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Stochastic resonance with spatiotemporal signal controlled by time delays
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Stochastic resonance in two coupled threshold elements with input periodic signals shifted in phase is
studied. For fixed phase shift and coupling strength the signal-to-noise ratio at the output of each element can
be maximized by introducing proper time delays in the coupling terms which cancel the effect of the phase
shift. This shows that in systems of coupled elements driven by spatiotemporal periodic signals stochastic
resonance can be controlled by delayed coupling.
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Stochastic resonand&R) is a phenomenon occurring in the threshold. The output of each elemgfit at timen is
systems driven by a combination of a periodic signal andyne jf the sum of the input periodic signal, noise, and the
noise, in which the periodic component of a suitably defined:ontribution from the coupled element exceeds the threshold
output signal can be maximized with respect to the noisyh, and zero otherwise. As a measure of SR in each element
background for nonzero input noise intensjty—4]. Typi- we take the SNR (in decibe) defined by R®
cally, SR is characterized by a maximum of the output=10log,S)(w)/S)(w), where the numerator is the height
signal-to-noise rati¢SNR) R appearing for optimum noise. of the peak in the power spectrum density of the time series
In SyStemS of Coupled Units, each eXh|b|t|ng SR, which ar@ﬂ) at the frequencwsl and the denominator is the he|ght of
driven by identical periodic signals, SR can be usually enthe noisy background in the power spectrum density close to
hanced due to proper coupling, i.e., the maximum SNR cag,,.
be increased with respect to that of a single §6it9]. In It is known that uncoupled threshold elements wih
contrast, the enhancement of SR when the coupled units areb exhibit SR[26]; moreover, SR and many related phe-
driven by different periodic signalsdl0—16 is a more com- nomena in coupled systems can be modeled using coupled
plex problem. For example, in coupl¢di2] or spatially ex- threshold element§12,14,22,23,2F The model in Eq(1)
tended 13,14 systems where the coupled units are driven bywith 7, = r,=0 was studied in Ref12], where it was shown
periodic phase-shifted signals, SR can be enhanced due tat for 0<A ¢<w/2, SR in each element can be enhanced
coupling, but the increase of the maximum SNR is less proby optimum positive couplingv>0, while for 7/2<A ¢
nounced for a wide range of the coupling strength. In this<#, SR can be enhanced by negative couplng0. The
paper we show that this undesirable effect of the phase shifoupling between elements in Eq) is typical for artificial
can be canceled, and the maximum SNR can be increased Bgural networks, and it is known that threshold elements can
introducing proper time delays in the coupling between unitspbe used as qualitative models for SR in biological neurons
Various methods to enhance SR by means other than varyir@g. In the latter case time delays can naturally appear in the
the noise strength are known to be under the name of corsystem due to finite propagation time of action potentials
trolling SR[17-19. Hence this paper extends the investiga-through synaptic connections.

tion of the role of time delays in systems with $#0-25 to

Numerical simulations of Eq(l) show that SR in each

the case of controlling SR in systems of coupled units driverelement is observed for a wide rangewfr; andr,, i.e., the

by periodic signals shifted in phase.

curvesR(" vs D show maxima aD>0 (Fig. 1). Figure 1

As a model we use two coupled threshold elements, dealso shows strong dependence of the SNR-pand 7,. This

noted ad =1,2, with discrete timex=0,1,2 . . ., which are

driven by harmonic signals with identical amplitudésand

frequenciesws=27/Tg, shifted in phase byA¢, 0<A¢

<, and by independent white Gaussian noisﬁS, [

=1,2, whose intensities are given by their variaize
y1= O (Asin(wgn) + 7 +wy? ~b),

n—T2

y(2 =0(Asin(wn+Ad)+ 7P +wy) —b). (1)

n—m,

is further illustrated in Fig. 2 fowv>0 and in Fig. 3 forw

<0. For fixedw, optimum combination of delays can signifi-
cantly increase the maximum SNR compared with the case
without delays. By inspection of Figs. 2 and 3 the optimum
delays can be found ag =T~ Ad/wg, To=Ad/ws for w

>0, and 711=T/2—Adlwg, T7,=T¢2+APl/wg for w<0
(moduloTy).

The above results can be understood qualitatively as fol-
lows (cf. Refs.[8,12]). Without coupling, the probability to
have “one” at the output for each element follows the cor-
responding input periodic signal. Without time delayswif

In the above equatio® denotes the Heaviside step function, >0 and A¢$=0, the output signal from each element be-
w is the coupling strengths; and r, are time delays in the comes more periodic, since at the input the contribution from
coupling term, so that the state of each element influencehe coupled element cooperates with the periodic signal, and
that of the opposite element only after certain time, brisl  hence the SNR increases. Similar cooperation takes place
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FIG. 1. Numerical(symbol$ and corresponding theoretic@olid lines R™®) vs D for A=0.1, T;=128, 7, + =T, b=0.6, and(a)
w=0.45, A¢p=0, 7,=0 (squares; optimum delaysr;=Tg/4 (triangles, 7,=TJ/2 (dot9; (b) w=0.45, A¢p==/2, 7,=0 (squarel 7,
=TJ/4 (triangles, 7,=3TJ/4 (dots; optimum delays (c) w=—1.0, A¢p==/2, 7,=0 (squares 7,=TJ/4 (triangles; optimum delaysr;
=3T4/4 (dots.

also forw>0 and O<A ¢<7/2, though obviously the rise 7, andr, given above, as can be seen from Figs. 2 and 3.
of the SNR is then smaller. On the other handy#0 and For a theoretical evaluation of tH" we limit ourselves

A ¢= 1, the SNR can also slightly increase because the corto the caser; + 7,=T (the optimum delays are located on
tribution from the coupled element decreases the probabilityhis line) and to the adiabatic limit of slow periodic signals
to have undesirable “one” at the output when the periodicwith w,—0. The stochastic processy#’, i=1,2, are cy-
signal is minimum. The situation is similar also fox 0 and clostationary, thus the probability th&ﬂ): 1, denoted as
m[2<A¢=, but, again, the increase of the SNR is smaller.prohy()=1), is a periodic function of time with period.
Introducing nonzero delays amounts to replacing by ef-  From this probabilityR(") can be obtained d26]

fective phase shiftd\ ¢;, perceived by each element, be-

tween the phase of the periodic signal at the input of a given

element and that at the input of the coupled elenesttifted A [P

in time by 7;, i.e., A¢1=—Adp— wsr, Adr=Ad— wsry. R=10 log o _ , . @
It follows from the discussion above that the best enhance- Prol{y!)=1)— Prol(y{’=1)

ment of SR should occur when both effective phase shifts

have optimum values: K7, k=0,=1,=2,..., forw>0 () r—1xTe-1 0 _ )

and (X+1)7 for w<0. This condition, together with as- WhereP1’=Tg "2 ° JProbfy,’=1)exp(-iwgn) is the Fou-

sumption that 8, ,m,<T,, yields the optimum values of rier coefficient of the periodic in time probability Protj
=1) at frequencyw,, and the bar denotes the time average

(a) © © over Ts. To obtain Proby’=1) we can write in the Mar-
120¥ 120| w 120] g7 kovian approximation
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FIG. 2. (a) Contour plots of the maximuR™ (in decibe) vs 7, t
andr, for A=0.1, T,;=128,w=0.45,A¢=m, b=0.6, gray scale 8'0 0.4 D0'8 1.2 8'0 0.4 Do.s 12
on the left;(b)—(f) contour plots of th&k® (in decibe) vs D andr;
or 7, for A=0.1, T,=128, w=0.45,b=0.6, and(b) A=, 7; FIG. 3. Contour plots of th&® (in decibe) vs D andr; or 75,
=TJ2; () Ap=0, 71=Tg; (d) Ap=0, 7+7,=Tg; (6) A for A=0.1, T,=128, w=-1.0, b=0.6, and(a) Ap=m/2, 7,
=72, 1,=3T44; (f) A¢p=ml2, 71+ 7,=Tg; gray scale for(b)— +1,=Tg; (b) Ap=m, 7,=T42 (nonoptimum, gray scale on the

(f) on the right. right.
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Pr0dy§1231_72=1)=Proﬁyﬁzﬁl_72:1|y§11—)72—q:1) combinations of time delays, the highest maximum SNR is
observed forw>0 and A¢,=0,*27, =4, ..., [Fig.
xProby(Y _ =1) 1(a,b], which yields optimum values of the delays=T,
2 —A¢lwg, T5=Adlws. Also for w<0 SR can be maxi-
+Proby{?, =1y, _, =0) mally enhanced if\ b, =+ 7, + 3w, + 5, .. ., [Fig. 10)],
) which is equivalent to choosing the optimum delays
X[1=Prolyy”, . =1)], @) =T/2-A¢lw,, 7=TJ2+Adlw,. Hence, the above

) theory predicts the same optimum values of the time delays
and a complementary system of equations for PY( a5 deduced from the numerical simulations.

=1), Probf/?;_, =1). The conditional probabilities can | this paper we have shown that in coupled threshold

be evaluated directly from Edl), e.g., elements driven by periodic phase-shifted signals for fixed
@ 1) coupling strength SR can be enhanced by introducing opti-
Prolyy?s—, =1lys2,,—,,=8) mum time delays in the coupling terms. The mechanism for

shifts between periodic signals, perceived by each element,

to the optimum values for which the SNR is maximally in-

creased: for positive coupling, the elements are effectively
(4) driven in phase, while for negative coupling—in antiphase.
where B{0,1}, Ad,=Ad—w.r, is the effective phase The degree to which the SNF\_’ can be increased is thys lim-
shift, and, , denotes the Kronecker delta. Foy+ r,=Tq ited by the maximum SNR in the two above mentioned

: (1) 1y (1)_ ; - cases. Anyway, for positive coupling, the maximum SNR can
there is ProW”"Z‘Tl 1)=Probly,*=1), and in the adia rise significantly in comparison with the case without delays

: Dani 1) _ _ 1)_ 2 R . .
batic limit Probfy(};=1)=Proby(H=1), Pr0b6’§1+)1—72 depending omA ¢. It should be pointed out that since we
=1)=Prob®§,2372=1) can be assumed. Under these as-consider the SNR in individual elements, introduction of
sumptions Eq(3) becomes a closed system of linear equa-ime delays not only increases the average performance of

1{ '{b—Asin(anJrAqﬁz)—W&ﬁl
> 1—er

"2 /2D?

] this enhancement is the reduction of the effective phase

tions, and the two coupled units but also sensitivity of each element to
the periodic signal at its own input. The presented method of

a4 (V- 4(1D) (12 the enhancement of SR is a kind of controlling SR in a

ProfyM=1)=—1" o) n(l o n(2 ) . az (5  system of coupled units with periodic signals shifted in
1=(ay = ay ) (ay = ay™) phase. Generalization of the results of this paper to the case

where of spatially extended systems, e.g., chains of units with
nearest-neighbor coupling driven by plane traveling waves
e B [14] is straightforward. Thus, introduction of time delays in
agk,l)zll 1—eri{ b=Asin(wgn + A $201 2 ~Wdiz ] , the coupling can also be a method to control SR in extended
2 \J2D? systems with spatiotemporal periodic signals. Time delays in

(6) coupling can naturally appear in many systems, e.g., in bio-
. . : . logical neural networks, in electric circuits as delays in trans-
(1) 2 . '
k’l_e {,1’,2}' R g’;n be obtamed.by mserpng E@ into Fq. mission lines, etc. Our present results show that they can be
(2); similarly, R* can be obtained by inserting Pr of large importance for the detection of weak spatiotemporal

=1)—which results from the system of equations compleherigdic signals immersed in noisy background by means of
mentary to Eq(3)—into Eg. (2). Evaluation of the SNR in  gRr

the general case; + 7,# T is more difficult since then the

system(3) is not closed. A.K. is grateful to Darmstadt University of Technology
Theoretical curves SNR B show good agreement with for financial support and to H. Benner for his hospitality

numerical results, and the sensitivity of the SNR to changesduring a visit in Darmstadt in 2002. The authors are also
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