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Blowout bifurcation and stability of marginal synchronization of chaos

A. Krawiecki and S. Matyjas´kiewicz
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland

~Received 26 April 2001; published 28 August 2001!

Blowout bifurcations are investigated in a symmetrized extension of the replacement method of chaotic
synchronization which consists of coupling chaotic systems via mutually shared variables. The coupled sys-
tems are partly linear with respect to variables that are not shared, and that form orthogonal invariant manifolds
in the composite system. If the coupled systems are identical, marginal~projective! synchronization between
them occurs. Breaking the symmetry by a small variation of the system parameters leads to a new kind of
blowout bifurcation in which the transverse stability is exchanged between the orthogonal invariant manifolds.
This bifurcation is neither supercritical nor subcritical. The latter scenarios are also observed as the parameters
are further varied, leading to on-off intermittency and the appearance of riddled basins of attraction. Examples
using well-known chaotic models are presented.
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I. INTRODUCTION

Systems that possess chaotic attractors contained w
invariant manifolds whose dimension is less than the dim
sion of the system phase space can exhibit blowout bifu
tion @1,2#. This bifurcation consists of the loss of stability o
the above-mentioned attractor with respect to perturbat
transverse to the invariant manifold at a critical value
some bifurcation parameter. The bifurcation paramete
called normal if the dynamics constrained to the invari
manifold is independent on it, and by varying this parame
only the dynamics outside the invariant manifold is mo
fied; otherwise it is called non-normal@2#. There are two
typical blowout scenarios: the supercritical~nonhysteretic!
and subcritical~hysteretic! one@1#. The supercritical scenario
occurs if before the blowout there is no stable attractor of
system apart from that within the invariant manifold. Th
above the blowout a new attractor is formed that enco
passes the attractor within the invariant manifold, and on
intermittency occurs@3–5#: the phase trajectory stays fo
long times close to the invariant manifold~laminar phases!
and occasionally departs from it~bursts!. Before the blow-
out, transient on-off intermittency@6# can be observed: th
phase trajectory approaches in general the invariant m
fold, but initially bursts typical of on-off intermittency can b
seen. The subcritical scenario occurs if before the blow
there is a stable attractor distant from that within the inva
ant manifold. Above the blowout only the former attractor
stable. Before the blowout both attractors are stable, but
basin of the attractor contained within the invariant manifo
is riddled@7–9#, i.e., in any neighborhood of a point belon
ing to this basin there is a positive measure set of po
belonging to the basin of the other, distant attractor. It is a
possible that there are two or more attractors contai
within different ~usually parallel! invariant manifolds of the
system. Before the blowout these attractors are stable
their basins are mutually riddled~intermingled!, while above
the blowout they lose transverse stability and two-state~or
multistate! on-off intermittency is observed@10–12#. The
blowout scenario~supercritical or subcritical! that occurs in a
given system is determined by the nonlinearities that con
1063-651X/2001/64~3!/036216~7!/$20.00 64 0362
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the transverse dynamics in the neighborhood of the invar
manifold @13#.

In this paper connection between the blowout bifurcat
and a particular kind of chaotic synchronization called m
ginal ~or projective! synchronization~MS! @14–19# is stud-
ied ~for a review of chaotic synchronization see Re
@20,21#!. The simplest form of chaotic synchronization
identical synchronization in which trajectories of proper
coupled identical chaotic systems started with different i
tial conditions approach each other after all transients die
@22–24#. In contrast, attractors of marginally synchroniz
systems are shifted or scaled copies of each other; in
paper only the latter situation will be considered~sized MS!.
MS can be achieved using the drive-response replacem
method of synchronization@22,23# if one can choose the re
sponse system as a partly linear subsystem of the drive
tem and force it with a chaotic variable from the drive. In t
case of sized MS the drive system variables form then
invariant manifold in the phase space of the composite s
tem, consisting of the drive and response parts. This kind
synchronization is very sensitive to mismatch between
parameters of the drive and response systems and oc
only if the corresponding parameters are equal. Otherw
the attractor in the above-mentioned invariant manifold c
lose transverse stability via the blowout bifurcation as
drive or response system parameters are even slightly va
@25#. Before the blowout the response system variables de
to zero, above the blowout they diverge to infinity.

Here a symmetrized extension of the drive-response
placement method of synchronization is considered. Coup
chaotic systems are studied that share a common variab
that each system plays simultaneously a role of the drive
response system to its counterpart. These systems are ch
to be partly linear with respect to the variables which are
shared; if the parameters of both systems are equal they s
sized MS. The subspaces built of the variables of the co
ponent systems form mutually orthogonal invariant ma
folds of the composite system. Blowout bifurcations fro
these manifolds which appear under small changes of
system parameters are investigated. A different kind of blo
out bifurcation is observed that consists of the exchange
©2001 The American Physical Society16-1
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A. KRAWIECKI AND S. MATYJAŚKIEWICZ PHYSICAL REVIEW E 64 036216
stability of the attractors in orthogonal invariant manifolds
a chosen parameter of one component system crosse
value of its counterpart in the other system; MS occurs jus
the blowout. This bifurcation is neither supercritical nor su
critical, but both typical blowout scenarios are also obser
as the parameters are further varied. Besides, the exchan
stability of attractors can be also caused by the loss of lin
transverse stability of the invariant manifold rather than
blowout bifurcation. The examples studied numerically a
based on well-known chaotic models, but the observed
fects should be common in systems using the synchron
tion scheme proposed in this paper.

II. FORMULATION OF THE PROBLEM

Let us consider a chaotic systemẋ5f„x(t),p…, wherep is
a control parameter, and the vector of state variablesx is
divided in two parts,x5(u,v), fulfilling the equationsu̇
5fu(u,v), v̇5fv(u,v,p) with f5(fu ,fv). The symmetrized
extension of the drive-response replacement method con
ered in this paper consists of coupling two such systems
a vector of shared variablesu,

v̇15fv~u,v1 ,p1!,

u̇5fu~u,v1 ,v2!, ~1!

v̇25fv~u,v2 ,p2!,

where the variablesv1 , v2 enter the equation foru in the
same way, the functional form of the right-hand side~rhs! of
the equations forv1 , v2 is identical, and the parametersp1 ,
p2 are independent. There are two chaotic subsystems o
~1!: x15(u,v1) and x25(u,v2). This is different from the
situation in the drive-response replacement method in wh
the equation foru does not depend onv2, there is only one
chaotic subsystem~the drive system! x15(u,v1), and the
subsystemv2 ~the response system driven by the variableu)
is not a chaotic subsystem@22,23#. In Eq. ~1! the subsystems
x1 , x2 play simultaneously the role of both drive and r
sponse systems.

Henceforth it is assumed that in Eq.~1! equations forv1 ,
v2 are linear with respect to these variables and invar
under scaling transformationsv1,25Av1,2, A5const. Pro-
vided that p15p25p, in the framework of the drive-
response replacement method the variablesv1 , v2 would be
then marginally synchronized, i.e.,v25av1 with the constant
a dependent on initial conditions, but not on time. It tur
out that the same is true for the symmetrized synchroniza
method~1!. MS is characterized by a zero value of the co
ditional Lyapunov exponent @16# lc
5 limt→`@ uDv(t)u/uDv(0)u#, where the vectorDv5v22v1

obeys the equationD v̇5D̂vfvuv1 ,pDv5fv(u,Dv,p); here,

D̂vfv denotes the Jacobian offv with respect tov, and the last
equality results from the assumed linearity offv with respect
to v.

Under the above-mentioned assumption the two cha
subsystemsx1 , x2 of the system~1! become invariant sub
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systems with attractors contained within orthogonal invari
manifolds v250, v150, respectively. We are interested
the blowout bifurcations from these attractors. The transve
stability of, e.g., the first attractor is determined by the tra
verse Lyapunov exponent @1,2# l'

(1)

5 limt→`@ uw1(t)u/uw1(0)u#, where w1 is a small deviation
normal to the manifoldv250. This deviation obeys the equa

tion ẇ15D̂vfvuv50,p2
w15fv(u,w1 ,p2), whereu is given by

the dynamics of the subsystemx1 with v250. Note that
identical value ofl'

(1) would be obtained in the drive
response replacement method ifx1 andv2 were treated as the
drive and response systems, respectively. The attra
within the manifoldv250 is transversely stable ifl'

(1),0
and unstable ifl'

(1).0. If the parametersp1 or p2 are varied
the exponent can change sign from negative to posit
which corresponds to the loss of transverse stability of
attractor via the blowout bifurcation. Due to the symmetry
Eq. ~1! the same is true for the attractor within the manifo
v150, characterized by the exponentl'

2 .
The kind of blowout bifurcation in Eq.~1! we are inter-

ested in takes place atp15p2, i.e., when the subsystemsx1 ,
x2 are symmetric. Then, in fact,l'

(1)5l'
(2)50 since the

transverse Lyapunov exponents are equal to the conditi
Lyapunov exponent obtained for the drive-response repla
ment method. If the system symmetry is broken and, e.g.p2

is varied from p1 by dp then l'
(1)'(dl'

(1)/dp2)up25p1
dp

changes sign and the transverse stability of the attra
within the manifoldv250 is also changed. The bifurcatio
parameterp2 is, however, non-normal, and by varying it als
the transverse stability of the other attractor contained wit
the orthogonal invariant manifoldv150 is affected. By in-
spection of Eq.~1!, treating in turn the subsystemv1 as the
response andx2 as the drive system, it is clear that the sig
of l'

(2) is changed atp15p2 in the opposite way to that o
l'

(1) . Thus by varyingp2 in the vicinity of p1 the attractor
within one of the two invariant manifolds loses stability v
the blowout bifurcation and that within the other one ga
stability via the inverse blowout bifurcation. The same is tr
if p1 is varied in the vicinity ofp2. Hence, as a result of two
simultaneous blowout bifurcations, the exchange of stabi
of the attractors contained within orthogonal invariant ma
folds takes place. If there are no other stable attractors of
~1! then before and after the blowout the phase trajector
attracted to two different, orthogonal invariant manifolds.
usually, these manifolds are approached via transient on
intermittency. The intermediate state just at the blowou
the one with MS betweenx1 and x2. This exchange-of-
stability bifurcation is neither supercritical nor subcritic
~since there is always only one stable attractor within o
invariant manifold!, and it can occur since the dynamics
the directions perpendicular to the invariant manifolds~de-
scribed byw1 , w2) is linear. It should be noted that blowou
bifurcations that do not follow exactly any of the two typic
scenarios have been also described by other authors@26–30#.

Apart from the above-mentioned scenario, in the syst
~1! supercritical and subcritical blowout bifurcations can a
appear. They take place when the values of the bifurca
6-2
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FIG. 1. ~a! Chaotic attractor of
the Lorenz system withs510, b
58/3, r 528. ~b! x1 vs x2 for the
system ~2! with r 15r 2528; the
linear dependence of these var
ables indicates sized MS.~c! Time
series ofx1 for the system~2! with
r 1528, r 2528.05; the decay of
x1 to zero shows occasional burs
typical of transient on-off inter-
mittency;~d! Time series ofx2 for
r 1 , r 2 as in ~c!.
r-
or
un
he

fu
e

Be
an
at
a
w

er
de

nz

re
re
he
ys

ant,
ity
ni-
e

t bi-
parametersp1 , p2 are not equal at the blowout. The supe
critical scenario occurs when after the bifurcation attract
in both orthogonal invariant manifolds are transversely
stable; a new attractor stuck to one of the manifolds is t
formed and on-off intermittency in the variablesv1 or v2 is
observed. The subcritical scenario occurs if before the bi
cation attractors in both invariant manifolds are transvers
stable; their basins of attraction are then intermingled.
sides, it was also observed that in certain cases the exch
of stability of attractors in orthogonal invariant manifolds
p15p2 can take place via the loss and gain of the line
transverse stability of the manifolds rather than via the blo
out bifurcation. In this case, if the two bifurcation paramet
do not coincide, the distance from the stable manifold
creases exponentially and transient on-off intermittency
not observed.

III. NUMERICAL RESULTS

A. The Lorenz system

As a first example we consider coupling of two Lore
systems@31#

ẋ15s~y12x1!, ẏ15~r 12z!x12y1 ,

ż5x1y11x2y22bz, ~2!

ẋ25s~y22x2!, ẏ25~r 22z!x22y2 ,

where s510, b58/3. In the notation of Sec. IIu5(z),
v1,25(x1,2,y1,2), the two invariant chaotic subsystems a
x1,25(x1,2,y1,2,z), the corresponding invariant manifolds a
v2,150, andr 1,2 are the bifurcation parameters varied in t
vicinity of r 528. For this set of parameters the Lorenz s
tem is chaotic@Fig. 1~a!#. If r 15r 2528 the subsystemsv1
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andv2 show sized MS@Fig. 1~b!# @14–19#. If any of the two
bifurcation parameters is varied, with the other kept const
the blowout bifurcation leading to the exchange of stabil
of attractors contained within the orthogonal invariant ma
folds takes place atr 15r 2. This can be seen in Fig. 2 wher
the transverse Lyapunov exponentl'

(1) is shown for two
cases:r 1528 andr 2 varied, andr 2528 andr 1 varied. This
exponent changes sign atr 15r 2 independently of which a
parameter is changed, which corresponds to the blowou
furcation from the manifoldv250. It can be seen thatl'

(1)

,0 and thus the manifoldv250 is transversely stable ifr 2

,r 1, and l'
(1).0 and thus the manifoldv250 is trans-

versely unstable ifr 2.r 1. An identical plot, with the role of
r 1 andr 2 inverted, can be obtained forl'

(2) , which yields the
transverse stability condition for the manifoldv150 as r 1

FIG. 2. Transverse Lyapunov exponentl'
(1) for the system~2!

vs r 1 with r 2528 ~dots! and vsr 2 with r 1528 ~circles!; s510,
b58/3.
6-3
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FIG. 3. ~a! Chaotic attractor of
the disk dynamo model withm
51.7, g50.5. ~b! x1 vs x2 for the
system ~5! with g150.5, g2

50.44. ~c! Time series ofx1 and
~d! of x2 for g1 , g2 as in ~b!; the
time series in~d! shows on-off in-
termittency.
-

th
ou
th
ta
to
e
em

y
n-

ri-
f

u

he
. In

v-
ich

ypi-

ed

e

nov

mo

ms

m-
s

,r2. Hence atr 15r 2 the stability of the two orthogonal in
variant manifolds is exchanged. Forr 1Þr 2 the transversely
stable attractorsx1Þ0 or x2Þ0 contained within the invari-
ant manifolds turn out to be global attractors of Eq.~2!, i.e.,
there are no other stable attractors in a wide range of
bifurcation parameters. In particular, there are no blow
bifurcations from the two invariant subspaces other than
above-mentioned one. The variables transverse to the s
manifold exhibit transient on-off intermittency and decay
zero @Fig. 1~c!# while the variables contained within th
stable manifold show behavior typical of the Lorenz syst
@Fig. 1~d!#.

The dependence ofl'
(1) on r 2 can be at least qualitativel

understood@25# from the analysis of time-dependent eige
values of the JacobianD̂vfvuv50,r 2

, which are

l6~r 2 ,t !5
1

2
$2~s11!6A~s11!224s@z~ t !2~r 221!#%.

~3!

Since Rel2<Rel1 the dynamics transverse to the inva
ant manifoldv250 is mainly controlled by the real part o
l1 . Thus it can be assessed thatl'

(1)(r 2)'^Rel1(r 2 ,t)&,
where the angular brackets denote the time average. Ass
ing that r 2 is varied in the vicinity ofr 15const bydr 5r 2

2r 1 and keeping in mind thatl'
(1)(r 1)50 the value of

l'
(1)(r 11dr ) can be in turn approximated as

l'
(1)~r 11dr !

'K Re
dl1

dr2
U

r 1
L dr

5^Re$~s11!224s@z~ t !2~r 221!#%21/2s&dr .

~4!
03621
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It follows from Eqs.~3! and ~4! that close to the bifurcation
point r 15r 2 there are temporary chaotic fluctuations of t
transverse Lyapunov exponent around the mean value
particular, at the bifurcation pointl'

(1) is equal to zero not
exactly, but only on average. Also if the exponent is on a
erage negative, its temporary value can be positive wh
leads to transient on-off intermittency shown in Fig. 1~c!.
Such behavior of the transverse Lyapunov exponent is t
cal of the blowout bifurcation@1,8#. Since the time average
in Eq. ~4! is positive the sign of the exponent is determin
by the sign ofdr , hence ifr 2,r 1 there isl'

(1),0 and the
invariant manifoldv250 is stable, in agreement with th
results of numerical simulation~Fig. 2!. A similar analysis
can be performed for the dependence ofl'

(2) on r 1. In con-
trast, neither the dependence ofl'

(1) on r 1 nor l'
(2) on r 2 can

be easily predicted from Eq.~3! since then the variablez(t)
is modified and the dependence of the transverse Lyapu
exponents on this variable is nontrivial.

B. The disk dynamo model

A second example is a set of two coupled disk dyna
models@32#

ẋ15zy12m1x1 , ẏ15~z2g1!x12m1y1 ,

ż512x1y12x2y2 , ~5!

ẋ25zy22m2x2 , ẏ25~z2g2!x22m2y2 ,

where the division of variables among chaotic subsyste
and the invariant manifolds are the same as in Eq.~2!, and
g1,2 andm1,2 are two sets of independent bifurcation para
eters. Forg15g250.5, m15m251.7 the two subsystem
6-4
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BLOWOUT BIFURCATION AND STABILITY OF . . . PHYSICAL REVIEW E 64 036216
are chaotic@the attractor is shown in Fig. 3~a!# and show
sized MS@19#.

Let us first fixm15m251.7 and varyg1 , g2 in the vicin-
ity of 0.5. In Fig. 4 the transverse Lyapunov exponentl'

(1) is
shown for two cases:g150.5 andg2 varied, andg250.5
and g1 varied. Forg15g2 there is a blowout bifurcation
leading to the exchange of stability of invariant manifolds.
the neighborhood of the bifurcation point thev250 manifold
is transversely stable ifg2,g1 and, by symmetry, thev1
50 manifold is transversely stable ifg2.g1. However, in
contrast with the case of the Lorenz system, the invar
manifolds can lose transverse stability also ifg1Þg2. For
example if g150.5 andg2 is decreased below 0.45,l'

(1)

changes sign from negative to positive, which correspond
the loss of transverse stability of the manifoldv250 via the
supercritical blowout bifurcation. Forg2,0.45 both sub-
systemsx1 , x2 are excited but do not show MS@Fig. 3~b!#.
Though the parameterg2 is non-normal, just above the blow
out the chaotic dynamics on the invariant manifold is alm
unchanged@Fig. 3~c!# while the dynamics transverse to th
invariant manifold is typical of on-off intermittency@Fig.
3~d!#. Another supercritical blowout bifurcation from th
manifold v250 can be observed forg250.5 and g1
.0.546, and symmetric bifurcations from the manifoldv1
50 are also possible.

If g15g250.5 are fixed andm1 , m2 are varied in the
vicinity of 1.7 a different bifurcation is observed. Atm2
5m1 the exchange of stability of the invariant manifold
takes place: ifm2.m1 the manifoldv250 is transversely
stable and ifm2,m1 the manifold v150 is transversely
stable. The respective transverse Lyapunov exponents
change signs. In this case, however, the manifolds excha
stability via the loss and gain of linear transverse stabi
rather than via the blowout bifurcations. This can be see
the dynamics transverse to the stable manifold is obse
for m1Þm2: instead of transient on-off intermittency the no
mal variables decay exponentially to zero~Fig. 5!.

The difference between the two above-mention
exchange-of-stability bifurcations can be again qualitativ
understood by looking at the eigenvalues ofD̂vfvuv50,g2 ,m2

FIG. 4. Transverse Lyapunov exponentl'
(1) for the system~5!

vs g1 with g250.5 ~dots! and vs g2 with g150.5 ~circles!; m
51.7.
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l6~g2 ,m2 ,t !52m26Az~ t !@z~ t !2g2# . ~6!

Making the same approximations as in Sec. III A we arrive

l'
(1)~g11dg,m11dm!

'K ]l1

]g U
g1 ,m1

L dg1K ]l1

]m U
g1 ,m1

L dm

52
1

2
^$z~ t !@z~ t !2g1#%21/2z~ t !&dg2dm. ~7!

AssumingdgÞ0 the exponent becomes nonzero on aver
and exhibits temporary fluctuations around its mean value
usually close to the blowout bifurcation. However, assum
dmÞ0 results in the exponential decay or rise of small tra
verse deviationsw1 from the invariant manifold, w1
}exp(2dm t) rather than the transient on-off intermittency

FIG. 5. Time series ofx2 for the system~5! with g15g2

50.5, m151.7, m251.69; exponential decay ofx1 to zero can be
seen.

FIG. 6. Chaotic attractor of the Chen-Ueta system witha535,
b53, c528.
6-5
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A. KRAWIECKI AND S. MATYJAŚKIEWICZ PHYSICAL REVIEW E 64 036216
C. The Chen-Ueta system

As a third example we consider coupling of two syste
recently proposed by Chen and Ueta@33#

ẋ15a1~y12x1!, ẏ15~c2a12z!x11cy1 ,

ż5x1y11x2y22bz, ~8!

ẋ25a2~y22x2!, ẏ25~c2a22z!x21cy2 ,

whereb53, c528, the division of variables between ch
otic subsystems and the invariant manifolds are again
same as in Eqs.~2! and ~5!, anda1 , a2 are bifurcation pa-
rameters varied in the vicinity ofa535. The attractor of Eq
~8! is shown in Fig. 6.

In Fig. 7 the transverse Lyapunov exponentl'
(1) is shown

for two cases:a1535 anda2 varied, anda2535 anda1
varied. Fora15a2 there is again a blowout bifurcation lead
ing to the exchange of stability of invariant manifold
marked by the simultaneous change of sign of the two ex
nents. Apart from this bifurcation, asa1 is varied belowa1
534.9963 witha2 kept constant, a series of subcritical blow
out bifurcations is observed from the manifoldv250 marked

FIG. 7. Transverse Lyapunov exponentl'
(1) for the system~8!

vs a1 with a2535 ~dots! and vsa2 with a1535 ~circles!; b53,
c528.
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by the alternating sign ofl'
(1) . If a1,a2 then in the vicinity

of the exchange-of-stability bifurcation point the manifo
v150 is transversely stable and the manifoldv250 is un-
stable. However, asa1 is decreased, there are intervals of th
parameter value for which both orthogonal invariant ma
folds are transversely stable. Their basins of attraction
then intermingled~Fig. 8!. The dips of the value ofl'

(1)

below zero are not connected with the occurrence of
periodic windows in the system. It seems that the transit
between the transverse stability and instability of the ma
fold v250 is diffuse, with the blowout bifurcation occurrin
over a range of the parametera1; a similar case was reporte
in Ref. @29# where it was argued that such a situation
possible if the bifurcation parameter is non-normal, asa1
here. By symmetry, subcritical blowout bifurcation from th
manifold v150 also occurs ifa1 is kept constant anda2 is
varied.

IV. DISCUSSION AND CONCLUSIONS

In this paper blowout bifurcations were investigated o
curring in a symmetrized extension of the replacem
method of chaotic synchronization in which coupled chao
systems share common variables. These systems are p
linear and thus the composite system possesses attra
contained within orthogonal invariant manifolds. If th
coupled systems are perfectly symmetric they are margin
synchronized. If some system parameters are varied so
the symmetry is broken, a kind of blowout bifurcation
observed in which the attractors in the orthogonal invari
subspaces exchange their transverse stability. This bifu
tion is neither supercritical nor subcritical. In fact, it is
superposition of two simultaneous blowout bifurcations;
one of them an invariant manifold loses transverse stab
and in the other~inverse! one another invariant manifold
gains transverse stability. The transverse stability conditi
for the manifolds are the same as in the drive-response
chronization method. In the latter case, however, the los
stability of the manifold leads to the divergence of the
sponse system variables to infinity@25# since the dynamics
transverse to the invariant manifold is linear and thus
bounded. In contrast, in the case of a symmetrized sync
nvariant
FIG. 8. From left to right: consecutive magnifications of the crossings between intermingled basins of attractors within the i
manifoldsv250 ~black dots! andv150 ~white dots! and the subspacey15y250, z525 for the system~8! with a1534.993,a2535, and
other parameters as in Fig. 6; each grid contains 1003100 points.
6-6
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BLOWOUT BIFURCATION AND STABILITY OF . . . PHYSICAL REVIEW E 64 036216
nization scheme the phase trajectory that escapes from
manifold is captured by the orthogonal, transversely sta
manifold. It is interesting to note that another example o
blowout bifurcation which is neither supercritical nor su
critical, is connected with the occurrence of cycling cha
@28#.

The exchange of linear transverse stability of orthogo
invariant manifolds as well as other supercritical or subcr
cal blowout bifurcations leading to on-off intermittency
riddled basins were also observed in the examined syste
Thus there is a possibility of occurrence of a sequence
different blowout bifurcations as one system paramete
varied: first, e.g., the exchange-of-stability bifurcation c
occur, which does not change the dimension of the attrac
followed by a supercritical bifurcation from the invaria
manifold to a higher-dimensional attractor in the full pha
r-

A

ra

03621
ne
le
a

s

l
-

s.
of
is

r,

space. A sequence of blowout bifurcations is possible si
there is more than one invariant manifold in the system. N
that if more systems were connected in a way propose
Eq. ~1! there would be more invariant manifolds with diffe
ent dimensions. It is interesting to check if sequences
higher-codimension blowout bifurcations from these ma
folds to high-dimensional attractors can then appear@27#.
This is particularly important in view of the observation
on-off intermittency@34,35# and MS@25# in high-power fer-
romagnetic resonance since interactions of many spin-w
pairs@modes corresponding to the component systems of
~1!# can be engaged in the emergence of chaos in this c
Thus the examples studied in this paper can serve as mo
for the analysis of elementary blowout bifurcations whi
can probably appear in more complicated physical syste
exhibiting marginal synchronization.
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