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Blowout bifurcation and stability of marginal synchronization of chaos

A. Krawiecki and S. Matyjagewicz
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland
(Received 26 April 2001; published 28 August 2001

Blowout bifurcations are investigated in a symmetrized extension of the replacement method of chaotic
synchronization which consists of coupling chaotic systems via mutually shared variables. The coupled sys-
tems are partly linear with respect to variables that are not shared, and that form orthogonal invariant manifolds
in the composite system. If the coupled systems are identical, maigireg¢ctive synchronization between
them occurs. Breaking the symmetry by a small variation of the system parameters leads to a new kind of
blowout bifurcation in which the transverse stability is exchanged between the orthogonal invariant manifolds.
This bifurcation is neither supercritical nor subcritical. The latter scenarios are also observed as the parameters
are further varied, leading to on-off intermittency and the appearance of riddled basins of attraction. Examples
using well-known chaotic models are presented.
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[. INTRODUCTION the transverse dynamics in the neighborhood of the invariant
manifold [13].

Systems that possess chaotic attractors contained within In this paper connection between the blowout bifurcation
invariant manifolds whose dimension is less than the dimenand a particular kind of chaotic synchronization called mar-
sion of the system phase space can exhibit blowout bifurcaginal (or projective synchronizationMS) [14-19 is stud-
tion [1,2]. This bifurcation consists of the loss of stability of ied (for a review of chaotic synchronization see Refs.
the above-mentioned attractor with respect to perturbationf20,21). The simplest form of chaotic synchronization is
transverse to the invariant manifold at a critical value ofidentical synchronization in which trajectories of properly
some hifurcation parameter. The bifurcation parameter igoupled identical chaotic systems started with different ini-
called normal if the dynamics constrained to the invarianttial conditions approach each other after all transients die out
manifold is independent on it, and by varying this parametef22—24. In contrast, attractors of marginally synchronized
only the dynamics outside the invariant manifold is modi-systems are shifted or scaled copies of each other; in this
fied; otherwise it is called non-norm@R]. There are two paper only the latter situation will be considerized MS.
typical blowout scenarios: the supercritic@lonhysteretic ~ MS can be achieved using the drive-response replacement
and subcriticalhystereti¢ one[1]. The supercritical scenario method of synchronizatiof22,23 if one can choose the re-
occurs if before the blowout there is no stable attractor of thesponse system as a partly linear subsystem of the drive sys-
system apart from that within the invariant manifold. Thentem and force it with a chaotic variable from the drive. In the
above the blowout a new attractor is formed that encomease of sized MS the drive system variables form then an
passes the attractor within the invariant manifold, and on-ofinvariant manifold in the phase space of the composite sys-
intermittency occurd3-5]: the phase trajectory stays for tem, consisting of the drive and response parts. This kind of
long times close to the invariant manifolthminar phases synchronization is very sensitive to mismatch between the
and occasionally departs from (burstg. Before the blow- parameters of the drive and response systems and occurs
out, transient on-off intermittency6] can be observed: the only if the corresponding parameters are equal. Otherwise,
phase trajectory approaches in general the invariant manthe attractor in the above-mentioned invariant manifold can
fold, but initially bursts typical of on-off intermittency can be lose transverse stability via the blowout bifurcation as the
seen. The subcritical scenario occurs if before the blowoutlrive or response system parameters are even slightly varied
there is a stable attractor distant from that within the invari{25]. Before the blowout the response system variables decay
ant manifold. Above the blowout only the former attractor isto zero, above the blowout they diverge to infinity.
stable. Before the blowout both attractors are stable, but the Here a symmetrized extension of the drive-response re-
basin of the attractor contained within the invariant manifoldplacement method of synchronization is considered. Coupled
is riddled[7-9], i.e., in any neighborhood of a point belong- chaotic systems are studied that share a common variable so
ing to this basin there is a positive measure set of pointshat each system plays simultaneously a role of the drive and
belonging to the basin of the other, distant attractor. It is alssesponse system to its counterpart. These systems are chosen
possible that there are two or more attractors containetb be partly linear with respect to the variables which are not
within different (usually parallel invariant manifolds of the shared; if the parameters of both systems are equal they show
system. Before the blowout these attractors are stable argized MS. The subspaces built of the variables of the com-
their basins are mutually riddlgihtermingled, while above  ponent systems form mutually orthogonal invariant mani-
the blowout they lose transverse stability and two-state folds of the composite system. Blowout bifurcations from
multistate on-off intermittency is observe@il0—12. The these manifolds which appear under small changes of the
blowout scenarigsupercritical or subcriticakhat occursina system parameters are investigated. A different kind of blow-
given system is determined by the nonlinearities that controbut bifurcation is observed that consists of the exchange of
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stability of the attractors in orthogonal invariant manifolds assystems with attractors contained within orthogonal invariant
a chosen parameter of one component system crosses thmnifoldsv,=0, v;=0, respectively. We are interested in
value of its counterpart in the other system; MS occurs just athe blowout bifurcations from these attractors. The transverse
the blowout. This bifurcation is neither supercritical nor sub-stability of, e.g., the first attractor is determined by the trans-
critical, but both typical blowout scenarios are also observedierse Lyapunov exponent  [1,2] A

as the parameters are further varied. Besides, the eXChangeQiimeHWl(t)|/|W1(0)|], wherew; is a small deviation

stability of attractors can be also caused by the loss of Iinea\‘iormal to the manifoldr,=0. This deviation obeys the equa-
transverse stability of the invariant manifold rather than the . 2

blowout bifurcation. The examples studied numerically areli©" Wi=Dufuly=0p,W1=f,(uU,w1,p2), whereu is given by
based on well-known chaotic models, but the observed efthe dynamics of the subsystermy with v,=0. Note that

fects should be common in systems using the synchronizadentical value ofA{") would be obtained in the drive-

tion scheme proposed in this paper. response replacement methodfandv, were treated as the
drive and response systems, respectively. The attractor
Il. FORMULATION OF THE PROBLEM within the manifoldv,=0 is transversely stable i{"<0

and unstable if {Y)>0. If the parameterp; or p, are varied

a control parameter, and the vector of state variakles the_ exponent can change sign from negative t(_)_posmve,
o i B o R which corresponds to the loss of transverse stability of the

divided in two parts,x=(u,v), fulfiling the equationsu  4ractor via the blowout bifurcation. Due to the symmetry of

=fy(u,v), v=f,(u,v,p) with f=(f,,f,). The symmetrized Eq. (1) the same is true for the attractor within the manifold
extension of the drive-response replacement method consi¢; =, characterized by the exponext.

ered in this paper consists of coupling two such systems via™ The kind of blowout bifurcation in Eq(1) we are inter-

Let us consider a chaotic systes f(x(t),p), wherep is

a vector of shared variables ested in takes place gt =p,, i.e., when the subsysters,
L X, are symmetric. Then, in facth(V=\{?=0 since the
V1= Fu(U V1, p), transverse Lyapunov exponents are equal to the conditional

Lyapunov exponent obtained for the drive-response replace-

ment method. If the system symmetry is broken and, pg.,

. is varied fromp; by 8p then \{M=~(d\{Y/dpy)|,,—p, 3P
v2=f(U.V2,P2), changes sign and the transverse stability of the attractor

where the variables;, v, enter the equation fou in the within the manifoldv,=0 is also changed. The bifurcation

same way, the functional form of the right-hand sicles) of ~ Parametep, is, however, non-normal, and by varying it also
the equations fov, , v, is identical, and the parameteps the transverse stability of the other attractor contained within

p, are independent. There are two chaotic subsystems of E 1€ orthogonal invarian_t manifoldlzo is affected. By in-
(1): x,=(u,v4) and x,=(u,v,). This is different from the pection of Eq(1), treat|r)g in turn thg §ubsystenq as the_
situation in the drive-response replacement method in whicﬁeSpg;‘?e and, as the drive system, it is clear that the sign
the equation fou does not depend ow, there is only one 0(1))& is changed ap;=p, in the opposite way to that of
chaotic subsystentthe drive systemx;=(u,v;), and the A1~ . Thus by varyingp, in the vicinity of p, the attractor
subsystenv, (the response system driven by the variaigle  Within one of the two invariant manifolds loses stability via

is not a chaotic subsystef2,23. In Eq. (1) the subsystems the blowout bifurcation and that within the other one gains
X;, X, play simultaneously the role of both drive and re- Stability via the inverse blowout bifurcation. The same is true

sponse systems. if p; is varied in the vicinity ofp,. Hence, as a result of two
Henceforth it is assumed that in Ed) equations for,, ~ Simultaneous blowout bifurcations, the exchange of stability

v, are linear with respect to these variables and invarian®f the attractors contained within orthogonal invariant mani-
under scaling transformations, ,—Av, ,, A=const. Pro- folds takes place. If there are no other stable attractors of Eq.

vided that p,=p,=p, in the framework of the drive- (1) then before and after the blowout the phase trajectory is

response replacement method the varialijesv, would be attracted to two diffgrent, orthogonal invarignt mani_folds. As
then marginally synchronized, i.@,= av, with the constant Usually, these manifolds are approached via transient on-off
a dependent on initial conditions, but not on time. It turnsNtermittency. The intermediate state just at the blowout is
out that the same is true for the symmetrized synchronizatiof’® one with MS betweex, and x,. This exchange-of-
method(1). MS is characterized by a zero value of the Con_Stabl|lty blfurg:atlon is neither supercritical nor subcrltlcal
ditional Lyapunov exponent [16] Ne _(smc_e there is always qnly one stab!e attractor Wlth_ln one
=lim,_.[|Av(t)|/|Av(0)|], where the vectorv=v,—v; invariant r_namfold, and_ it can occur since the dyn_amlcs in
obeys the equatiomAv=D.f I JAv=f,(u,Av,p); here the directions perpendicular to the invariant manifo{ds-
X Vivivy,p VAEE TS ’ scribed byw;, w,) is linear. It should be noted that blowout
D,f, denotes the Jacobian fyfwith respect tos, and the last  bifurcations that do not follow exactly any of the two typical
equality results from the assumed linearityfpivith respect  scenarios have been also described by other autB6rs3Q.
tov. Apart from the above-mentioned scenario, in the system
Under the above-mentioned assumption the two chaoti€l) supercritical and subcritical blowout bifurcations can also
subsystems, x, of the system(1) become invariant sub- appear. They take place when the values of the bifurcation

u="y(u,vy,Vp), (1)
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parameterp,, p, are not equal at the blowout. The super- andv, show sized MSFig. 1(b)] [14—-19. If any of the two
critical scenario occurs when after the bifurcation attractorsifurcation parameters is varied, with the other kept constant,
in both orthogonal invariant manifolds are transversely unthe blowout bifurcation leading to the exchange of stability
stable; a new attractor stuck to one of the manifolds is thewf attractors contained within the orthogonal invariant mani-
formed and on-off intermittency in the variablegs or v, is  folds takes place at;=r,. This can be seen in Fig. 2 where
observed. The subcritical scenario occurs if before the bifurthe transverse Lyapunov expone)nf) is shown for two
cation attractors in both invariant manifolds are transversely:asesr, =28 andr, varied, andr,= 28 andr, varied. This

sides, it was also observed that in certain cases the exchanggrameter is changed, which corresponds to the blowout bi-
of stability of attractors in orthogonal invariant manifolds at f,cation from the manifoldz,=0. It can be seen thast(f)

p1=p can take place via the loss and gain of the linear— g gng thus the manifold,=0 is transversely stable i,
transverse stab|llty c_)f the mgmfolds rather tha_m via the blOW'<rl, and )\(ll)>o and thus the manifold/,=0 is trans-
out bifurcation. In this case, if the two bifurcation parameter

Sversely unstable if ,>r 4. An identical plot, with the role of
do not coincide, the distance from the stable manifold de- Y 2=t oL

. . : . 1, andr, inverted, can be obtained faf?), which yields the
creases exponentially and transient on-off intermittency '%ransverse stability condition for the manifold=0 asr
not observed. !

. NUMERICAL RESULTS 0.08 -
A. The Lorenz system 1 . o’
As a first example we consider coupling of two Lorenz 0.04 - ‘. o *
systemq 31] . T Lo ”
. . T4 0+ - - - — — %D;r: ______
X1=0o(y1—X1), Y1=(r1—2)X1—VY1, ~< o .

Z=X1y1+ X2y, — bz, (2 0044 .-° T..

5(2:0(Y2_X2), yzz(rz_z)xz_h,
-0.08 . T T T . I T !

where 0=10, b=8/3. In the notation of Sec. Iu=(2),

Vi1 o=(X12,Y12), the two invariant chaotic subsystems are 27.9 27.95 r2§ 28.05 28.1
X1 = (X1.2,Y12,2), the corresponding invariant manifolds are 12

V,,=0, andr, , are the bifurcation parameters varied in the  FIG. 2. Transverse Lyapunov exponedt’ for the system2)
vicinity of r=28. For this set of parameters the Lorenz sys-vs r; with r,=28 (dots and vsr, with r;=28 (circles; o=10,
tem is chaotidFig. 1(a)]. If r;=r,=28 the subsystems, b=8/3.
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<r,. Hence atr;=r, the stability of the two orthogonal in- It follows from Egs.(3) and(4) that close to the bifurcation
variant manifolds is exchanged. For#r, the transversely pointr,;=r, there are temporary chaotic fluctuations of the
stable attractorg;#0 or x,# 0 contained within the invari- transverse Lyapunov exponent around the mean value. In
ant manifolds turn out to be global attractors of E2), i.e.,  particular, at the bifurcation poim(f) is equal to zero not
there are no other stable attractors in a wide range of thexactly, but only on average. Also if the exponent is on av-
bifurcation parameters. In particular, there are no blowoukrage negative, its temporary value can be positive which
bifurcations from the two invariant subspaces other than théeads to transient on-off intermittency shown in Figc)l
above-mentioned one. The variables transverse to the stabch behavior of the transverse Lyapunov exponent is typi-
manifold exhibit transient on-off intermittency and decay tocal of the blowout bifurcatiori1,8]. Since the time average
zero [Fig. 1(c)] while the variables contained within the in Eq. (4) is positive the sign of the exponent is determined
stable manifold show behavior typical of the Lorenz systemby the sign ofsr, hence ifr,<r, there is)\(j)<o and the
[Fig. 1(d)]. invariant manifoldv,=0 is stable, in agreement with the
The dependence Qf(f) onr, can be at least qualitatively results of numerical simulatiofFig. 2). A similar analysis
understood 25] from the analysis of time-dependent eigen- can be performed for the dependence\@zf) onr;. In con-
values of the JacobiaB,f,|,—,,. which are trast, neither the dependencexdt’ onr, norx{?) onr, can
be easily predicted from E@3) since then the variablg(t)
is modified and the dependence of the transverse Lyapunov
exponents on this variable is nontrivial.

1
Ne(rg,)=5{= (ot )= V(o +1)?—4alz(t) = (r,— 1]}
)

Since Re\_<Re\ , the dynamics transverse to the invari-
ant manifoldv,=0 is mainly controlled by the real part of A second example is a set of two coupled disk dynamo
A, . Thus it can be assessed thdt)(r,)~(Rex,(r,,t)),  models[32]

where the angular brackets denote the time average. Assum-

B. The disk dynamo model

ing thatr, is varied in the vicinity ofr,=const byér=r, X1=2ZY1— fiXe,  Y1=(Z— y)X1— 11y,
—r4 and keeping in mind thal\(f)(rl)=0 the value of
)\(ll)(r1+ ér) can be in turn approximated as Z=1—X1Y1—XoY (5)
AB(r +6r)
dn Xo=ZYo— Xz, V2= (Z— ¥2)Xa— u2Ya,
%< RGF > or
2 Iy where the division of variables among chaotic subsystems

_ 2 o 1 and the invariant manifolds are the same as in @y.and
=(Re{(0+1)"=40z(t) = (r;= ]}~ o) or. y1,andu, , are two sets of independent bifurcation param-
(4) eters. Fory;=vy,=0.5, u;=pu,=1.7 the two subsystems
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FIG. 4. Transverse Lyapunov exponetﬁ” for the system(5)
vs y; with y,=0.5 (dot9 and vsy, with y;=0.5 (circles; u
=1.7.

FIG. 5. Time series ofx, for the system(5) with y,=7v,
=0.5, u1=1.7, n,=1.69; exponential decay of; to zero can be
seen.

are chaotic[the attractor is shown in Fig.(8] and show
sized MS[19]. A t)=— up+ \VZ(O[2(t) — 73] . G
Let us first fixu,=u,=1.7 and varyy,, 7y, in the vicin- £ (Y22 V)= = pa 2O 2D = 72] )
ity of 0.5. In Fig. 4 the transverse Lyapunov expongftt is . o ) .
shown for two casesy;=0.5 andy, varied, andy,=0.5 Making the same approximations as in Sec. lll A we arrive at

and vy, varied. Forvy,;=1v, there is a blowout bifurcation

Ieadmg to the exchange of stab|!|ty of invariant mamf_olds. In )\(f)( Y1+ 8y, i+ Su)

the neighborhood of the bifurcation point the=0 manifold

is transversely stable if,<vy; and, by symmetry, the/; O\ 4 I\,

=0 manifold is transversely stable #,>y;. However, in ”< dy > 57+< Em > op
contrast with the case of the Lorenz system, the invariant Y1k e

manifolds can lose transverse stability alsoyif# y,. For 1
example if y;=0.5 andy, is decreased below 0.45(" =—E({z(t)[z(t)—yl]}‘l’zz(t)>5y— du. (7)
changes sign from negative to positive, which corresponds to
the loss of transverse stability of the manifalg=0 via the
supercritical blowout bifurcation. For,<0.45 both sub- Assumingdy# 0 the exponent becomes nonzero on average
systemsx,, X, are excited but do not show M%ig. 3(b)]. and exhibits temporary fluctuations around its mean value, as
Though the parameteyr, is non-normal, just above the blow- usually close to the blowout bifurcation. However, assuming
out the chaotic dynamics on the invariant manifold is almostsu # O results in the exponential decay or rise of small trans-
unchangedFig. 3(c)] while the dynamics transverse to the verse deviationsw; from the invariant manifold, w;
invariant manifold is typical of on-off intermittencjfig. xexp(—du t) rather than the transient on-off intermittency.
3(d)]. Another supercritical blowout bifurcation from the
manifold v,=0 can be observed fory,=0.5 and y; 50 -
>0.546, and symmetric bifurcations from the manifold |
=0 are also possible.

If v,=7v%,=0.5 are fixed andu,, u, are varied in the 40~
vicinity of 1.7 a different bifurcation is observed. Ai,
=uq the exchange of stability of the invariant manifolds 30
takes place: ifu,>pu, the manifoldv,=0 is transversely N
stable and ifu,<w; the manifoldv,;=0 is transversely 20-
stable. The respective transverse Lyapunov exponents alsc
change signs. In this case, however, the manifolds exchange
stability via the loss and gain of linear transverse stability =~ 10 -
rather than via the blowout bifurcations. This can be seen if .
the dynamics transverse to the stable manifold is observed
for w1+ wo: instead of transient on-off intermittency the nor-
mal variables decay exponentially to zdFeg. 5).

The difference between the two above-mentioned

exchange-of-stability bifurcations can be again qualitatively |G 6. Chaotic attractor of the Chen-Ueta system with35,
understood by looking at the eigenvaluesﬁqﬁv| b=3, c=28.

v=0.v2.42
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by the alternating sign of (Y. If a;<a, then in the vicinity
of the exchange-of-stability bifurcation point the manifold
v,=0 is transversely stable and the manifelg=0 is un-
stable. However, a&; is decreased, there are intervals of this
parameter value for which both orthogonal invariant mani-
folds are transversely stable. Their basins of attraction are
then intermingled(Fig. 8). The dips of the value of\f)
below zero are not connected with the occurrence of any
periodic windows in the system. It seems that the transition
between the transverse stability and instability of the mani-
fold v,=0 is diffuse, with the blowout bifurcation occurring
over a range of the paramey; a similar case was reported
34.992 35 35.008 in Ref. [29] where it was argued that such a situation is
a,,a; possible if the bifurcation parameter is non-normal,aas

FIG. 7. Transverse Lyapunov exponedd) for the system(s) here. By symmetry, subcritical blowout bifurcation from the

vs a, with a,=35 (dot9 and vsa, with a,=35 (circles; b=3, ~ manifoldv,=0 also occurs i, is kept constant and, is
' ' varied.
c=28.

0.004 -

(0]

-0.004 -

-0.008

C. The Chen-Ueta system IV. DISCUSSION AND CONCLUSIONS
As a third example we consider coupling of two systems

recently proposed by Chen and U¢gs] In this paper blowout bifurcations were investigated oc-

curring in a symmetrized extension of the replacement
method of chaotic synchronization in which coupled chaotic
systems share common variables. These systems are partly
linear and thus the composite system possesses attractors

X;=a;(y1—X1), Yi=(C—a;—2)x;+cy;,

Z=X1y1+Xzy2~ bz, (8) contained within orthogonal invariant manifolds. If the
. . coupled systems are perfectly symmetric they are marginally
Xo=az(Y2—X2), Y2=(C—a;=2)X+Cyy, synchronized. If some system parameters are varied so that

the symmetry is broken, a kind of blowout bifurcation is
whereb=3, c=28, the division of variables between cha- gpserved in which the attractors in the orthogonal invariant
otic subsystems and the invariant manifolds are again thgupspaces exchange their transverse stability. This bifurca-
same as in Eq92) and(5), anda;, a, are bifurcation pa- tjon is neither supercritical nor subcritical. In fact, it is a
rameters varied in the vicinity af=35. The attractor of EQ.  superposition of two simultaneous blowout bifurcations; in
(8) is shown in Fig. 6. one of them an invariant manifold loses transverse stability
In Fig. 7 the transverse Lyapunov exponafit) is shown  and in the otherinversd one another invariant manifold
for two cases:a; =35 anda, varied, anda,=35 anda;  gains transverse stability. The transverse stability conditions
varied. Fora; = a, there is again a blowout bifurcation lead- for the manifolds are the same as in the drive-response syn-
ing to the exchange of stability of invariant manifolds chronization method. In the latter case, however, the loss of
marked by the simultaneous change of sign of the two expostability of the manifold leads to the divergence of the re-
nents. Apart from this bifurcation, &, is varied belowa; sponse system variables to infin{t®5] since the dynamics
=34.9963 witha, kept constant, a series of subcritical blow- transverse to the invariant manifold is linear and thus un-
out bifurcations is observed from the manifalg=0 marked  bounded. In contrast, in the case of a symmetrized synchro-
1 R

Lyrars 1 1

PEr et st o mﬁ:ﬁ%ﬁ%ﬁw
75:-5”]3%5‘?55&3‘!?&1!5 ' LT J. LA =
g B =
06 HERSIEieN g 0.9 -aéf%..ﬁaiﬁi:‘%ﬁﬁz 0,006 |
x 3 R T el
04 ALY | '%&@ﬁgﬁ%&g
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FIG. 8. From left to right: consecutive magnifications of the crossings between intermingled basins of attractors within the invariant
manifoldsv,=0 (black dot$ andv;=0 (white dotg and the subspacg =y,=0, z=25 for the systen{8) with a;=34.993,a,= 35, and
other parameters as in Fig. 6; each grid contains<10@0 points.
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nization scheme the phase trajectory that escapes from ompace. A sequence of blowout bifurcations is possible since
manifold is captured by the orthogonal, transversely stabl¢here is more than one invariant manifold in the system. Note
manifold. It is interesting to note that another example of athat if more systems were connected in a way proposed in
blowout bifurcation which is neither supercritical nor sub- Eq. (1) there would be more invariant manifolds with differ-
critical, is connected with the occurrence of cycling chaosent dimensions. It is interesting to check if sequences of
[28]. higher-codimension blowout bifurcations from these mani-

The exchange of linear transverse stability of orthogonafolds to high-dimensional attractors can then appea.
invariant manifolds as well as other supercritical or subcriti-This is particularly important in view of the observation of
cal blowout bifurcations leading to on-off intermittency or on-off intermittency{ 34,35 and MS[25] in high-power fer-
riddled basins were also observed in the examined systemgmagnetic resonance since interactions of many spin-wave
Thus there is a possibility of occurrence of a sequence opairs|modes corresponding to the component systems of Eq.
different blowout bifurcations as one system parameter i€1)] can be engaged in the emergence of chaos in this case.
varied: first, e.g., the exchange-of-stability bifurcation canThus the examples studied in this paper can serve as models
occur, which does not change the dimension of the attractofpr the analysis of elementary blowout bifurcations which
followed by a supercritical bifurcation from the invariant can probably appear in more complicated physical systems
manifold to a higher-dimensional attractor in the full phaseexhibiting marginal synchronization.
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