronization

among the chain elements, and between the chain elements and the input signal [16]. Similarly, in a chain of coupled

threshold elements driven by the signal periodic both in time and space, the output signals from the elements are

highly correlated with the input signal [25]. The above-mentioned effects are known under a general name of array-

enhanced SR.
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In this paper we make a step towards the extension of the investigation of SR in spatially extended systems to the

case of noise-free SR in systems with spatiotemporal chaos. An important step on the route to turbulence in spatially

extended systems is spatiotemporal intermittency [26–31]. By studying noise-free SR in low-dimensional systems it was

shown [11] that the laminar and chaotic phases in temporally intermittent signals can play a role analogous to two states

in generic bistable models for SR [1–5]. It is so since the mean duration of at least one of them, the laminar phase,

depends sensitively on the control parameter. Thus, if the output signal is defined so that it reflects the occurrence of the

two phases in the time series for the system variables, the control parameter can be optimized so that the output signal

reproduces well the effect of the periodic modulation of the system dynamics by the input signal. The purpose of the

present paper is to show that, similarly, it is possible to observe noise-free SR in spatially extended systems with

spatiotemporal intermittency. As an example a model exhibiting spatiotemporal on–off intermittency (OOI) [30] is

considered. In low-dimensional chaotic systems this kind of intermittency is characterized by quiescent laminar phases,

during which the measured variable is almost constant, separated by large chaotic bursts [32–41]. Similarly, spatio-

temporal OOI is characterized by a mixture of quiescent laminar phases and chaotic bursts both in space and time

[30,31]. The model for spatiotemporal OOI is a simple coupled map lattice (CML) which in our case enables analytic

estimation, in the limit of vanishing coupling, of selected quantities characterizing SR. The problem of SR in spatio-

temporal OOI can be interesting from the experimental point of view, since it was suggested that spatiotemporal OOI is

amenable to observation in systems where the breakdown of spatiotemporal synchronized chaos takes place [31]. We

also argue that qualitatively similar results for noise-free SR can be obtained in other systems and for other kinds of

spatiotemporal intermittency.
2. The model

We study a one-dimensional chaotic CML, which is a generic model for spatiotemporal OOI [30] modified by in-

clusion of the input spatiotemporal periodic signal
xðiÞnþ1 ¼ ð1� wÞf xðiÞn ; aðiÞn
� �

þ w
2

f xði�1Þ
n ; aði�1Þ

n

� ��
þ f xðiþ1Þ

n ; aðiþ1Þ
n

� ��
;

aðiÞn ¼ a0½ þ A sinðxn� kiÞ�nðiÞn ; i ¼ 0; 1; . . . ; L� 1;

f ðx; aÞ ¼ axð1� xÞ:

ð1Þ
Here, xðiÞn 2 ð0; 1Þ denotes the state of the lattice unit with spatial coordinate i at time step n, L is the lattice length, w is

the coupling strength, aðiÞn is a time- and space-dependent control parameter, A is the amplitude of the input spatio-

temporal periodic signal with frequency x ¼ 2p=T and wave vector k ¼ 2p=k. The variables nðiÞn 2 ð0; 1Þ denote any

chaotic process constrained to the unit interval. Hence, the system given by Eq. (1) can be treated as a 2L-dimensional

chaotic system with dynamics described by the variables xðiÞn , nðiÞn , i ¼ 0; 1; . . . ; L� 1. It possesses an invariant subspace

xð1Þn ¼ xð2Þn ¼ � � � ¼ xðLÞn ¼ 0, and the variables nðiÞn describe the dynamics within this subspace, while the measured vari-

ables xðiÞn are perpendicular to this subspace. The existence of such invariant subspaces is a necessary condition for the

occurrence of OOI, which appears due to the loss of the transverse stability of such a subspace with the rise of the

control parameter.

For A ¼ 0 a single uncoupled map xnþ1 ¼ a0nnxnð1� xnÞ, which is equivalent to assuming w ¼ 0 in Eq. (1), shows

transition to OOI as a0 is increased above a certain threshold ac whose value depends on the probability distribution of

nn. For a0 > ac chaotic bursts appear which are connected with fast departure of the phase trajectory from the invariant

subspace xn ¼ 0, and laminar phases during which the system evolves in the vicinity of the invariant subspace. This

transition is associated with the loss of the transverse stability of the invariant manifold xn ¼ 0, due to the change of

sign of the transverse Lyapunov exponent k? from negative to positive [32,33]. The latter exponent can be obtained as a

time average of the eigenvalues of the logistic map at the fixed point x ¼ 0 for a given value of nn, i.e., k? ¼ hlnða0nnÞi;
the time average can be replaced by an equivalent average over the probability distribution of nn. If a0 < ac there is

k? < 0 and the variable xn converges to zero for large n, while if a0 > ac there is k? > 0 and the variable xn departs on
average from the invariant manifold. In the latter case, the sequence of laminar phases, during which xn � 0, and large

chaotic bursts appears due to the confining nonlinearity of the logistic map which also provides a mechanism of

reinjection of the variable xn towards the invariant manifold; an example of the time series with OOI is shown in Fig. 1.

By analogy, the CML (1) with 0 < w < 1 exhibits spatiotemporal OOI [30]. The OOI threshold ac 6 e depends both on

the probability distribution of nn and the coupling strength w, and if a > ac each map shows a sequence of laminar

phases and bursts, typical of OOI. Laminar phases and bursts can be also seen in space if the variables xðiÞn ,
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Fig. 1. Time series showing on–off intermittency from a single uncoupled map in Eq. (1) with a0 ¼ ac þ 0:05, A ¼ 0, w ¼ 0; the variable

nn is assumed as random variable with uniform distribution on the interval (0, 1).
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i ¼ 0; 1; . . . ; L� 1 are measured at any fixed time step n. For strong coupling, long-range spatial correlations between

maps appear.

From the above discussion follows that in the case of an uncoupled map the dynamics in the direction transverse to

the invariant subspace xn ¼ 0 is determined by that within the invariant subspace, modelled by the variable nn. Just
above the intermittency threshold the mean duration of laminar phases much exceeds that of the chaotic bursts. The

chaotic process nn has a characteristic time scale beyond which its autocorrelation is negligible. By making a0 � ac
sufficiently small, the typical time between bursts can be made long in comparison with the correlation time of nn. Thus,
just above the intermittency threshold, we are concerned with the time scales between bursts much longer than the

correlation time of nn. Hence, in generic models for low-dimensional OOI based on the parametrically driven logistic

map [32–35] the chaotic process nn with properties described above is approximated as white noise with uniform dis-

tribution on the interval (0, 1). It follows that the qualitative properties of OOI (scaling laws for the probability dis-

tribution of lengths s of laminar phases P ðsÞ / s�3=2 and their mean duration hsi / ða0 � acÞ�1
, etc.) close to the

intermittency threshold obtained from such generic models are universal. In fact, for low-dimensional chaotic systems

with OOI it was verified both via numerical simulations [32] and experimentally [38–41] that the properties of OOI are

independent of the details of the dynamics within the invariant subspace. Deviations from the universal scaling laws are

possible [36,37], but it seems that they require conditions which are seldom fulfilled in real systems with OOI. Similarly,

in the generic model for spatiotemporal OOI the variables nðiÞn are assumed as white noises uncorrelated in space and

time [30]. The qualitative properties of spatiotemporal OOI obtained from this model seem also to be universal, as was

verified via numerical simulations in Ref. [31].

On the basis of the above discussion, following Ref. [30,32–35], henceforth we assume that nðiÞn in the model (1) are

random numbers with uniform distribution on the interval (0,1), uncorrelated in time and space. Although then they

become stochastic variables, they in fact represent a part of the chaotic dynamics of the system. The properties of the

model are quite universal for modelling spatiotemporal OOI. Thus the name noise-free (dynamical) SR for phenomena

connected with the transmission of the periodic signal by the CML (1) is still appropriate.

Before going to numerical simulations and analytic theory, let us discuss qualitatively the possibility of the oc-

currence of SR in the system (1). The mean duration of laminar phases (in time in a single map, and both in time and

space in the CML) decreases with a0 � ac, and the bursts become more frequent. In other words, when the control

parameter increases, the probability of the occurrence of a chaotic burst also increases, while decrease of the control

parameter causes that the probability of the occurrence of a laminar phase increases. Thus, if the control parameter is

modulated periodically with amplitude A > 0, and if the output signal reflects the occurrence of laminar phases and

bursts, there should be an optimum value of a0 close to ac for which the output signal should have a maximum periodic

component. The mechanism of noise-free SR is thus related to the periodic changes in the stability of the invariant

manifold due to the modulation of the control parameter, and to the confining nonlinearity of the logistic map which

enables the occurrence of chaotic bursts. In fact, noise-free SR was observed in systems with temporal OOI [11–14]. In

this paper we show that the CML (1) is also a proper model to observe noise-free SR in a spatially extended system.
3. Methods of analysis

We define the spatiotemporal output signal from the system (1) as yðiÞn ¼ H xðiÞn � xthr
� �

, where H denotes the

Heaviside step function, HðzÞ ¼ 1 if zP 0 and HðzÞ ¼ 0 if z < 0, and xthr � 1 is a threshold which enables distinction

between the laminar phases and bursts. To characterize SR, measures based on the power spectral density of the output

signal are usually applied, e.g., the signal-to-noise ratio [2,4] or signal power amplification [2,5]. However, especially in
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spatially extended systems with periodic input signal [19,22,25], or in systems with aperiodic input signal [42], SR is

often characterized using cross-correlation functions between the input and output signal. Following the latter ten-

dency, as a measure of SR we use the normalized spatiotemporal input–output correlation function
C ¼ hhyðiÞn A sinðxn� kiÞiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhA2 sin2ðxn� kiÞii hhðyðiÞn Þ2ii � hhyðiÞn ii2

h ir ; ð2Þ
where double angular brackets mean averaging over time and space, and in Eq. (2) the fact that the spatiotemporal

average of the input signal is zero was taken into account. The appearance of noise-free SR in the system (1) is

characterized by a maximum of the curve C vs. a0. The spectral measures, like the signal power amplification, reach

maximum value when the output signal power at the frequency of the input signal is maximum, independently of the

phase shift between the input and output signal. In contrast, the correlation function C is maximum when the output

signal is periodic with the same frequency and phase as the input signal. Thus, so that the function C was at a max-

imum, not only the periodicity of the input signal must be best reflected in the dynamics of the CML, but also the

chaotic bursts should appear most probably when the input signal is at a maximum, without a significant shift in

time.

Assuming periodic boundary conditions, the time averages in Eq. (2) evaluated over different lattice units are equal

due to the system symmetry, i.e., hyðiÞn i ¼ hyðjÞn i for any i, j, etc. Thus the function C is equal to the cross-correlation

function between the input and output signal from any lattice unit i
C ¼ CðiÞ ¼ hyðiÞn A sinðxn� kiÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2=2Þ hðyðiÞn Þ2i � hyðiÞn i2

h ir : ð3Þ
In Eq. (3) the angular brackets denote the time average, and the spatiotemporal average of the input signal was

evaluated as A2=2 in the continuous-time approximation, valid for small x. Using Eq. (3) for the numerical evaluation

of the full correlation function (2) requires long simulations. Thus, in practice, C is obtained by first evaluating CðiÞ for

all lattice units, with averages calculated over several periods of the input signal T , and then performing spatial av-

eraging
C ¼ 1

L

XL�1

i¼0

CðiÞ: ð4Þ
4. Theoretical analysis in the limit of vanishing coupling and small signal frequency

For w ! 0 and in the adiabatic limit x ! 0 the function C vs. a0 can be estimated semi-analytically. For this

purpose let us note that under the influence of the slow periodic modulation of the control parameter the probability

that the lattice unit i at time step n exhibits burst, i.e., that yðiÞn ¼ 1, becomes slowly time-dependent; this probability will

be denoted as pðiÞðnÞ. Taking into account that yðiÞn ¼ ðyðiÞn Þ2, using the continuous-time approximation, and replacing the

time averages in Eq. (3) with averages over the (time-dependent) probability distribution for yðiÞn , it is straightforward to

obtain
hyðiÞn A sinðxn� kiÞi ¼ T�1

Z T

0

pðiÞðtÞA sinðxt � kiÞdt;

hðyðiÞn Þ2i ¼ hyðiÞn i ¼ T�1

Z T

0

pðiÞðtÞdt:
ð5Þ
As mentioned in Section 3, due to the system symmetry, the index i can be dropped, and i ¼ 0 can be used in further

calculations without loss of generality.

The idea behind the adiabatic approximation is to obtain the time-dependent probability of burst pðtÞ in the presence

of the periodic signal from the time-independent probability of burst in the absence of the periodic signal. The latter

probability is assumed to be a known function of the control parameter a0. For the slowly varying periodic signal this

can be achieved by replacing in this function the control parameter by its time-dependent value, a0 ! a0 þ A sinxt [4].
For a single map without periodic driving, and with nn being a random number with uniform distribution on (0,1), the

mean duration of laminar phases just above the OOI threshold obeys the scaling law hsða0Þi � e2= 2ða0 � acÞ½ �, with
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ac ¼ e ¼ 2:718 . . . [32]. In contrast, we observed that the mean duration of bursts s0 close to ac is almost independent of

the control parameter and increases only far from the OOI threshold. The time-independent probability of burst for a

given a0 is then p ¼ s0= hsða0Þi þ s0½ �f gHða0 � acÞ, where the Heaviside function emphasizes the fact that bursts appear

only if a0 > ac. Thus in the adiabatic approximation we find the time-dependent probability of burst as
Fig. 2

represe

connec

scales
pðtÞ ¼ s0H a0 þ A sinxt � acð Þ
s0 þ e2= 2 a0 þ A sinxt � acð Þ½ � : ð6Þ
After inserting Eq. (6) into (5) the integrals can be evaluated numerically, and the theoretical curve C vs. a0 can be

obtained by inserting the result into Eq. (3). The curve shows maximum at a0 slightly above ac, as expected. This

supports the numerical finding, presented below, that noise-free SR can appear in the CML (1).

At this point it should be noted that, although there are two distinct phases in the output signals from the lattice

units in the system (1), their mean durations do not depend on the control parameter in a symmetric manner. In

contrast, at the onset of OOI the laminar phases are usually longer and interrupted by shorter chaotic bursts. This

makes the dynamics of the system under study intermediate between that in bistable [1–5] and dynamical excitable [6]

models for SR, the latter being characterized by the output signal in the form of a pulse train, with short pulses of

constant duration.
5. Numerical results and discussion

Numerical simulations of Eq. (1) were performed with periodic boundary conditions, L=k being an integer power of

two, L ¼ 512, A ¼ 0:05, xthr ¼ 0:001, and other parameters varied. Let us first consider the case of signal periodic in time

ðx 6¼ 0Þ and uniform in space ðk ¼ 0Þ. The numerical curves C vs. a0 for various frequencies x and coupling strengths w
are shown in Fig. 2. The occurrence of maxima in these curves shows that noise-free SR in the system appears. For

comparison, in Fig. 2(c) also the theoretical curve C vs. a0 for w ¼ 0 is shown, obtained from Eqs. (3)–(6) with nu-

merically measured value of s0 close to the onset of intermittency. It can be seen that although Eq. (6) is valid only in the

vicinity of the OOI threshold, the theoretical results for uncoupled lattice units and slowly varying periodic signal are

comparable with the numerical ones.

For any fixed w the numerically evaluated correlation function increases with the modulation period T and saturates

in the adiabatic limit of slowly varying signals x ! 0. It should be noted that the adiabatic limit is attained only for very

long modulation periods; e.g., comparing Fig. 2(b) with Fig. 2(c) it can be seen that even for T ¼ 1024 the correlation

function has not saturated yet. This is typical of SR in systems with OOI: also in a model for noise-free SR in temporal

OOI it was observed that the adiabatic limit was attained only for very long periods of the signal modulating the control

parameter [12]. For any x there is an optimum coupling strength w > 0 for which the height of the maximum of the

correlation function reaches its supremum value. The effect of coupling is strong: the height of the maximum of C can

be significantly increased in comparison with that in a single uncoupled map (i.e., in the CML with w ¼ 0). This is an

example of array-enhanced noise-free SR. For optimum w, and for a0 corresponding to the maximum of the respective

(for given w) correlation function, the periodicity of the input signal is best reflected in the output signal by the location
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Fig. 3. Spatiotemporal diagrams for the system (1) with k ¼ 0, T ¼ 1024, and, from left: w ¼ 0:0, a0 ¼ 2:91 (smaller than optimum w,
a0 corresponding to maximum C); w ¼ 0:9, a0 ¼ 2:05 (optimum w, a0 corresponding to maximum C); w ¼ 1:0, a0 ¼ 2:06 (larger than

optimum w, a0 corresponding to maximum C). Black points denote burst phases ðyðiÞn ¼ 1Þ, white points denote laminar phases

ðyðiÞn ¼ 0Þ.
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of laminar phases and bursts in time and space. This is illustrated in Fig. 3 by means of spatiotemporal diagrams. For

the coupling strength w other than optimum the visibility of the input signal in the output one is deteriorated, even

though a0 is at the value corresponding to the maximum of the respective correlation function. This is particularly

noticeable in the limit of small coupling (cf. Fig. 3 (left) for w ¼ 0).

Next, let us consider the case of signal periodic also in space ðk ¼ 2p=k 6¼ 0Þ. If T � k the input signal is, in fact,

periodic only in space and almost constant in time, thus we deal with the case of spatial SR in a system with spatio-

temporal chaos (the phenomenon of spatial SR in stochastic systems was considered in Ref. [22,23]). For any k, x and w
the curves C vs. a0 have maxima, which shows that SR with spatiotemporal signal [25] appears in the CML (1). The

agreement between the numerical and theoretical curves C vs. a0 for w ¼ 0 and small x turns out to be as good as

previously in Fig. 2(c) (not shown). The height of the maximum of the numerical curve C vs. a0 is shown in Fig. 4 as a

function of k and w for different periods T . For any fixed T and k there is an optimum coupling strength w > 0 for which

the height of the maximum of the correlation function reaches its supremum value. This shows that SR with spatio-

temporal signal can be enhanced due to proper coupling, in analogy with what is known in stochastic systems [25,43]. In

Fig. 4 (right) it can be seen that in the adiabatic limit x ! 0 the supremum value of the height of the maximum of C
appears for k ! 0, i.e., for spatially uniform signals. A similar observation was made in stochastic spatially extended

systems, in which SR is usually a weaker effect in the case of spatially nonuniform periodic signals [24]. However, it is

interesting to note that in the nonadiabatic regime (the cases with T ¼ 128 and T ¼ 1024 in Fig. 4 (left and middle)) the

supremum value of the height of the maximum occurs for k > 0, i.e., SR is stronger for spatially nonuniform signals.

This is probably related to long-range spatial and temporal correlations between strongly coupled maps in spatio-

temporal OOI, but this problem requires further investigation. The precise location of the supremum as a function of k
and w turns out to depend on the choice of the burst threshold xthr and is shifted towards larger k with increasing period
Fig. 4. Contour plots of the height of the maximum of the correlation function C1 vs. a0 as a function of w and k for the system (1)

with, from left: T ¼ 128, T ¼ 1024, T ¼ 65536.



Fig. 5. Spatiotemporal diagrams for the system (1) k ¼ 128, and, from left: T ¼ 128, w ¼ 0:1, a0 ¼ 2:24; T ¼ 1024, w ¼ 0:9, a0 ¼ 2:03;

T ¼ 65536, w ¼ 0:6, a0 ¼ 2:03; in all cases w is optimum and a0 corresponds to maximum C for a fixed T .
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T . As in the previous case, for any x and for such w and a0 for which the correlation function C reaches its supremum

value, the periodicity of the input signal is best reflected in the output signal by the location of laminar phases and

bursts in time and space (Fig. 5).
6. Conclusions

In this paper we extended investigation of SR in spatially extended systems to the case of noise-free SR in systems

with spatiotemporal chaos in the form of spatiotemporal OOI. All kinds of SR and related effects, previously observed

in spatially extended stochastic systems, were found also in the chaotic CML (1). They comprise SR with signal periodic

only in time, only in space, and both in time and space, as well as enhancement of SR due to proper coupling between

lattice units. The basic properties of noise-free SR in the system under study resemble those in spatially extended

systems with stochastic dynamics. In particular, for a given length and period of the input signal, the control parameter

and the coupling strength can be chosen in the optimum way so that the periodicity of the input signal is best reflected in

the output signal by the location of the laminar phases and bursts. This leads to maximum correlation between the input

and output signal.

Although our system is discrete both in space and time, it is known that the properties of SR in spatially extended

noise-driven systems with discrete dynamics are in general analogous to those in systems with continuous time [21].

Moreover, for the appearance of SR in our system only intermittent dynamics in space and time with sensitive de-

pendence of the mean duration of laminar and, possibly, chaotic phases on the control parameter is necessary. This is

the case also in other kinds of sustained spatiotemporal intermittency, found, e.g., in numerical simulations and ex-

perimental observations of convection [27,28]. Thus our results also open a way to study noise-free SR in spatially

extended systems with chaotic dynamics other than that typical of CML, and with other kinds of spatiotemporal in-

termittency.
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