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Stochastic resonance with spatiotemporal signal controlled by time delays
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Stochastic resonance in two coupled threshold elements with input periodic signals shifted in phase is
studied. For fixed phase shift and coupling strength the signal-to-noise ratio at the output of each element can
be maximized by introducing proper time delays in the coupling terms which cancel the effect of the phase
shift. This shows that in systems of coupled elements driven by spatiotemporal periodic signals stochastic
resonance can be controlled by delayed coupling.
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Stochastic resonance~SR! is a phenomenon occurring i
systems driven by a combination of a periodic signal a
noise, in which the periodic component of a suitably defin
output signal can be maximized with respect to the no
background for nonzero input noise intensity@1–4#. Typi-
cally, SR is characterized by a maximum of the outp
signal-to-noise ratio~SNR! R appearing for optimum noise
In systems of coupled units, each exhibiting SR, which
driven by identical periodic signals, SR can be usually
hanced due to proper coupling, i.e., the maximum SNR
be increased with respect to that of a single unit@5–9#. In
contrast, the enhancement of SR when the coupled units
driven by different periodic signals@10–16# is a more com-
plex problem. For example, in coupled@12# or spatially ex-
tended@13,14# systems where the coupled units are driven
periodic phase-shifted signals, SR can be enhanced du
coupling, but the increase of the maximum SNR is less p
nounced for a wide range of the coupling strength. In t
paper we show that this undesirable effect of the phase
can be canceled, and the maximum SNR can be increase
introducing proper time delays in the coupling between un
Various methods to enhance SR by means other than var
the noise strength are known to be under the name of c
trolling SR @17–19#. Hence this paper extends the investig
tion of the role of time delays in systems with SR@20–25# to
the case of controlling SR in systems of coupled units driv
by periodic signals shifted in phase.

As a model we use two coupled threshold elements,
noted asi 51,2, with discrete timen50,1,2, . . . , which are
driven by harmonic signals with identical amplitudesA and
frequenciesvs52p/Ts , shifted in phase byDf, 0<Df
<p, and by independent white Gaussian noiseshn

( i ) , i
51,2, whose intensities are given by their varianceD,

yn11
(1) 5Q„Asin~vsn!1hn

(1)1wyn2t2

(2) 2b…,

yn11
(2) 5Q„Asin~vsn1Df!1hn

(2)1wyn2t1

(1) 2b…. ~1!

In the above equationQ denotes the Heaviside step functio
w is the coupling strength,t1 andt2 are time delays in the
coupling term, so that the state of each element influen
that of the opposite element only after certain time, andb is
1063-651X/2003/68~6!/061101~4!/$20.00 68 0611
d
d
y

t

e
-
n

re

y
to
-

s
ift
by
.

ng
n-
-

n

e-

es

the threshold. The output of each elementyn
( i ) at time n is

one if the sum of the input periodic signal, noise, and
contribution from the coupled element exceeds the thresh
b, and zero otherwise. As a measure of SR in each elemei
we take the SNR ~in decibel! defined by R( i )

510log10SP
(i)(vs)/SN

(i)(vs), where the numerator is the heigh
of the peak in the power spectrum density of the time se
yn

( i ) at the frequencyvs , and the denominator is the height o
the noisy background in the power spectrum density clos
vs .

It is known that uncoupled threshold elements withA
,b exhibit SR @26#; moreover, SR and many related ph
nomena in coupled systems can be modeled using cou
threshold elements@12,14,22,23,27#. The model in Eq.~1!
with t15t250 was studied in Ref.@12#, where it was shown
that for 0<Df,p/2, SR in each element can be enhanc
by optimum positive couplingw.0, while for p/2,Df
<p, SR can be enhanced by negative couplingw,0. The
coupling between elements in Eq.~1! is typical for artificial
neural networks, and it is known that threshold elements
be used as qualitative models for SR in biological neuro
@28#. In the latter case time delays can naturally appear in
system due to finite propagation time of action potenti
through synaptic connections.

Numerical simulations of Eq.~1! show that SR in each
element is observed for a wide range ofw, t1 andt2, i.e., the
curvesR( i ) vs D show maxima atD.0 ~Fig. 1!. Figure 1
also shows strong dependence of the SNR ont1 andt2. This
is further illustrated in Fig. 2 forw.0 and in Fig. 3 forw
,0. For fixedw, optimum combination of delays can signifi
cantly increase the maximum SNR compared with the c
without delays. By inspection of Figs. 2 and 3 the optimu
delays can be found ast15Ts2Df/vs , t25Df/vs for w
.0, and t15Ts/22Df/vs , t25Ts/21Df/vs for w,0
~moduloTs).

The above results can be understood qualitatively as
lows ~cf. Refs.@8,12#!. Without coupling, the probability to
have ‘‘one’’ at the output for each element follows the co
responding input periodic signal. Without time delays, ifw
.0 and Df50, the output signal from each element b
comes more periodic, since at the input the contribution fr
the coupled element cooperates with the periodic signal,
hence the SNR increases. Similar cooperation takes p
©2003 The American Physical Society01-1
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FIG. 1. Numerical~symbols! and corresponding theoretical~solid lines! R(1) vs D for A50.1, Ts5128, t11t25Ts , b50.6, and~a!
w50.45, Df50, t150 ~squares; optimum delays!, t15Ts/4 ~triangles!, t15Ts/2 ~dots!; ~b! w50.45, Df5p/2, t150 ~squares!, t1

5Ts/4 ~triangles!, t153Ts/4 ~dots; optimum delays!; ~c! w521.0, Df5p/2, t150 ~squares!, t15Ts/4 ~triangles; optimum delays!, t1

53Ts/4 ~dots!.
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also for w.0 and 0<Df,p/2, though obviously the rise
of the SNR is then smaller. On the other hand, ifw,0 and
Df5p, the SNR can also slightly increase because the co
tribution from the coupled element decreases the probabi
to have undesirable ‘‘one’’ at the output when the period
signal is minimum. The situation is similar also forw,0 and
p/2,Df<p, but, again, the increase of the SNR is smalle
Introducing nonzero delays amounts to replacingDf by ef-
fective phase shiftsDf i , perceived by each element, be
tween the phase of the periodic signal at the input of a giv
element and that at the input of the coupled elementi, shifted
in time by t i , i.e., Df152Df2vst1 , Df25Df2vst2.
It follows from the discussion above that the best enhanc
ment of SR should occur when both effective phase shi
have optimum values: 2kp, k50,61,62, . . . , for w.0
and (2k11)p for w,0. This condition, together with as-
sumption that 0<t1 ,t2<Ts , yields the optimum values of

FIG. 2. ~a! Contour plots of the maximumR(1) ~in decibel! vs t1

andt2 for A50.1, Ts5128, w50.45, Df5p, b50.6, gray scale
on the left;~b!–~f! contour plots of theR(1) ~in decibel! vs D andt1

or t2 for A50.1, Ts5128, w50.45, b50.6, and~b! Df5p, t1

5Ts/2; ~c! Df50, t15Ts ; ~d! Df50, t11t25Ts ; ~e! Df
5p/2, t153Ts/4; ~f! Df5p/2, t11t25Ts ; gray scale for~b!–
~f! on the right.
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t1 andt2 given above, as can be seen from Figs. 2 and
For a theoretical evaluation of theR( i ) we limit ourselves

to the caset11t25Ts ~the optimum delays are located o
this line! and to the adiabatic limit of slow periodic signa
with vs→0. The stochastic processesyn

( i ) , i 51,2, are cy-
clostationary, thus the probability thatyn

( i )51, denoted as
Prob(yn

( i )51), is a periodic function of time with periodTs .
From this probabilityR( i ) can be obtained as@26#

R( i )510 log10

uP1
( i )u2

Prob~yn
( i )51!2Prob2~yn

( i )51!
, ~2!

whereP1
( i )5Ts

21(n50
Ts21Prob(yn

( i )51)exp(2ivsn) is the Fou-
rier coefficient of the periodic in time probability Prob(yn

( i )

51) at frequencyvs , and the bar denotes the time avera
over Ts . To obtain Prob(yn

( i )51) we can write in the Mar-
kovian approximation

Prob~yn11
(1) 51!5Prob~yn11

(1) 51uyn2t2

(2) 51!Prob~yn2t2

(2) 51!

1Prob~yn11
(1) 51uyn2t2

(2) 50!

3@12Prob~yn2t2

(2) 51!#,

FIG. 3. Contour plots of theR(1) ~in decibel! vs D andt1 or t2,
for A50.1, Ts5128, w521.0, b50.6, and ~a! Df5p/2, t1

1t25Ts ; ~b! Df5p, t15Ts/2 ~nonoptimum!, gray scale on the
right.
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Prob~yn112t2

(2) 51!5Prob~yn112t2

(2) 51uyn2t22t1

(1) 51!

3Prob~yn2t22t1

(1) 51!

1Prob~yn112t2

(2) 51uyn2t22t1

(1) 50!

3@12Prob~yn2t22t1

(1) 51!#, ~3!

and a complementary system of equations for Prob(yn11
(2)

51), Prob(yn112t1

(1) 51). The conditional probabilities ca

be evaluated directly from Eq.~1!, e.g.,

Prob~yn112t2

(2) 51uyn2t22t1

(1) 5b!

5
1

2 H 12erfFb2Asin~vsn1Df2!2wdb,1

A2D2 G J ,

~4!

where bP$0,1%, Df25Df2vst2 is the effective phase
shift, anddp,q denotes the Kronecker delta. Fort11t25Ts

there is Prob(yn2t22t1

(1) 51)5Prob(yn
(1)51), and in the adia-

batic limit Prob(yn11
(1) 51)5Prob(yn

(1)51), Prob(yn112t2

(2)

51)5Prob(yn2t2

(2) 51) can be assumed. Under these

sumptions Eq.~3! becomes a closed system of linear equ
tions, and

Prob~yn
(1)51!5

an
(1,1)1~an

(2,1)2an
(1,1)!an

(1,2)

12~an
(2,1)2an

(1,1)!~an
(2,2)2an

(1,2)!
, ~5!

where

an
(k,l )5

1

2 H 12erfFb2Asin~vsn1Df2d l ,2!2wdk,2

A2D2 G J ,

~6!

k,l P$1,2%. R(1) can be obtained by inserting Eq.~5! into Eq.
~2!; similarly, R(2) can be obtained by inserting Prob(yn

(2)

51)—which results from the system of equations comp
mentary to Eq.~3!—into Eq. ~2!. Evaluation of the SNR in
the general caset11t2ÞTs is more difficult since then the
system~3! is not closed.

Theoretical curves SNR vsD show good agreement wit
numerical results, and the sensitivity of the SNR to chan
of t1 and t2 for fixed w is correctly predicted~Fig. 1!. In
particular, by comparing the SNR from Eq.~2! for various
v.

ky

r
,
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combinations of time delays, the highest maximum SNR
observed for w.0 and Df250,62p,64p, . . . , @Fig.
1~a,b!#, which yields optimum values of the delayst15Ts

2Df/vs , t25Df/vs . Also for w,0 SR can be maxi-
mally enhanced ifDf256p,63p,65p, . . . , @Fig. 1~c!#,
which is equivalent to choosing the optimum delayst1

5Ts/22Df/vs , t25Ts/21Df/vs . Hence, the above
theory predicts the same optimum values of the time del
as deduced from the numerical simulations.

In this paper we have shown that in coupled thresh
elements driven by periodic phase-shifted signals for fix
coupling strength SR can be enhanced by introducing o
mum time delays in the coupling terms. The mechanism
this enhancement is the reduction of the effective ph
shifts between periodic signals, perceived by each elem
to the optimum values for which the SNR is maximally i
creased: for positive coupling, the elements are effectiv
driven in phase, while for negative coupling—in antipha
The degree to which the SNR can be increased is thus
ited by the maximum SNR in the two above mention
cases. Anyway, for positive coupling, the maximum SNR c
rise significantly in comparison with the case without dela
depending onDf. It should be pointed out that since w
consider the SNR in individual elements, introduction
time delays not only increases the average performanc
the two coupled units but also sensitivity of each elemen
the periodic signal at its own input. The presented method
the enhancement of SR is a kind of controlling SR in
system of coupled units with periodic signals shifted
phase. Generalization of the results of this paper to the c
of spatially extended systems, e.g., chains of units w
nearest-neighbor coupling driven by plane traveling wa
@14# is straightforward. Thus, introduction of time delays
the coupling can also be a method to control SR in exten
systems with spatiotemporal periodic signals. Time delay
coupling can naturally appear in many systems, e.g., in b
logical neural networks, in electric circuits as delays in tra
mission lines, etc. Our present results show that they can
of large importance for the detection of weak spatiotempo
periodic signals immersed in noisy background by means
SR.
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