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Stochastic multiresonance in a chaotic map with fractal basins of attraction
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Noise-free stochastic resonance in a chaotic kicked spin model at the edge of the attractor merging crisis is
considered. The output signal reflects the occurrence of crisis-induced jumps between the two parts of the
attractor. As the control parameter—the amplitude of the magnetic field pulses—is varied, the signal-to-noise
ratio shows plateaus and multiple maxima, thus stochastic multiresonance is observed. It is shown that the
multiresonance occurs due to a fractal structure of the precritical attractors and their basins. In the adiabatic
approximation theoretical expression for the signal-to-noise ratio is derived, based on the theory of oscillations
in average crisis-induced transient lifetimes. Numerical and theoretical results agree quantitatively just above
the threshold for crisis and qualitatively in a wide range of the control parameter.
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[. INTRODUCTION or the depth of the two potential wells in a symmetric man-
ner. The TC events are then jumps of the particle over the
Stochastic resonan¢&R) [1] is a phenomenon occurring barrier between potential wells, and the output signal is de-
in certain systems driven by a combination of noise and pefined in such a way that every jump triggers a single pulse in
riodic signal, whose essence is that the input noise intensitthe otherwise zero signal. This is in contrast with the above-
can be tuned to maximize the degree of periodicity of a propmentioned first models of SR in bistable systems in which
erly defined output signaffor recent reviews sef2,3]). A the relative depth of the two potential wells is changed by
similar phenomenon, called noise-free SR, occurs in chaotinoise and periodic modulation, and the output signal reflects
periodically driven systems in which, in the absence of exthe position of the particle in the left or right wgR0]. SR in
ternal noise, the internal chaotic dynamics can be changed byC systems is observed if the SNR evaluated from the output
varying the control parameter so that the periodic signal isyise train shows a maximum as a function of the input noise
best transmitte@4—15]. In systems with SR the power spec- jntensity.
trum density(PSD of the output signal consists of peaks at  The aim of the present paper is to investigate noise-free

the multiples of periodic forcing frequency superimposed Ongyqchastic multiresonance in a TC system. For this purpose
a broadband noise background. The best transmission of th

periodic signal is thus defined as the maximization of the € study a chaotic map that models the dynamics of a
output signal-to-noise rati®GNR), i.e., the ratio of the height damped classical magnetic momespir) driven by pulses

e . . f magnetic field in the presence of anisotrg@9—34. At a
of the peak at the periodic forcing frequency to the height Ofgertain value of the amplitude of such pulses the attractor

the noise background. Usually only one maximum of the . i35 qi £ th . tor b
SNR is observed as the input noise intensity or the control €r9'N9 crisis[35] occurs and jumps of the spin vector be-

parameter in a chaotic system is varied. However, in Ref'gween.two parts of the postcriFicaI _chaot.ic attractor corre-
[16] a second small maximum for small noise intensity wasSPONding to two equivalent spin orientations become pos-
observed. Recently it has been also found that in certaifit!e[29,30. When the amplitude of pulses is modulated by
systems many or even an infinite number of maxima of thexdditional periodic signal the map can be described as a
output SNR can appear. This phenomenon is called stochaBistable dynamical TC system in which the jumps between
tic multiresonanc¢17,18. the two parts of the attractor are TC events. SR induced by
Although the first studies of SR and noise-free SR wereexternal noise was studied by us in such a model in Ref.
performed in dynamical systems with bistable potentiall34]. Here we are interested in the case without noise. In
[4,5,11,12,16,19-721SR is now equally well investigated in contrast, the role of noise is played by deterministic chaos,
dynamical and nondynamical threshold-cross{ii€) sys- and instead of varying the noise intensity we change the
tems[9,10,13,22-2B As TC systems we understand sys- system control parameter, i.e., the mean value of the ampli-
tems with output in the form of pulses emitted each timetude of pulses. Our numerical simulations show that the SNR
when a certain threshold is crossed. E.g., the membrane pdepends on the control parameter in a very complicated way,
tential of a neuron under the influence of external noise ande., one observes multiple strong maxirtr@oise-free sto-
periodic stimulus can increase rapidly above the thresholdhastic multiresonangend various small plateaus and local
voltage so that a single pulse of neural activity is emittedmaxima. We show that this phenomenon is a direct conse-
after which the membrane potential is reset to the restingjuence of the fractal structure of the precritical attractors and
value [22,28. Dynamical systems with symmetric bistable their basins of attraction leading to oscillations in the average
potential can be also described as TC systems if the noigime between jumps between the two parts of the postcritical
and periodic signal change the height of the potential barrierattractor[32,33. Our theoretical results, based on the model
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of such fractal structures, describe qualitatively the results of
numerical simulations.

Il. MODEL

We consider a classical magnetic moméspin S, |5 «
=S in the uniaxial anisotropy field and external transverse
magnetic fieldB(t) parallel to thex axis [29—34. The sys-
tem is described by the Hamiltonian

H=—A(S,)?-B(1)S, (1)

where A>0 is the anisotropy constant. The motion of the
spin is determined by the Landau-Lifschitz equation with
damping term

FIG. 1. Attractor of the spin mag6) with S=1, A=1, 7
=2, A=0.1054942 B.=1, andB=1.0002>B..

ds N Tht_e classicallmode_l described by E¢B—(6) is. related to .
asz Beff—§S><(S>< Beif), ) expenmentally |nvest|gate_d qua_ntum magnet|c systems, if
one considers the properties of isolated spins of large mag-

netic molecules such as Np©O,,(CH3zCOO),5 where the an-
Ij1sotropy is induced by molecule symmetfB6] or the
nanometric-size single domain ferromagnetic parti¢es
perparamagnetsised for the observation of the macroscopic

o guantum tunneling phenomen@87]. The quantum version
B(t)= BE s(t—nr), (3) of this model(sometimes called the kicked top modil an

n=1 interesting system from the point of view of quantum chaos;

] . ] corresponding quasienergy statistics, level dynamics, and de-
and using the fact th&is constant, Eq(2) can be integrated oherence effects have been studied in detail in HEB-
in two steps. In the time between pulses of the magnetic fieldq)_ 1t should also be mentioned that SR in a ferrite-garnet
the spin performs damped precession and approaches the gy with uniaxial anisotropy, connected with magnetization
isotropy axis. During the action of the magnetic field theynneling due to thermal fiuctuations or external noise was
anisotropy can be neglected and the spin performs precessiggied experimentally in Ref§41,42, but in the presence

around thex axis tilting towards it at the same time. The of sinusoidal magnetic field rather than field kicks with
result of the integration can be written as a superposition ofyodylated amplitude.

whereBgs=—dH/dS is the effective magnetic field and
>0 is the damping parameter. Taking the transverse field i

the form of periodics pulses with amplitud® and periodr,

two two-dimensional mapd, and Tg. The mapT, de- The map(6) exhibits a rich variety of periodic and chaotic
scribes the time evolution between kicks, dynamics. Let us tak® as the control parameter and con-
P b+A sider the map(6) with parametersS=1, 7=2m, \
A = , (4 =0.1054942 andA=1. For B slightly belowB.=1 two
S, WS, symmetric chaotic attractors of E@) corresponding to two

spin orientationgspin “up,” S,>0 and “down,” S,<0) in
the absence of the external field exj&9,30. For B>B,
these two attractors merge as a result of the attractor merging
Ad=(1MINF(1+S/SHT1+S/ (W —2ASH crisis [31-33 and a new postcritical attractdFig. 1) con-
$=(1M)In{( S (WS)I} T sisting of two symmetric parts is born. The system switches
W=[c2+(S,/9)2(1-c))] 2 c=exp22AS). The ma chaotically between these two parts and the mean time be-
: (S/9)% )] p( ) P tween switcheg7) as a function of the control paramet®r

wheredg is the angle between theaxis and the projection of
the spin on the-y plane and

Tg written in the variables %, ,®), where® is the angle ; -
between they axis and the projection of the spin on theg ~ 0P€YS @ power scaling la35,43 (7(B))><(B—B.)"”,

plane, describes the motion of the spin during the action ofVh€ré #»=>0 is a critical exponent. However, there are also
the field pulses and has a form considerable oscillations superimposed on this t{&33.
They are connected with the fractal structure of precritical
q)}

d-B attractors and their basins of attraction. In general, for vari-
Sk distinguished. If the basins of attraction do not have a self-

Ts S—25(S-S)D2U]’ (5  ous parameter values, two kinds of such oscillations can be
where D=exp(-\B) and U=[S+ S+ D2(S—S,)]"*. The similar (fracta) structure the so-called normal oscillations

complete dynamics is a superposition of both maps are observed, induced by consecutive branches of the fractal
attractor creeping, with increasing control parameter, into the
Shi1=TalTaAlSy]], (6) nonfractal basin of attraction of another attradt®®], which

results in the modulation of the slope ¢f(B)). When the
where §, is a spin vector just after the action of tmth  basins of attraction are fractal sets anomalous oscillations
magnetic field pulse. appear, including sections whete(B)) increases against
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FIG. 2. Time series, vs n of the spin mag6) with parameters
as in Fig. 1 and3;=6Xx10*, Ty=1024, B,=0.9999. Also a pe-
riodic signal proportional t®,coswgn is shown. It can be seen that
the jumps between the stat8g,<0 andS, ,>0 occur most prob-
ably when the periodic signal is at a maximum.

log,g<t>

the general trendi32]. Typically their magnitude is larger
than that of normal oscillations.

. . . 1 1 1 1 1 1 1
In order to observe noise-free SR we investigate the sys- 1 1001 1.002 1.003 1.004 1.005 1.006

tem (2) driven by the magnetic field pulsé3) whose ampli- B
tude B is no longer constant but periodically modulated in

time with frequencyw, [we denote this time-dependent am-

FIG. 3. (@) The SNR vsB,+ B; for the signaly, from the spin

. ) . . ~ . map (6) with parameters as in Fig. 1 al{=6x10"4, T,=1024.

plitude asB(t)]. The period of this modulation 2/ wo IS (b) The mean time between jumps between symmetric parts of the

assumed as an integer multiple ©f The resulting dynamics attractor{7) vs B for the spin mag6) with parameters as in Fig. 1;

can be again rewritten in the form of a mé&§), but with anomalous oscillations can be seen. The labeled segmefaisand

periodically modulated control parameter (b) correspond to each other according to the heuristic rules dis-
cussed in Appendix Asegment 2 in(b) is a composite segment
consisting of a rising and flat part

B(n)=By+ B;coswgn, (7)
IIl. NUMERICAL SIMULATIONS: AN EXAMPLE OF
NOISE-FREE STOCHASTIC MULTIRESONANCE

where wo=w,r is a dimensionless frequency. In the

continuous-time dynamics, Eqil)—(3), due to the periodic In this section numerical results concerning SR in the sys-

character of the magnetic field pulsé3) with period 7, tem (6) are p_rese_nted. We define the output signal so that
peaks in the power spectrum of the system at the multiples d?ulses of unit height c_qrrespond to the Jumps betyveen the
two parts of the postcritical attractoy,=1 if at iterationn

the frequency /7 should appear. Besides, peaks shoul he jump occurred anyl, =0 otherwise. Due to the symme-
also appear at the multiples of the modulation frequency o ry of the system withnrespect to the plase=0 we can
the amplitude of the field kicke,. In the discrete-time sys- assume that the jump occurs whsp,_; andS, , have op-
tem(6) the highest observable frequency corresponds to haffosite signs. As a measure of noise-free SR we take the
of the frequency of the field kicks, so only the latter peaks, apytput SNR as a function d8,. The output PSDS(w) is

the multiples ofw,, will be observed. Thus in the discrete- cajculated from 2° points of the signay, and the SNR is
time system SR can be observed at the frequesicynd is  eyaluated as

connected with the external modulati6r.

Employing the analogy to dynamical systems with SNR=Sp(wq)/Sy(wp), (8)
bistable potential, the two symmetric parts of the postcritical
attractor in our model correspond to two potential wells, andvhereSy(wy) is the noise background in the vicinity afy
the parameteB(n)— B, controls the height of the potential andSp(wg)=S(w) — Sy(wo) is the height of the peak in the
barrier. Thus, our system can be described as a dynamicRISD atw= wq. It should be remembered that due to finite
TC system and the spin jumps between the two parts of thécequency resolutiom\f (here,Af=2719 the value of the
postcritical attractor can be treated as TC evegB4. An SNR evaluated from numerical simulations as in E).is
example of the time series from the m@ with the control  increased by the factor Af =21°in comparison with its true
parametel(7) is shown in Fig. 2. To observe the noise-free value[20]. This is taken into account when comparing the
SR the SNR at the frequenay, is studied as a function of numerical and theoretical results in Secs. IV-VI.

the control parameteBy,. Due to the complex, non- In Fig. 3@ a typical curve SNR v8, is shown for a
monotonic dependence 6f) on B a corresponding complex slowly varying input signal with period =2/ wy=1024
dependence of the SNR @y, is expected. and amplitudeB;=6x10%. Jumps between symmetric
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IV. THEORY FOR THE SIGNAL-TO-NOISE RATIO
A. General formulation

In this section we derive an approximate analytic formula
for the SNR vsB,. It is based on an expression for the SNR
in nondynamical discrete-time TC systefi#5,26, which,
however, can be also applied to dynamical TC systems under
the assumption that individual TC events are independent. In
our system this assumption means that the average time be-
O 00T 1002 1003 1004 1005 1008 tween jumps is long enough so that the correlations between
By+B, them are lost, which is true foBy+B; close toB.. The
expression for the SNR is obtained using the periodic in time
FIG. 4. The SNR v8,+ B, for the signaly,, from the spin map  probability of the TC evenp(n). In our case, this probabil-
(6) with parameters as in Fig. 1 and wiBy=1.5x10"%, for T, jty can be easily evaluated in the adiabatic limg—0 and
=8 (dotted curvg T,=16 (dashed curye and T,=32 (solid B;<1 in which p(n)=Pr(y,=1)=1/7(Bo+ B;COSwen))
curve. =1/7(n)); i.e., it is given by the inverse of the mean time
between jumps for the actual value of the control parameter
parts of the postcritical attractor, and thus a nonzero SNRB(n) (7). Hence the following theory is applicable only in
are observed foB,>B.— B;=0.9994. Within the range of the limit of small values 0B,+B;—B., B; and w.
B, shown in Fig. 3a) the curve exhibits three strong  According to Refs[25,26 the SNR may be evaluated as
maxima, so the noise-free stochastic multiresonance is
found. These maxima are accompanied by numerous tiny
To-1

Ic|>cal maxima and p!ateaue‘lat narrow segments on the where P1=T612 o Lp(n)exp(iwgn) is the first Fourier

slopes of strong maxima . n : . s

In Ei . . coefficient ofp(n), M is the number of periods within the
n Fig. 3(b) the corresponding curvér) vs B is shown . . :

. . . . . time interval from which the data were storéd our case,
(without modulation. A_ closer inspection of F|gs.(a) and MT,=21%, and the bar denotes the time average ovgr
3(b) reveals that certain segmeritbe labeled ongsin the The approximate equality holds fa(n)<1, which is the
two curves can be related to each other. The plateaus a se in our system close to criig. Fig. Ab)]. In Eq.(9) the
falling segments in Fig. @) turn out to be connected with g\R s evaluated taking into account the finite frequency
the rising segments of oscillations in FigibB (labeled by regqjutionAf=1/MT, [20] so it can be directly compared to
numbers, and the rising segments and maxima in Fig)3-  the SNR obtained numerically. Hence in order to evaluate
with falling segmgnts Of oscﬂlaﬂons n Fig (19 (Iapeled by. the SNR in the systert6) we need to knovﬁand P, which
letters. In Appendix A simple heuristic rules are given, valid can be obtained analytically from a simple model of the at-
for Bo+ B close toB., which relate the corresponding seg- {actor merging crisis.
ments in Figs. @) and 3b). These rules enable us to predict
the location of certain segments in the curves SNRBys
solely on the basis of the measurementg ©f vs B.

The relationship between the curves SNRBgsand(7) _ o
vs B indicates that the occurrence of noise-free stochastic [N the spin mapi6) as the control paramet8&is increased
multiresonance and complicated dependence of the SNR d#Pove B¢ the two precritical attractorss,<0 and S,>0
the control parameter in our model is a result of the fractaerge and become chaotic saddles, while their former basins
structure of precritical attractors and their basins of attrac®f attraction become pseudobasiiisr a more detailed dis-
tion; this conclusion is further confirmed by the theoreticalUSSion of thesehconcepés seef Rm’ﬂl)' Due to the sys-
results of Sec. IV. The infinite self-similar structure of these!®™ Symmetry the pseudobasins are also symmetric, so it is

fractals suggests that the curve SNRBgsis a fractal curve e’?"”gh to consider qnly a single chaotl_c saddle creeping,
as well and its fine structure can be revealed by measure\:'\-”th the increase oB, into the pseudobasin of th? opposite
Saddle. Henceforth we assume that above the crisis point the

ments of the SNR with higher and higher accuracy. ThiSgy cyre and measure of chaotic saddles and pseudobasins is

distinguishes noise-free stochastic multiresonance in our Sysqenical with that of precritical attractors and their basins at
tem from stochastic multiresonance induced by extemajhe crisis point, respectively. The only effect of the increase
noise, since in the latter case the curves SNR vs noise intelyg modulation of the control parameter is the relative shift

SNR

SNR=MT|P4|%/(p—p?)=MT,|P4|%p, (9)

B. Evaluation of the signal-to-noise ratio in a model of fractal
attractor and fractal basin of attraction.

sity are smootf17,18. and modulation of the position of the chaotic saddle with
In Fig. 4 the curves SNR vB, are shown forB;=1.5 respect to the pseudobasin.
X107° and different driving frequenciesy,. This proves In Refs.[32,33 self-similar models of the chaotic saddle

that noise-free stochastic multiresonance occurs also for fagihd the pseudobasin have been introduced in order to de-
varying periodic signals with relatively large amplitude. As scribe the nonsmooth and nonmonotonic dependen¢e)of
usually, the decrease of the SNR is observed with increasingn B. Here we implement the model to the case of a periodi-
wg, in particular for larger values @, cally modulated control parameter denoted &%) =qq
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p(n)={Zu(n), (12)

P where( is a proportionality constant. To firf(n) let us first
g consider the overlap of thieth parabolic segment, with a
half-planey>c. The measure of this overlap in the time step

n, i.e., the length of the parabola inside the half-plane mul-

tiplied by the relative invariant measure densﬁy will be
denoted asu,[c,n]. On the basis of Eq(12) p(n) can be
written as a sum of contributions from the individual para-

aK—l aK
o { - bolic segments of the chaotic saddle creeping into the stripes
/—\ ;'K(l_y) of the pseudobasin
yK‘l(l_y) K+1L+1
: Y-y 0=

where

ﬂL_lb

Blp J| me——— } B be
BLﬂb

FIG. 5. The model of a fractal chaotic saddl&)) entering the
pseudobasin of attraction of the other saddl®. ()= [(1— 5I,L+1)(,8|b_,8|bE)vn]_Mk[ﬁlb:n]-
(14
+g,coswgn. Following Refs[32,33 we assume the chaotic _
saddleA as a family ofk + 2 parabolic segmentd, (Fig. 5)  The time average and the first Fourier coefficiel; of the
moving periodically due to a time-dependent control paramjump probability can also be expressed as double sums

eter K+1L+1 K+1L+1

K+l K+l p=C(> X . Pi=(X X M1, (195
A= kU A= kU {(x,y):y k=0 1=0 k=0 =0
=0 =0

5 . where uy andM,, ; are the time averages and the first Fou-
=—X"= (1= dkk+1)aa“+qotaicoswon},  (10)  rier coefficients of the functiong(n) [Eq. (14)], respec-

. . tively. Using the analytic expressions for the time average
wherea and o« are model parameters. The invariant measure, 4 the first Fourier coefficient of the function [ c,n],

is uniformly distributed along the parabolic segments and its . . . =
lative density on the segmen is assumed A= (1 given in Appendix B, the coefficientg,,; and M, ; can be
re y 9 i also evaluated analytically in the limit of smajh+q;. In-

— )y for O<k=K and uy,1;=9""", where 0<y<1is  serting Eq.(15) into Eq. (9) it is possible to evaluate the
another model parameter. The complicated structure of thgnNR vsB, numerically forB, arbitrarily close toB, with
pseudobasin is in turn approximated as a familyLof2  the accuracy depending on the number of parabolic segments
stripes; accumulating at the ling=0 that touches the top and stripes included in the model. As usually, in the case of
of the uppermost paraboky ., for go=0;=0 (Fig. 5 adiabatic approximation in TC systems the resulting SNR
does not depend on the periodic forcing frequef2y,25

L+1 L+1 -
B= U B= U {(x,y):(1- 8 .+ 1)(B8'b—B'bg)<y=<p'D}, (cf. Appendix B.
1=0 1=0
(11 C. The origin of multiple maxima
whereB, b, andbg are again model parameters. Before comparing the theoretical and numerical results in

With increasingq, the parabolic segments are shifted upt.he next _sect|on we _disc.uss qualitatively the origin Qf mul-
and enter the pseudobasin oscillating simultaneously undéfPlé maxima appearing in the plots of the SNR By like
the influence of the periodic modulation. If we takeandL ~ those in Fig. 8). Using the just-defined model, let us con-
large enough we get a good approximation of the real syssider one parabolic segmenmof{(x,y):y= —x*+0p
tem, although in principle one should take L—oo. All +Q,Coswgn}, q,>0, with the densityuy=1 creeping into a
model parameters are determined by the fractal structure afingle stripe of the pseudobadifiy={(x,y):0<y=<b} asqo
the saddles and pseudobasins of the system under study aindreases. This means we pit-1=L+1=0. The top of
can be assessed from magnified plots of the collision regiothe parabola can overlap with the stri@nd thus the SNR is
between the chaotic saddles and pseudobafsingetails see nonzerg if qo>—q;. The plots of the SNR vgy+q; ob-
[32,33). Besides, the ratia/b can be treated as a true fitting tained from Eq.(9) using Eq.(12) for differentb are shown
parameter and chosen so as to obtain the best agreeméntFig. 6(@), and the corresponding plotd Ty|P4|? vs qq
between the theoretical and numerical valueg¢0f +q, in Fig. 6(b) and(7) vs q in Fig. 6(c).

The time-dependent probability of a jump between the If the width of the stripe is very largdy>2q,, the mean
symmetric parts of the attract@(n) is proportional to the time (7) decreases monotonically with while |P,|?> shows
time-dependent measuge(n) of the overlap of the saddle a smooth maximum. As a result, the SNR exhibits a smooth
with the pseudobasin of the other sad(é&,43, maximum atq, slightly above zerdpoint A in Fig. 6. This

026215-5



S. MATYJASKIEWICZ et al. PHYSICAL REVIEW E 63 026215

600 Qo+ first stripe would enter the next one with increasimgand
] I ] . .
2q, the SNR would increase again. The above example shows
500 E— @ ] the connection between the shape of the curve SNBys
400 - with multiple maxima, observed in Sec. lll, and the oscilla-

o tions of the mean time between jumps between the two parts

Z 300 - L. . .

o of the postcritical attractofr) (for a more detailed discus-
200 - sion see Appendix A However, it should be also observed
100 that the value of the numerator rather than the denominator

in Eq. (9) determines the exact shape of the SNR curve. In
0 general the SNR results from the superposition of many ba-
30 | | | | sic events like in examples above occurring simultaneously
»s A on djfferent scales. This yields a complex structure like, e.g.,
/' \“ (b) in Fig. 3a).
o 20F 1 -
I_" ’:' ‘.\ V. COMPARISON BETWEEN NUMERICAL AND
= tro \ 5, T THEORETICAL RESULTS
1 s
or,/ \\ SV In this section we compare the predictions of the theory
7 1 . . .
5 - I,' N from Sec. IV with the numerical results. To do this we em-
ARV A ploy the model(10),(11) with parameterggiven in Fig. 7
0 obtained similarly as ifi32,33 for the estimation of 7). We
26 T T T identify the parameterg, andq, from the model of Sec. IV
24| - with Bo— B, andB; in Eq. (7), respectively. For the above-

A 22 © A mentioned parameters the theoretical values(of vs B

YA - agree well with the numerically obtained ongsg. 7(a)].

S 18\ - The agreement is good for very sm8l-B., while in the

T sk < e - region B—B.=>10* a discrepancy between the numerical
14 L ‘\\\_\ T 4 and theoretical results appears. Consequently, our theoretical
i e ] results for the SNR obtained from E@®), which are in quan-

1 I I L ! titative agreement with the numerical ones in the lij
0 0.001 0002 0003 0004 0.005 +B;—B;, for larger By reproduce the actual SNR only
a qualitatively.

In Figs. 1b)—7(d) the numerical(solid) and theoretical

FIG. 6. (8) The SNR vego g, evaluated from Ed9) using Eq. (dashedl curves SNR vsB, are shown for slow periodic
0

(13) with =1 for one parabolic segment of the chaotic saddle with\* . > -
%=1 and one stripe of the pseudobasig=6x 104, g.=0 and signal with To=1024 and three different amplitud&; =3

—4 _ -4 ; — -3
the stripe widthb=0.01>2q, (dotted ling, b=2.8x10"3>2q;, <10 ! By=6x10"" [cf. F"E!- 3_(a)]’ and B, =1.5x10
(dashed ling andb=3.6x 10~ *<2q, (solid line). (b) Correspond- (cf. F|g.. 4. In all cases qualitative agreement between t.h(.a
ing curvesM To|P4|2 vs go+qs. () Corresponding curvels) vsq.  theoretical and numerical results can be found. The best fit is

observed forB;=3%x10"* and small B,+B;—B, [Fig.
is a typical maximum observed also in systems with nonfrac7(b)], where both the position and height of the segments
tal basins of attraction; e.g., in many one-dimensional mapslose to the first strong maximum is predicted correctly by
[4,10,17. For smallerb the effects of touching the upper our theory. For largeB;, in Fig. 7(c) and Fig. 7d) the po-
border of the stripe by the top of the parabola become vissition of the segments and the order of magnitude of the
ible. First,{ ) decreases witlg only within the interval be- height of local maxima close to the first strong maximum are
tweenq=0 andq=Db and then increases witp (point B).  predicted only approximately. AB, is increased, deviations
Second,|P4|? drops rapidly atgy+q;=Db (point B) and a  between the numerical and theoretical curves forBallin
second small maximum corresponding to the increasindrigs. 7b)—7(d) become significant.
branch of{7(q)) appears(point C). The SNR follows the It should be noted that small separate maxima that exist
behavior of|P,|?, with a sudden drop af,+q;=b (point B)  for small B, [Fig. 7(b)] for increasingd; merge or turn into
and a secondary maximuipoint C). If b>2qg; a smooth plateaus close to strong maxirigs. 4c) and 7d)]. This
maximum of both|P,|? and the SNR atj, slightly above effect is also qualitatively predicted by our theory. It occurs,
zero is still presentpoint A). However, ifb<2q, the local  since for largeB; the oscillating top of the chaotic saddle
minimum of |P;|? and the SNR together with the second sweeps several stripes of the pseudobasin of the other saddle.
maximum (point E) shift to the left and cut off the first In Fig. 8 the numerical and theoretical curves SNRBys
maximum turning it into a sharp one @+ q,=b (point D). are shown forB;=1.5x10"2 and for a range 0B, much
The cutoff of the SNR corresponds again to the beginning ofvider than in Fig. 7d). The numerically obtained maxima
the increase of7) at q=b and decrease ¢P,|? (point D).  for large B, are small, although they still appear in certain
If more stripes of the pseudobasin were taken into acgroups. This is a reflection of the fuzzy fractal structure of
count, the oscillating top of the parabola after leaving thechaotic saddles and their pseudobasins. In contrast, the the-
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FIG. 8. The SNR v8,+ B, for the signaly, from the spin map
(6) with parameters as in Fig. 1 ar;=1.5x10 3, T,=1024
[extension of Fig. @)]; () numerical results(b) theoretical results
evaluated from Eq(9) with the parameters of the theory of Sec.
IVB as in Fig. 1a).

SNR

oretical curve shows a series of strong maxima, since in the
model of Sec. IV the fractal structure of saddles and
pseudobasins remains unchanged even for IBgg&hus our
theoretical model becomes inadequate for the description of
SR in our system foB, much aboveB, .

At this point the correspondence between the origin of
stochastic multiresonance in systems with external noise
[17,18 and noise-free stochastic multiresonance in the sys-
tem (6) should be emphasized. In the former case multireso-
nance occurs, since in certain potentials the escape rate from
the potential wells is the same for a discrete set of noise
intensities[17,18. Similarly, in our case, the rate of jumps
between two parts of the postcritical attractad ~* shows
an oscillatory structurgFigs. 3b) and 7a)] as a function of
B. Thus in both cases the main source of stochastic multi-
resonance is the nonmonotonic, oscillatory behavior of the

SNR

11001 1.002 1.003 1.004 1.005 1.006 rate of events forming the output signal from which the SNR
BB, is obtained as a function of the noise intensity or the control
parameter.

FIG. 7. (@) The mean time between jumps between symmetric
parts of the attractofr) vs B for the spin mapg6) with parameters

as in Fig. 1. Numerical results are shown with solid line and theo- VI. SUMMARY AND CONCLUSIONS
retical results obtained from the theory of Sec. IVB with . .
=0.0108, y=0.294, B=0.125, be=1.46793, a/b=1.667, ¢ In this paper we reported the phenomenon of noise-free

=3.33, andK =L = 10—uwith dashed line(b)—(d) The SNR vsB,  Stochastic multiresonance in a chaot.ic spin map with periodi-
+B, for the signaly,, from the spin mag6) with parameters as in Cally modulated control parameter in the vicinity of an at-
Fig. 1 andT,=1024:(b) B;=3x10"%, (c) B;=6x10"%, (d) B, tractor merging crisis. As the control parameter is varied,
=1.5x10 2. The solid lines show numerical results. The dashedmultiple strong maxima and other segments like plateaus and
lines show theoretical results evaluated from E9).with the pa- ~ small local maxima in the output SNR appear. It was shown
rameters of the theory of Sec. IVB as (). both numerically and theoretically that the multiresonance
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appears due to the fractal structures of the precritical attradeo the first rule, e.g., the plateau 1 in FigaBoccurs for
tors and the fractal basins of attraction of the symmetric pre1.000 09<B,+ B;<B!?~1.00022 and the falling segment
critical attractors that collide at the crisis threshold. The adia2 for 1.0005=B#2<B,+B;<B2?’~1.001. Similarly, the
batic theory combined with a model for crisis in such arising segment occurs for 1.000 22 B12< B+ B,<B*?
situation[32,33 yields the SNR curves that are in qualitative ~1.0005 and the local maximurh for 1.001~B*"<B,
agreement with numerical results. The best fit is obtained for- B;<B"®~1.00135. According to the second rule, e.g.,
small amplitudes of the periodic signal and just above théhe maximumc in Fig. 3(a) occurs atB,~1.0026~B3¢
threshold for crisis. Comparing with the case of stochastict B1- ) ) )
multiresonance with external noi$&7,18 our SNR curves It should be noted that the above-mentioned relationships
show more complicated structure, the location of maxima i€@n be understood on the basis of the simple example dis-
irregular and their magnitude decreases for large values uSsed in Sec. IVC. Let us try to justify the first rule. E.g., a
the control parameter. This irregularity is connected with in-&moW oscillation of(r) in Fig. 3(b) is the one with seg-

commensurability of the fractal structures of chaotic saddle fzanB%f"_gngle'o?Qi tthe !Viftzhxofoig fe;l:]ingbse_gm.tamllis f
and their pseudobasins, and with the disappearance of thege oo 1= . 'he beginning o

; la ; _
structures as the control parameter is increased. However, € falling Se%me”B n the eaxzampleifrom Sec. IV C cor
- ! .. 'responds t@q=0 and its endB*- to q=b. It follows from
both cases the origin of the multiresonance is similar,

namely, the invariance of the escagiamping rate for a Sec. IV C that a sharp maximum of the SNR should appear at

) ooER . o+B;~B%2~1.0005, which is in accordance with Fig.
discrete set of values of the noise intensity or the contro a). To the left of the maximum the increase of the SNR

parameter. o _ should be observed, i.e., f@?~1.000 22 B,+ B, <B%?
A sufficient condition for the occurrence of noise-free sto- segmenta in Fig. 3@]. To the right of the maximum the
chastic multiresonance should be the presence of oscillationfacrease of the SNR should be observed, i.e.Bipf B,
of the average transient tin{e)) as the control parameter is ~pa2 [segment 2 in Fig. @]. This is again in agreement
varied. In this paper we used the kicked spin map as a modglith the numerical results in Sec. lll and with the first heu-
system that exhibits noise-free stochastic multiresonanceistic rule above. Now, let us consider the second rule. A
since in this case the anomalous oscillationg ©)f are well  wide falling segment in Fig. ®) is the segment, whose
pronounced and thus the multipeaked structure of the SNR iwidth is greater than B,;. The beginning of this segment
well visible. On the other hand, oscillations of the averageB®¢ in the example from Sec. IV C correspondsde-0,
transient time, although weaker, were observed in many syshus a smooth maximum of the SNR should appeaBat
tems with crise$43,44]. Thus the results of the present paperslightly aboveB,=B3°~1.002, again close to its true posi-
suggest that noise-free stochastic multiresonance can be ofen atBy=~1.0026 in Fig. 8a) and close to the prediction of
served also in other chaotic systems close to crisis, includinghe second heuristic rule above. The secondary maxima of
experimental ones with continuous time. the SNR that in Fig. &) correspond to the top of the para-
bolic segment leaving the stripe of the pseudobasin cannot be
seen in Fig. &), since the amplitude of periodic modulation
ACKNOWLEDGMENTS is so large that they merged with the broad maxima.
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PPENDIX B: EVALUATION OF THE FUNCTIONS IN
THE ANALYTIC FORMULA FOR THE SNR

il €,N]= kAo + 01€0Swon — (1= 8y k+1)aak—c
APPENDIX A: HEURISTIC RULES RELATING THE

FUNCTIONS SNR VS B, AND (7) VS B X @[ o+ q;C0Swon—a(l— Sy k1) a*—cl,

Let us define a “segment” in Figs.(8 and 3b) as a (B1)
region of monotonic behavior of the corresponding curvewhere ®() is the Heaviside step function. It follows that
SNR vsB,, or (7) vs B. ForBy+ B close toB, the follow-  4,[c,n] is an even, periodic function of. Its time average
ing relationships between the corresponding segments ify (¢ and its first Fourier coefficierM, ;(c) can be evalu-
Figs. 3a) and 3b) hold. First, the beginnings and ends of the ateq” analytically in the continuous time approximation
narrow segments in Figs(8 and 3b), whose width is small .
compared to B;, correspond to each other. Second, if the To do this let us again consider the functié®l). The
width of the falling segment in Fig.(B) is larger than B, overlap of thekth parabolic segment and the half-plape
then a maximum of the SNR in Fig.(@ occurs atB,  >c is nonzero during at least a part of the peribglif the
slightly above the beginning of the segment in Figb)3  control parameter fulfils the conditiony>qgmin=c+ (1
Henceforth the values & that separate the neighboring seg- — 5k'K+1)aak—ql. The overlap is nonzero during the whole
ments in Fig. &), labeled ass, r, will be denoted aB®".  period if o> gy =C+ (1— Sk +1)aa*+q;. Let us intro-
From Fig. 3b) we obtain B13~1.00022, B¥?~1.0005, duce the timet,(c) defined so that4, overlaps the half-
B2~1.001, B"®~1.00135,B3°~1.002. Then, according plane y>c for 0<t<t,(c) and To—t (c)<t<T,, i.e.,

026215-8



STOCHASTIC MULTIRESONANCE IN A CHAOTIC MAP . .. PHYSICAL REVIEW E 63 026215

wg tarcco§[c— o+ (1— S kr1)aakl/dy}  if domin=do=Cou

t =
<€) To/2 if o> 0o fur -

(B2)

Let us also introduce the quantity 1 (To
My (C)= T_J' mil c,t]coswptdt
0J0

2
my(€)=20: [0~ (1~ S Daa* +dy—cl. (B3 = a0+ 4= (1= k- ad—c
2—m2(c
. . X TK()E 2ot (c).my(c)
The time average of the functigm,[ c,t] [Eqg. (B1)] can be 3mg(c) 2
then evaluated as
2—2mé(c) [wy

3mi(o) F TIK(C),mk(C) ]

XO[do+ay—(1-dk+1)aa*—c]. (BS)

— 1 (To
mi(C)= T—J’ wlc,t]dt
0/0 HereF (¢, m)= [ 2(1—m?sir’x) YZdx is the elliptic integral
o7 of the first kind.
_ Mk — K We emphasise that in Eq€84) and (B5) the control pa-
P VAot 0y = (1= bk 1)aa’—c rameterq, appears not only via the square root but also via
the functionst, [Eq. (B2)] and m, [Eg. (B3)], which also
depend org in a complicated way. It should be also noted
that if o> oy thenwety(c)/2=m/2 and the elliptic inte-
grals in Egs.(B4),(B5) change into complete elliptic inte-
XO[go+0q1—(1-dk+1)ae*~c]. (B4  grals. Besides, the results fai(c), M (c) do not depend
on wq since in Egs(B4) and (B5) w, cancels withwgl in
the definition oft,(c) [Eq. (B2)]. -
) . o The expressions for the coefficienig, and My, ; in Eq.
Here E(¢,m)= [ §(1—m?sir’x)4dx is the elliptic integral  (15) in Sec. IV B can be obtained from Eq®4) and (B5),

wo
XE| 5 t(e),my(c)

of the second kind. respectively. For this purpose one should use the definition
Similarly, the first Fourier coefficieritl, ;(c) of the func-  of u(n) [Eqg. (14)] and replacee in Eq. (B4) and Eq.(B5)
tion wfc,t] [Eq. (B1)] can be evaluated as by (1- 8, +1)(B'b—pB'bg) or B'b.
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