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Stochastic multiresonance in a chaotic map with fractal basins of attraction
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Noise-free stochastic resonance in a chaotic kicked spin model at the edge of the attractor merging crisis is
considered. The output signal reflects the occurrence of crisis-induced jumps between the two parts of the
attractor. As the control parameter—the amplitude of the magnetic field pulses—is varied, the signal-to-noise
ratio shows plateaus and multiple maxima, thus stochastic multiresonance is observed. It is shown that the
multiresonance occurs due to a fractal structure of the precritical attractors and their basins. In the adiabatic
approximation theoretical expression for the signal-to-noise ratio is derived, based on the theory of oscillations
in average crisis-induced transient lifetimes. Numerical and theoretical results agree quantitatively just above
the threshold for crisis and qualitatively in a wide range of the control parameter.
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I. INTRODUCTION

Stochastic resonance~SR! @1# is a phenomenon occurrin
in certain systems driven by a combination of noise and
riodic signal, whose essence is that the input noise inten
can be tuned to maximize the degree of periodicity of a pr
erly defined output signal~for recent reviews see@2,3#!. A
similar phenomenon, called noise-free SR, occurs in cha
periodically driven systems in which, in the absence of
ternal noise, the internal chaotic dynamics can be change
varying the control parameter so that the periodic signa
best transmitted@4–15#. In systems with SR the power spe
trum density~PSD! of the output signal consists of peaks
the multiples of periodic forcing frequency superimposed
a broadband noise background. The best transmission o
periodic signal is thus defined as the maximization of
output signal-to-noise ratio~SNR!, i.e., the ratio of the heigh
of the peak at the periodic forcing frequency to the heigh
the noise background. Usually only one maximum of t
SNR is observed as the input noise intensity or the con
parameter in a chaotic system is varied. However, in R
@16# a second small maximum for small noise intensity w
observed. Recently it has been also found that in cer
systems many or even an infinite number of maxima of
output SNR can appear. This phenomenon is called stoc
tic multiresonance@17,18#.

Although the first studies of SR and noise-free SR w
performed in dynamical systems with bistable poten
@4,5,11,12,16,19–21# SR is now equally well investigated i
dynamical and nondynamical threshold-crossing~TC! sys-
tems @9,10,13,22–28#. As TC systems we understand sy
tems with output in the form of pulses emitted each tim
when a certain threshold is crossed. E.g., the membrane
tential of a neuron under the influence of external noise
periodic stimulus can increase rapidly above the thresh
voltage so that a single pulse of neural activity is emitt
after which the membrane potential is reset to the res
value @22,28#. Dynamical systems with symmetric bistab
potential can be also described as TC systems if the n
and periodic signal change the height of the potential barr
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or the depth of the two potential wells in a symmetric ma
ner. The TC events are then jumps of the particle over
barrier between potential wells, and the output signal is
fined in such a way that every jump triggers a single pulse
the otherwise zero signal. This is in contrast with the abo
mentioned first models of SR in bistable systems in wh
the relative depth of the two potential wells is changed
noise and periodic modulation, and the output signal refle
the position of the particle in the left or right well@20#. SR in
TC systems is observed if the SNR evaluated from the ou
pulse train shows a maximum as a function of the input no
intensity.

The aim of the present paper is to investigate noise-f
stochastic multiresonance in a TC system. For this purp
we study a chaotic map that models the dynamics o
damped classical magnetic moment~spin! driven by pulses
of magnetic field in the presence of anisotropy@29–34#. At a
certain value of the amplitude of such pulses the attrac
merging crisis@35# occurs and jumps of the spin vector b
tween two parts of the postcritical chaotic attractor cor
sponding to two equivalent spin orientations become p
sible @29,30#. When the amplitude of pulses is modulated
additional periodic signal the map can be described a
bistable dynamical TC system in which the jumps betwe
the two parts of the attractor are TC events. SR induced
external noise was studied by us in such a model in R
@34#. Here we are interested in the case without noise.
contrast, the role of noise is played by deterministic cha
and instead of varying the noise intensity we change
system control parameter, i.e., the mean value of the am
tude of pulses. Our numerical simulations show that the S
depends on the control parameter in a very complicated w
i.e., one observes multiple strong maxima~noise-free sto-
chastic multiresonance! and various small plateaus and loc
maxima. We show that this phenomenon is a direct con
quence of the fractal structure of the precritical attractors
their basins of attraction leading to oscillations in the avera
time between jumps between the two parts of the postcrit
attractor@32,33#. Our theoretical results, based on the mod
©2001 The American Physical Society15-1
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S. MATYJAŚKIEWICZ et al. PHYSICAL REVIEW E 63 026215
of such fractal structures, describe qualitatively the result
numerical simulations.

II. MODEL

We consider a classical magnetic moment~spin! S, uSu
5S in the uniaxial anisotropy field and external transve
magnetic fieldB̃(t) parallel to thex axis @29–34#. The sys-
tem is described by the Hamiltonian

H52A~Sz!
22B̃~ t !Sx ~1!

where A.0 is the anisotropy constant. The motion of t
spin is determined by the Landau-Lifschitz equation w
damping term

dS

dt
5S3Be f f2

l

S
S3~S3Be f f!, ~2!

whereBe f f52dH/dS is the effective magnetic field andl
.0 is the damping parameter. Taking the transverse fiel
the form of periodicd pulses with amplitudeB and periodt̃,

B̃~ t !5B(
n51

`

d~ t2nt̃ !, ~3!

and using the fact thatS is constant, Eq.~2! can be integrated
in two steps. In the time between pulses of the magnetic fi
the spin performs damped precession and approaches th
isotropy axis. During the action of the magnetic field t
anisotropy can be neglected and the spin performs preces
around thex axis tilting towards it at the same time. Th
result of the integration can be written as a superposition
two two-dimensional mapsTA and TB . The mapTA de-
scribes the time evolution between kicks,

TAF f

Sz
G5Ff1Df

WSz
G , ~4!

wheref is the angle between thex axis and the projection o
the spin on thex-y plane and

Df5~1/l!ln$~11S/Sz!/@11S/~WSz!#%22ASt̃,

W5@c21(Sz /S)2(12c2)#21/2, c5exp(22lASt̃). The map
TB written in the variables (Sx ,F), whereF is the angle
between they axis and the projection of the spin on thex-z
plane, describes the motion of the spin during the action
the field pulses and has a form

TBF F

Sx
G5F F2B

S22S~S2Sx!D
2UG , ~5!

whereD5exp(2lB) and U5@S1Sx1D2(S2Sx)#21. The
complete dynamics is a superposition of both maps

Sn115TB†TA@Sn#‡, ~6!

where Sn is a spin vector just after the action of thenth
magnetic field pulse.
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The classical model described by Eqs.~1!–~6! is related to
experimentally investigated quantum magnetic systems
one considers the properties of isolated spins of large m
netic molecules such as Mn12O12(CH3COO)16 where the an-
isotropy is induced by molecule symmetry@36# or the
nanometric-size single domain ferromagnetic particles~su-
perparamagnets! used for the observation of the macroscop
quantum tunneling phenomenon@37#. The quantum version
of this model~sometimes called the kicked top model! is an
interesting system from the point of view of quantum cha
corresponding quasienergy statistics, level dynamics, and
coherence effects have been studied in detail in Refs.@38–
40#. It should also be mentioned that SR in a ferrite-gar
film with uniaxial anisotropy, connected with magnetizatio
tunneling due to thermal fluctuations or external noise w
studied experimentally in Refs.@41,42#, but in the presence
of sinusoidal magnetic field rather than field kicks wi
modulated amplitude.

The map~6! exhibits a rich variety of periodic and chaot
dynamics. Let us takeB as the control parameter and co
sider the map ~6! with parametersS51, t̃52p, l
50.105 494 2 andA51. For B slightly below Bc51 two
symmetric chaotic attractors of Eq.~6! corresponding to two
spin orientations~spin ‘‘up,’’ Sz.0 and ‘‘down,’’ Sz,0) in
the absence of the external field exist@29,30#. For B.Bc
these two attractors merge as a result of the attractor mer
crisis @31–33# and a new postcritical attractor~Fig. 1! con-
sisting of two symmetric parts is born. The system switch
chaotically between these two parts and the mean time
tween switcheŝt& as a function of the control parameterB
obeys a power scaling law@35,43# ^t(B)&}(B2Bc)

2h,
whereh.0 is a critical exponent. However, there are al
considerable oscillations superimposed on this trend@32,33#.
They are connected with the fractal structure of precriti
attractors and their basins of attraction. In general, for v
ous parameter values, two kinds of such oscillations can
distinguished. If the basins of attraction do not have a s
similar ~fractal! structure the so-called normal oscillation
are observed, induced by consecutive branches of the fra
attractor creeping, with increasing control parameter, into
nonfractal basin of attraction of another attractor@33#, which
results in the modulation of the slope of^t(B)&. When the
basins of attraction are fractal sets anomalous oscillati
appear, including sections where^t(B)& increases agains

FIG. 1. Attractor of the spin map~6! with S51, A51, t̃
52p, l50.105 494 2,Bc51, andB51.0001.Bc .
5-2
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STOCHASTIC MULTIRESONANCE IN A CHAOTIC MAP . . . PHYSICAL REVIEW E 63 026215
the general trend@32#. Typically their magnitude is large
than that of normal oscillations.

In order to observe noise-free SR we investigate the s
tem ~2! driven by the magnetic field pulses~3! whose ampli-
tude B is no longer constant but periodically modulated
time with frequencyṽ0 @we denote this time-dependent am
plitude asB(t)#. The period of this modulation 2p/ṽ0 is
assumed as an integer multiple oft̃. The resulting dynamics
can be again rewritten in the form of a map~6!, but with
periodically modulated control parameter

B~n!5B01B1cosv0n, ~7!

where v05ṽ0t̃ is a dimensionless frequency. In th
continuous-time dynamics, Eqs.~1!–~3!, due to the periodic
character of the magnetic field pulses~3! with period t̃,
peaks in the power spectrum of the system at the multiple
the frequency 2p/ t̃ should appear. Besides, peaks sho
also appear at the multiples of the modulation frequency
the amplitude of the field kicksṽ0. In the discrete-time sys
tem ~6! the highest observable frequency corresponds to
of the frequency of the field kicks, so only the latter peaks
the multiples ofv0, will be observed. Thus in the discrete
time system SR can be observed at the frequencyv0 and is
connected with the external modulation~7!.

Employing the analogy to dynamical systems w
bistable potential, the two symmetric parts of the postcriti
attractor in our model correspond to two potential wells, a
the parameterB(n)2Bc controls the height of the potentia
barrier. Thus, our system can be described as a dynam
TC system and the spin jumps between the two parts of
postcritical attractor can be treated as TC events@34#. An
example of the time series from the map~6! with the control
parameter~7! is shown in Fig. 2. To observe the noise-fr
SR the SNR at the frequencyv0 is studied as a function o
the control parameterB0. Due to the complex, non
monotonic dependence of^t& on B a corresponding comple
dependence of the SNR onB0 is expected.

FIG. 2. Time seriesSz vs n of the spin map~6! with parameters
as in Fig. 1 andB15631024, T051024, B050.9999. Also a pe-
riodic signal proportional toB1cosv0n is shown. It can be seen tha
the jumps between the statesSz,n,0 andSz,n.0 occur most prob-
ably when the periodic signal is at a maximum.
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III. NUMERICAL SIMULATIONS: AN EXAMPLE OF
NOISE-FREE STOCHASTIC MULTIRESONANCE

In this section numerical results concerning SR in the s
tem ~6! are presented. We define the output signal so t
pulses of unit height correspond to the jumps between
two parts of the postcritical attractor:yn51 if at iterationn
the jump occurred andyn50 otherwise. Due to the symme
try of the system with respect to the planeSz50 we can
assume that the jump occurs whenSz,n21 andSz,n have op-
posite signs. As a measure of noise-free SR we take
output SNR as a function ofB0. The output PSDS(v) is
calculated from 215 points of the signalyn and the SNR is
evaluated as

SNR5SP~v0!/SN~v0!, ~8!

whereSN(v0) is the noise background in the vicinity ofv0
andSP(v0)5S(v0)2SN(v0) is the height of the peak in the
PSD atv5v0. It should be remembered that due to fini
frequency resolutionD f ~here,D f 52215) the value of the
SNR evaluated from numerical simulations as in Eq.~8! is
increased by the factor 1/D f 5215 in comparison with its true
value @20#. This is taken into account when comparing t
numerical and theoretical results in Secs. IV–VI.

In Fig. 3~a! a typical curve SNR vsB0 is shown for a
slowly varying input signal with periodT052p/v051024
and amplitudeB15631024. Jumps between symmetri

FIG. 3. ~a! The SNR vsB01B1 for the signalyn from the spin
map~6! with parameters as in Fig. 1 andB15631024, T051024.
~b! The mean time between jumps between symmetric parts of
attractor^t& vs B for the spin map~6! with parameters as in Fig. 1
anomalous oscillations can be seen. The labeled segments in~a! and
~b! correspond to each other according to the heuristic rules
cussed in Appendix A@segment 2 in~b! is a composite segmen
consisting of a rising and flat part#.
5-3
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S. MATYJAŚKIEWICZ et al. PHYSICAL REVIEW E 63 026215
parts of the postcritical attractor, and thus a nonzero S
are observed forB0.Bc2B150.9994. Within the range o
B0 shown in Fig. 3~a! the curve exhibits three stron
maxima, so the noise-free stochastic multiresonance
found. These maxima are accompanied by numerous
local maxima and plateaus~flat narrow segments on th
slopes of strong maxima!.

In Fig. 3~b! the corresponding curvêt& vs B is shown
~without modulation!. A closer inspection of Figs. 3~a! and
3~b! reveals that certain segments~the labeled ones! in the
two curves can be related to each other. The plateaus
falling segments in Fig. 3~a! turn out to be connected with
the rising segments of oscillations in Fig. 3~b! ~labeled by
numbers!, and the rising segments and maxima in Fig. 3~a!—
with falling segments of oscillations in Fig. 3~b! ~labeled by
letters!. In Appendix A simple heuristic rules are given, val
for B01B1 close toBc , which relate the corresponding se
ments in Figs. 3~a! and 3~b!. These rules enable us to predi
the location of certain segments in the curves SNR vsB0

solely on the basis of the measurements of^t& vs B.
The relationship between the curves SNR vsB0 and ^t&

vs B indicates that the occurrence of noise-free stocha
multiresonance and complicated dependence of the SNR
the control parameter in our model is a result of the frac
structure of precritical attractors and their basins of attr
tion; this conclusion is further confirmed by the theoretic
results of Sec. IV. The infinite self-similar structure of the
fractals suggests that the curve SNR vsB0 is a fractal curve
as well and its fine structure can be revealed by meas
ments of the SNR with higher and higher accuracy. T
distinguishes noise-free stochastic multiresonance in our
tem from stochastic multiresonance induced by exter
noise, since in the latter case the curves SNR vs noise in
sity are smooth@17,18#.

In Fig. 4 the curves SNR vsB0 are shown forB151.5
31023 and different driving frequenciesv0. This proves
that noise-free stochastic multiresonance occurs also for
varying periodic signals with relatively large amplitude. A
usually, the decrease of the SNR is observed with increa
v0, in particular for larger values ofB0.

FIG. 4. The SNR vsB01B1 for the signalyn from the spin map
~6! with parameters as in Fig. 1 and withB151.531023, for T0

58 ~dotted curve!, T0516 ~dashed curve!, and T0532 ~solid
curve!.
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IV. THEORY FOR THE SIGNAL-TO-NOISE RATIO

A. General formulation

In this section we derive an approximate analytic formu
for the SNR vsB0. It is based on an expression for the SN
in nondynamical discrete-time TC systems@25,26#, which,
however, can be also applied to dynamical TC systems un
the assumption that individual TC events are independen
our system this assumption means that the average time
tween jumps is long enough so that the correlations betw
them are lost, which is true forB01B1 close toBc . The
expression for the SNR is obtained using the periodic in ti
probability of the TC eventp(n). In our case, this probabil
ity can be easily evaluated in the adiabatic limitv0→0 and
B1!1 in which p(n)5Pr(yn51)51/̂ t(B01B1cosv0n)&
[1/̂ t(n)&; i.e., it is given by the inverse of the mean tim
between jumps for the actual value of the control parame
B(n) ~7!. Hence the following theory is applicable only i
the limit of small values ofB01B12Bc , B1 andv0.

According to Refs.@25,26# the SNR may be evaluated a

SNR5MT0uP1u2/~ p̄2 p̄2!'MT0uP1u2/ p̄, ~9!

where P15T0
21(n50

T021p(n)exp(2iv0n) is the first Fourier
coefficient ofp(n), M is the number of periods within the
time interval from which the data were stored~in our case,
MT05215), and the bar denotes the time average overT0.
The approximate equality holds forp(n)!1, which is the
case in our system close to crisis@cf. Fig. 3~b!#. In Eq.~9! the
SNR is evaluated taking into account the finite frequen
resolutionD f 51/MT0 @20# so it can be directly compared t
the SNR obtained numerically. Hence in order to evalu
the SNR in the system~6! we need to knowp̄ andP1, which
can be obtained analytically from a simple model of the
tractor merging crisis.

B. Evaluation of the signal-to-noise ratio in a model of fractal
attractor and fractal basin of attraction.

In the spin map~6! as the control parameterB is increased
above Bc the two precritical attractorsSz,0 and Sz.0
merge and become chaotic saddles, while their former ba
of attraction become pseudobasins~for a more detailed dis-
cussion of these concepts see Refs.@32,33#!. Due to the sys-
tem symmetry the pseudobasins are also symmetric, so
enough to consider only a single chaotic saddle creep
with the increase ofB, into the pseudobasin of the opposi
saddle. Henceforth we assume that above the crisis poin
structure and measure of chaotic saddles and pseudobas
identical with that of precritical attractors and their basins
the crisis point, respectively. The only effect of the increa
and modulation of the control parameter is the relative s
and modulation of the position of the chaotic saddle w
respect to the pseudobasin.

In Refs.@32,33# self-similar models of the chaotic sadd
and the pseudobasin have been introduced in order to
scribe the nonsmooth and nonmonotonic dependence of^t&
on B. Here we implement the model to the case of a perio
cally modulated control parameter denoted asq(n)5q0
5-4
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1q1cosv0n. Following Refs.@32,33# we assume the chaoti
saddleA as a family ofK12 parabolic segmentsAk ~Fig. 5!
moving periodically due to a time-dependent control para
eter

A5 ø
k50

K11

Ak5 ø
k50

K11

$~x,y!:y

52x22~12dk,K11!aak1q01q1cosv0n%, ~10!

wherea anda are model parameters. The invariant meas
is uniformly distributed along the parabolic segments and
relative density on the segmentAk is assumed asm̃k5(1
2g)gk for 0<k<K and m̃K115gK11, where 0,g,1 is
another model parameter. The complicated structure of
pseudobasin is in turn approximated as a family ofL12
stripesBl accumulating at the liney50 that touches the top
of the uppermost parabolaAK11 for q05q150 ~Fig. 5!

B5 ø
l 50

L11

Bl5 ø
l 50

L11

$~x,y!:~12d l ,L11!~b lb2b lbE!<y<b lb%,

~11!

whereb, b, andbE are again model parameters.
With increasingq0 the parabolic segments are shifted

and enter the pseudobasin oscillating simultaneously un
the influence of the periodic modulation. If we takeK andL
large enough we get a good approximation of the real s
tem, although in principle one should takeK, L→`. All
model parameters are determined by the fractal structur
the saddles and pseudobasins of the system under stud
can be assessed from magnified plots of the collision reg
between the chaotic saddles and pseudobasins~for details see
@32,33#!. Besides, the ratioa/b can be treated as a true fittin
parameter and chosen so as to obtain the best agree
between the theoretical and numerical values of^t&.

The time-dependent probability of a jump between
symmetric parts of the attractorp(n) is proportional to the
time-dependent measurem(n) of the overlap of the saddle
with the pseudobasin of the other saddle@35,43#,

FIG. 5. The model of a fractal chaotic saddle~10! entering the
pseudobasin of attraction of the other saddle~11!.
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p~n!5zm~n!, ~12!

wherez is a proportionality constant. To findp(n) let us first
consider the overlap of thekth parabolic segmentAk with a
half-planey.c. The measure of this overlap in the time st
n, i.e., the length of the parabola inside the half-plane m
tiplied by the relative invariant measure densitym̃k will be
denoted asmk@c,n#. On the basis of Eq.~12! p(n) can be
written as a sum of contributions from the individual par
bolic segments of the chaotic saddle creeping into the str
of the pseudobasin

p~n!5z (
k50

K11

(
l 50

L11

mkl~n!, ~13!

where

mkl~n!5mk@~12d l ,L11!~b lb2b lbE!,n#2mk@b lb,n#.
~14!

The time averagep̄ and the first Fourier coefficientP1 of the
jump probability can also be expressed as double sums

p̄5z (
k50

K11

(
l 50

L11

m̄kl , P15z (
k50

K11

(
l 50

L11

Mkl,1 , ~15!

wherem̄kl andMkl,1 are the time averages and the first Fo
rier coefficients of the functionsmkl(n) @Eq. ~14!#, respec-
tively. Using the analytic expressions for the time avera
and the first Fourier coefficient of the functionmk@c,n#,
given in Appendix B, the coefficientsm̄kl and Mkl,1 can be
also evaluated analytically in the limit of smallq01q1. In-
serting Eq.~15! into Eq. ~9! it is possible to evaluate the
SNR vsB0 numerically forB0 arbitrarily close toBc with
the accuracy depending on the number of parabolic segm
and stripes included in the model. As usually, in the case
adiabatic approximation in TC systems the resulting S
does not depend on the periodic forcing frequency@23,25#
~cf. Appendix B!.

C. The origin of multiple maxima

Before comparing the theoretical and numerical results
the next section we discuss qualitatively the origin of m
tiple maxima appearing in the plots of the SNR vsB0 like
those in Fig. 3~a!. Using the just-defined model, let us co
sider one parabolic segmentA05$(x,y):y52x21q0

1q1cosv0n%, q1.0, with the densitym̃051 creeping into a
single stripe of the pseudobasinB05$(x,y):0<y<b% asq0
increases. This means we putK115L1150. The top of
the parabola can overlap with the stripe~and thus the SNR is
nonzero! if q0.2q1. The plots of the SNR vsq01q1 ob-
tained from Eq.~9! using Eq.~12! for different b are shown
in Fig. 6~a!, and the corresponding plotsMT0uP1u2 vs q0
1q1 in Fig. 6~b! and ^t& vs q in Fig. 6~c!.

If the width of the stripe is very large,b@2q1, the mean
time ^t& decreases monotonically withq, while uP1u2 shows
a smooth maximum. As a result, the SNR exhibits a smo
maximum atq0 slightly above zero~point A in Fig. 6!. This
5-5
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S. MATYJAŚKIEWICZ et al. PHYSICAL REVIEW E 63 026215
is a typical maximum observed also in systems with nonfr
tal basins of attraction; e.g., in many one-dimensional m
@4,10,11#. For smallerb the effects of touching the uppe
border of the stripe by the top of the parabola become
ible. First, ^t& decreases withq only within the interval be-
tweenq50 andq5b and then increases withq ~point B!.
Second,uP1u2 drops rapidly atq01q15b ~point B! and a
second small maximum corresponding to the increas
branch of^t(q)& appears~point C!. The SNR follows the
behavior ofuP1u2, with a sudden drop atq01q15b ~point B!
and a secondary maximum~point C!. If b.2q1 a smooth
maximum of bothuP1u2 and the SNR atq0 slightly above
zero is still present~point A!. However, ifb!2q1 the local
minimum of uP1u2 and the SNR together with the secon
maximum ~point E! shift to the left and cut off the firs
maximum turning it into a sharp one atq01q15b ~point D!.
The cutoff of the SNR corresponds again to the beginning
the increase of̂t& at q5b and decrease ofuP1u2 ~point D!.

If more stripes of the pseudobasin were taken into
count, the oscillating top of the parabola after leaving

FIG. 6. ~a! The SNR vsq01q1 evaluated from Eq.~9! using Eq.
~13! with z51 for one parabolic segment of the chaotic saddle w

m̃051 and one stripe of the pseudobasin;q15631024, qc50 and
the stripe widthb50.01@2q1 ~dotted line!, b52.831023.2q1

~dashed line!, andb53.631024!2q1 ~solid line!. ~b! Correspond-
ing curvesMT0uP1u2 vs q01q1. ~c! Corresponding curveŝt& vs q.
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first stripe would enter the next one with increasingq0 and
the SNR would increase again. The above example sh
the connection between the shape of the curve SNR vsB0

with multiple maxima, observed in Sec. III, and the oscill
tions of the mean time between jumps between the two p
of the postcritical attractor̂t& ~for a more detailed discus
sion see Appendix A!. However, it should be also observe
that the value of the numerator rather than the denomin
in Eq. ~9! determines the exact shape of the SNR curve
general the SNR results from the superposition of many
sic events like in examples above occurring simultaneou
on different scales. This yields a complex structure like, e
in Fig. 3~a!.

V. COMPARISON BETWEEN NUMERICAL AND
THEORETICAL RESULTS

In this section we compare the predictions of the the
from Sec. IV with the numerical results. To do this we em
ploy the model~10!,~11! with parameters~given in Fig. 7!
obtained similarly as in@32,33# for the estimation of̂t&. We
identify the parametersq0 andq1 from the model of Sec. IV
with B02Bc andB1 in Eq. ~7!, respectively. For the above
mentioned parameters the theoretical values of^t& vs B
agree well with the numerically obtained ones@Fig. 7~a!#.
The agreement is good for very smallB2Bc , while in the
region B2Bc>1024 a discrepancy between the numeric
and theoretical results appears. Consequently, our theore
results for the SNR obtained from Eq.~9!, which are in quan-
titative agreement with the numerical ones in the limitB0
1B1→Bc , for larger B0 reproduce the actual SNR onl
qualitatively.

In Figs. 7~b!–7~d! the numerical~solid! and theoretical
~dashed! curves SNR vsB0 are shown for slow periodic
signal with T051024 and three different amplitudesB153
31024, B15631024 @cf. Fig. 3~a!#, and B151.531023

~cf. Fig. 4!. In all cases qualitative agreement between
theoretical and numerical results can be found. The best fi
observed forB15331024 and small B01B12Bc @Fig.
7~b!#, where both the position and height of the segme
close to the first strong maximum is predicted correctly
our theory. For largerB1, in Fig. 7~c! and Fig. 7~d! the po-
sition of the segments and the order of magnitude of
height of local maxima close to the first strong maximum a
predicted only approximately. AsB0 is increased, deviations
between the numerical and theoretical curves for allB1 in
Figs. 7~b!–7~d! become significant.

It should be noted that small separate maxima that e
for small B1 @Fig. 7~b!# for increasingB1 merge or turn into
plateaus close to strong maxima@Figs. 7~c! and 7~d!#. This
effect is also qualitatively predicted by our theory. It occu
since for largeB1 the oscillating top of the chaotic sadd
sweeps several stripes of the pseudobasin of the other sa

In Fig. 8 the numerical and theoretical curves SNR vsB0
are shown forB151.531023 and for a range ofB0 much
wider than in Fig. 7~d!. The numerically obtained maxim
for large B0 are small, although they still appear in certa
groups. This is a reflection of the fuzzy fractal structure
chaotic saddles and their pseudobasins. In contrast, the
5-6
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FIG. 7. ~a! The mean time between jumps between symme
parts of the attractor̂t& vs B for the spin map~6! with parameters
as in Fig. 1. Numerical results are shown with solid line and th
retical results obtained from the theory of Sec. IV B witha
50.0108, g50.294, b50.125, bE51.467 93, a/b51.667, z
53.33, andK5L510—with dashed line.~b!–~d! The SNR vsB0

1B1 for the signalyn from the spin map~6! with parameters as in
Fig. 1 andT051024: ~b! B15331024, ~c! B15631024, ~d! B1

51.531023. The solid lines show numerical results. The dash
lines show theoretical results evaluated from Eq.~9! with the pa-
rameters of the theory of Sec. IV B as in~a!.
02621
oretical curve shows a series of strong maxima, since in
model of Sec. IV the fractal structure of saddles a
pseudobasins remains unchanged even for largeB0. Thus our
theoretical model becomes inadequate for the descriptio
SR in our system forB0 much aboveBc .

At this point the correspondence between the origin
stochastic multiresonance in systems with external no
@17,18# and noise-free stochastic multiresonance in the s
tem ~6! should be emphasized. In the former case multire
nance occurs, since in certain potentials the escape rate
the potential wells is the same for a discrete set of no
intensities@17,18#. Similarly, in our case, the rate of jump
between two parts of the postcritical attractor^t&21 shows
an oscillatory structure@Figs. 3~b! and 7~a!# as a function of
B. Thus in both cases the main source of stochastic mu
resonance is the nonmonotonic, oscillatory behavior of
rate of events forming the output signal from which the SN
is obtained as a function of the noise intensity or the con
parameter.

VI. SUMMARY AND CONCLUSIONS

In this paper we reported the phenomenon of noise-f
stochastic multiresonance in a chaotic spin map with perio
cally modulated control parameter in the vicinity of an a
tractor merging crisis. As the control parameter is vari
multiple strong maxima and other segments like plateaus
small local maxima in the output SNR appear. It was sho
both numerically and theoretically that the multiresonan

c

-

d

FIG. 8. The SNR vsB01B1 for the signalyn from the spin map
~6! with parameters as in Fig. 1 andB151.531023, T051024
@extension of Fig. 7~d!#; ~a! numerical results,~b! theoretical results
evaluated from Eq.~9! with the parameters of the theory of Se
IV B as in Fig. 7~a!.
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S. MATYJAŚKIEWICZ et al. PHYSICAL REVIEW E 63 026215
appears due to the fractal structures of the precritical att
tors and the fractal basins of attraction of the symmetric p
critical attractors that collide at the crisis threshold. The ad
batic theory combined with a model for crisis in such
situation@32,33# yields the SNR curves that are in qualitativ
agreement with numerical results. The best fit is obtained
small amplitudes of the periodic signal and just above
threshold for crisis. Comparing with the case of stocha
multiresonance with external noise@17,18# our SNR curves
show more complicated structure, the location of maxima
irregular and their magnitude decreases for large value
the control parameter. This irregularity is connected with
commensurability of the fractal structures of chaotic sadd
and their pseudobasins, and with the disappearance of t
structures as the control parameter is increased. Howeve
both cases the origin of the multiresonance is simi
namely, the invariance of the escape~jumping! rate for a
discrete set of values of the noise intensity or the con
parameter.

A sufficient condition for the occurrence of noise-free s
chastic multiresonance should be the presence of oscillat
of the average transient time^t& as the control parameter i
varied. In this paper we used the kicked spin map as a m
system that exhibits noise-free stochastic multiresona
since in this case the anomalous oscillations of^t& are well
pronounced and thus the multipeaked structure of the SN
well visible. On the other hand, oscillations of the avera
transient time, although weaker, were observed in many
tems with crises@43,44#. Thus the results of the present pap
suggest that noise-free stochastic multiresonance can be
served also in other chaotic systems close to crisis, includ
experimental ones with continuous time.
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APPENDIX A: HEURISTIC RULES RELATING THE
FUNCTIONS SNR VS B0 AND Št‹ VS B

Let us define a ‘‘segment’’ in Figs. 3~a! and 3~b! as a
region of monotonic behavior of the corresponding cu
SNR vsB0 or ^t& vs B. For B01B1 close toBc the follow-
ing relationships between the corresponding segment
Figs. 3~a! and 3~b! hold. First, the beginnings and ends of t
narrow segments in Figs. 3~a! and 3~b!, whose width is small
compared to 2B1, correspond to each other. Second, if t
width of the falling segment in Fig. 3~b! is larger than 2B1
then a maximum of the SNR in Fig. 3~a! occurs atB0
slightly above the beginning of the segment in Fig. 3~b!.
Henceforth the values ofB that separate the neighboring se
ments in Fig. 3~b!, labeled ass, r, will be denoted asBs,r .
From Fig. 3~b! we obtain B1,a'1.000 22, Ba,2'1.0005,
B2,b'1.001, Bb,3'1.001 35, B3,c'1.002. Then, according
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to the first rule, e.g., the plateau 1 in Fig. 3~a! occurs for
1.000 09,B01B1,B1,a'1.000 22 and the falling segmen
2 for 1.0005'Ba,2,B01B1,B2,b'1.001. Similarly, the
rising segmenta occurs for 1.000 22'B1,a,B01B1,Ba,2

'1.0005 and the local maximumb for 1.001'B2,b,B0
1B1,Bb,3'1.001 35. According to the second rule, e.
the maximumc in Fig. 3~a! occurs atB0'1.0026'B3,c

1B1.
It should be noted that the above-mentioned relationsh

can be understood on the basis of the simple example
cussed in Sec. IV C. Let us try to justify the first rule. E.g.
narrow oscillation of^t& in Fig. 3~b! is the one with seg-
ments 1,a, and 2, and the width of its falling segmenta is
Ba,22B1,a52.831024!2B151.231023. The beginning of
the falling segmentB1,a in the example from Sec. IV C cor
responds toq50 and its endBa,2 to q5b. It follows from
Sec. IV C that a sharp maximum of the SNR should appea
B01B1'Ba,2'1.0005, which is in accordance with Fig
3~a!. To the left of the maximum the increase of the SN
should be observed, i.e., forB1,a'1.000 22,B01B1,Ba,2

@segmenta in Fig. 3~a!#. To the right of the maximum the
decrease of the SNR should be observed, i.e., forB01B1
.Ba,2 @segment 2 in Fig. 3~a!#. This is again in agreemen
with the numerical results in Sec. III and with the first he
ristic rule above. Now, let us consider the second rule.
wide falling segment in Fig. 3~b! is the segmentc, whose
width is greater than 2B1. The beginning of this segmen
B3,c in the example from Sec. IV C corresponds toq50,
thus a smooth maximum of the SNR should appear atB0
slightly aboveB05B3,c'1.002, again close to its true pos
tion atB0'1.0026 in Fig. 3~a! and close to the prediction o
the second heuristic rule above. The secondary maxim
the SNR that in Fig. 6~a! correspond to the top of the para
bolic segment leaving the stripe of the pseudobasin canno
seen in Fig. 3~a!, since the amplitude of periodic modulatio
is so large that they merged with the broad maxima.

APPENDIX B: EVALUATION OF THE FUNCTIONS IN
THE ANALYTIC FORMULA FOR THE SNR

The measure of the overlap of the parabolic segmentAk
and the half-planey.c can be for smallq01q1cosv0n
2(12dk,K11)aak2c approximated as

mk@c,n#5m̃kAq01q1cosv0n2~12dk,K11!aak2c

3Q@q01q1cosv0n2a~12dk,K11!ak2c#,

~B1!

where Q( ) is the Heaviside step function. It follows tha
mk@c,n# is an even, periodic function ofn. Its time average
m̄k(c) and its first Fourier coefficientMk,1(c) can be evalu-
ated analytically in the continuous time approximationn
→t.

To do this let us again consider the function~B1!. The
overlap of thekth parabolic segment and the half-planey
.c is nonzero during at least a part of the periodT0 if the
control parameter fulfils the conditionq0.q0,min5c1(1
2dk,K11)aak2q1. The overlap is nonzero during the who
period if q0.q0,f ull5c1(12dk,K11)aak1q1. Let us intro-
duce the timetk(c) defined so thatAk overlaps the half-
plane y.c for 0<t,tk(c) and T02tk(c),t<T0, i.e.,
5-8
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tk~c!5H v0
21arccos$@c2q01~12dk,K11!aak#/q1% if q0,min<q0<q0,f ull

T0/2 if q0.q0,f ull .
~B2!
via

d

-

tion
Let us also introduce the quantity

mk~c!5A2q1 /@q02~12dk,K11!aak1q12c#. ~B3!

The time average of the functionmk@c,t# @Eq. ~B1!# can be
then evaluated as

m̄k~c!5
1

T0
E

0

T0
mk@c,t#dt

5
2m̃k

p
Aq01q12~12dk,K11!aak2c

3EFv0

2
tk~c!,mk~c!G

3Q@q01q12~12dk,K11!aak2c#. ~B4!

Here E(f,m)5*0
f(12m2sin2x)1/2dx is the elliptic integral

of the second kind.
Similarly, the first Fourier coefficientMk,1(c) of the func-

tion mk@c,t# @Eq. ~B1!# can be evaluated as
v.

L.

tat

s.

02621
Mk,1~c!5
1

T0
E

0

T0
mk@c,t#cosv0tdt

5
2m̃k

p
Aq01q12~12dk,K11!aak2c

3H 22mk
2~c!

3mk
2~c!

EFv0

2
tk~c!,mk~c!G

2
222mk

2~c!

3mk
2~c!

FFv0

2
tk~c!,mk~c!G J

3Q@q01q12~12dk,K11!aak2c#. ~B5!

HereF(f,m)5*0
f(12m2sin2x)21/2dx is the elliptic integral

of the first kind.
We emphasise that in Eqs.~B4! and ~B5! the control pa-

rameterq0 appears not only via the square root but also
the functionstk @Eq. ~B2!# and mk @Eq. ~B3!#, which also
depend onq0 in a complicated way. It should be also note
that if q0.q0,f ull thenv0tk(c)/25p/2 and the elliptic inte-
grals in Eqs.~B4!,~B5! change into complete elliptic inte
grals. Besides, the results form̄k(c), Mk,1(c) do not depend
on v0 since in Eqs.~B4! and ~B5! v0 cancels withv0

21 in
the definition oftk(c) @Eq. ~B2!#.

The expressions for the coefficientsm̄kl andMkl,1 in Eq.
~15! in Sec. IV B can be obtained from Eqs.~B4! and ~B5!,
respectively. For this purpose one should use the defini
of mkl(n) @Eq. ~14!# and replacec in Eq. ~B4! and Eq.~B5!
by (12d l ,L11)(b lb2b lbE) or b lb.
i-
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