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Stochastic resonance and noise-enhanced order with spatiotemporal periodic signal

A. Krawiecki! A. Sukiennickil? and R. A. Kosiski*
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Department of Solid State Physics, University o0tz d>omorska 149/153, 90-283 i Poland
3Central Institute for Labour Protection, Czerniakowska 16, 00-701 Warsaw, Poland
(Received 15 June 20D0

Stochastic resonance is investigated in a chain of coupled threshold elements driven by independent noises
and a plane traveling wave. Both stochastic resonance in an individual element embedded in the chain,
characterized by a maximum of the signal-to-noise ratio for nonzero noise intensity, and stochastic resonance
with spatiotemporal signal, characterized by a maximum of the spatiotemporal input-output correlation func-
tion, are observed. For a wide range of wavelengths of the plane wave an optimum value of coupling exists for
which both kinds of stochastic resonance are most pronounced, i.e., the phenomenon of array enhanced
stochastic resonance is observed. For large wavelengths the enhancement of stochastic resonance coincides
with a maximum of spatiotemporal synchronization among elements with the same phase of the periodic signal
at inputs. This synchronization is a manifestation of spatiotemporal order induced in the system by the coop-
erative influence of noise and periodic signal.

PACS numbd(s): 05.40—a, 05.45.Ra

[. INTRODUCTION sults for spatial SR can be generalized to the case of a spa-
tiotemporal signal, e.g., a plane traveling wave in a bistable
Stochastic resonand8R) [1] is a phenomenon in which medium. SR with a signal like this was also investigated by
noise plays a constructive role by increasing the degree afs in a small system of two coupled threshold elements fed
periodicity of a properly defined output signal in a systemby periodic signals with identical amplitudes and frequen-
driven by a combination of a periodic signal and ndie a  cies, but shifted in phage8,29. In this case the enhance-
review, sed2,3]). A commonly used measure of SR is the ment of the SNR due to proper coupling and the presence of
signal-to-noise ratioSNR), evaluated from the output power a maximum of the spatiotemporal input-output correlation
spectral density, which shows a maximum as a function ofunction for nonzero input noise intensity were demonstrated
the input noise intensity. The models of SR most often studfor almost any phase shift between the two signals. The phe-
ied are based on bistable dynamical systg4is5] and both nomenon was called SR with spatiotemporal signal. These
dynamical [7-9] and nondynamical[10—-13 threshold- examples revealed an unusual feature of SR, namely, that
crossing systems. For a few years SR has been investigatedise can increase not only temporal order in the output time
in spatially extended systems also, under the general name séries of certain systems, but also spatial order in spatially
spatiotemporal SRfor a review, se¢14]), e.g., in chains of extended systems.
diffusively coupled stochastic bistable oscillatdis5,16, In this paper we extend our previous study of SR with
coupled map lattice$17], systems with soliton§18—20, spatiotemporal signal to the case of a chain of coupled
reaction-diffusion models[21], pattern-forming systems threshold elements. Such elements are known to exhibit SR
[22], and the Ising model23—29. In the case of coupled [10-13 and can be used for qualitative simulations of SR in
oscillators it was found that an optimum value of couplingbiological neuron modelgl3]. The spatiotemporal periodic
and optimum noise strength exist such that the maximum oignal is a plane traveling wave, and the elements are also
the SNR in every oscillator is most significantly enhanceddriven by independent noise sources. The study of this kind
over that in an uncoupled oscillator. This phenomenon if SR seems natural since signals at two distant points can be
called array enhanced SR5] and it occurs because all os- shifted in phase due to the finite velocity of the signal. Our
cillators then show maximum spatiotemporal synchronizainvestigations are based on numerical simulations and simple
tion with the input periodic signal and among themselves. Atheoretical considerations. First we show, for a wide range of
similar enhancement of SR due to proper ferromagnetic counavelengths of the signal, the effect of array enhanced SR,
pling was also observed in the Ising mod24]. i.e., the enhancement of SR in an individual element embed-
A common feature of the above-mentioned spatiotempoeled in the chain due to proper coupling. Second, we demon-
ral models is that the noise can be uncorrelated in both spacgrate SR with spatiotemporal signal characterized by the
and time, but the periodic signal oscillates only in time and ismaximum of the spatiotemporal input-output correlation
uniform in space. Only recently has the spatial counterpart ofunction for nonzero input noise intensity. Third, we present
SR with the signal constant in time and periodic in spaceevidence for an ordering effect of noise on the spatiotempo-
been demonstrated in the one-dimensional Ising mE@l  ral structure of the chain characterized by a maximum of a
and in the one- and two-dimensionaf model with advec- suitably defined spatial correlation function for nonzero
tion[27]. In this case the SNR is evaluated from the structurenoise intensity. Finally, we also explore the connection be-
factor and exhibits a maximum for nonzero noise intensitytween the spatiotemporal order induced by noise and the
[27]. Moreover, in Ref[27] it was pointed out that the re- enhancement of the SNR due to coupling.
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FIG. 1. The SNR vsD for
various wave vector& and cou-
pling constantsw, and for the
length of the chainN=128 and
period T,=128: (a) k=0, (b) k
=1/4, (c) k=7/2, (d) k=m. Nu-
merical results are shown with
symbols:((J) w=—1.5, (A) w=
-0.1, (+) w=1.0, (X) w=1.5.
Theoretical results are shown with

F~ +
g numbered solid lines:(1) w=
= -15, (2) w=-0.1, (3) w=1.0,
(4)w =1.5.
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Il. SYSTEM AND METHODS OF ANALYSIS c 1 Nil 0 0 <X51i)A sin(wsn— ki + ¢)>
We investigate a chain dfl coupled threshold elements NS T AR [((xD)2) —(x™y7)’

denoted a$, i=0,1,2 ... ,N—1, with two-state output O or (2)

1. The coupling is typical of artificial neural networks, sym-

metric and constrained to nearest neighbors. The time stepghere the angular brackets denote the time average. The

n=0,1,2 ... arediscrete, which significantly speeds up nu- functions C") are obtained under the assumption that the

merical simulations while retaining intact the basic featuregnean value of the periodic signal at the input of every ele-

of SR[9,17]. The chain is driven by a plane traveling wave ment is zero and the mean value of the square of this signal

with amplitudeA, frequencyws, period Ts=2m/ws, wave  is A%/2.

vectork, and wavelengtih = 27/k. In addition, the elements Further, we introduce the idea of spatiotemporal noise-

are driven by independent white Gaussian noiggs with  induced order as a concept concerning the varying in space

varianceD. The system dynamics is given by and time of the chain. As a measure of this order we take the
mutual correlation function between elements, averaged over
all pairs of elements with the same phase of the periodic

Xg)+1:® Asin(wgn—ki+ ¢) + 7 signal at inputs,

n

1 o
Couw=—— E Csrlfdt)v

4SO D)~ & NN (o
o) )
C(i’j)z <Xn xnJ >
=, "D =6 )

where in the cas&+#0 the sum extends over all pairs of
elements such théit— j|=m\, m=0,1,2 ... N’, and in the
casek=0 over all pairs. By definitiorC,,,; is a measure of
spatiotemporal synchronization among elements with the
) ) - ; g same phase of the periodic signal at inputs. The maximum of
chain N is an integer multiple of the wavelength, L&,  the spatiotemporal noise-induced order coincides with the
=NA. maximum of this correlation function for nonzero noise. This

As a measure of SR in an individual element we take theymphasizes that the increase of order is a cooperative effect
SNR (R) in the middle element of the chain, obtained from 4 ngise and the spatiotemporal periodic signal. In the most

the power spectral densify(w) of its output signal and de-  grdered state, defined in such a way, the character of the
fined as R=1010gd Sp(ws)/Sy(ws)]. Here Sp(ws)  plane traveling wave is best reflected in the activity of the
=S(ws) — Sy(ws) is the height of the peak ab=ws and  glements of the chain.
Sn(ws) Is the noise background in the vicinity afs. In our
numerical simulations the SNR is normalized to the fre-
quency bandwidthA f=2"12 Hz.

As a measure of SR with spatiotemporal signal we take In this section we present a simple extension of the theory
the correlation function between the spatiotemporal periodiof SR in threshold elements with discrete tifie?] to the
input signal and the output signal, case of a chain of coupled elements. The method of dealing

wherexﬁ') is the output of the elementt timen, O (-) is the
Heaviside step functionp is the initial phasew is the cou-
pling strength, andb is the threshold. The periodic signal is
assumed as subthreshold with<b, and the length of the

lll. SIMPLIFIED ADIABATIC THEORY



STOCHASTIC RESONANCE AND NOISE-ENHANCE.. . .

7685

FIG. 2. C vs D for various
wave vectorsk and coupling con-
stantsw, and for the length of the
chain N=128 and period T

=128: (a) k=0, (b) k=m/4, (¢
k=/2, (d) k=a. Numerical re-
sults are shown with symbolé1)
w=-15, (A) w=-0.1, (+) w
=1.0, (X) w=1.5. Theoretical re-
sults are shown with numbered
solid lines: (1) w=—-1.5, (2) w
=-0.1, (3) w=1.0, (4) w=1.5.

with this problem is similar to that used previously for two
coupled elementf28,29. The quantities SNR an@ can be
evaluated provided the time-dependent probability bt#it
=1, denoted as Px{’=1), is known. This probability is
obtained here under certain simplifying assumptions.
The starting point is the equation for the complete prob-

ability thatx("=1,

Prx{)  =1)=Prx{)  =1|xi V=1x{"D=1)

XPrix{ V=1x{*V=1)+...

+Pr(x) = 10x{ " P=0x{""=0)

X Prix{"V=0x{*1=0). (4
Henceforth, for a given elementthe following notation will
be used: p(n)=Prx{’=1) and M4z, (n)=Prx{),
=1|xi"V=p8,x0"D=1), where B8,ye{0,1}. The condi-
tional probabilities can easily be evaluated analytically:

Iz . (n)=0.51—erf{[b— (5,5, )W/2
—Asin(wgn—ki+ $)1/\2D?}), 5)

whered; , is the Kronecker delta.

In order to solve Eq(4) for p(n) the following assump-

tions are made. First, only the adiabatic limit— 0 is con-

p(n)=ﬁz Mg (N)[ g0~ (—1)Pp(n+kiwy)]
Y

X[8,0=(—=1)"p(n— Kl wy)]. (6)

Equation(6) is a nonlinear difference equation which, to
our knowledge, cannot be solved analytically fp(n).
However, numerical solution is possible using the iterative
method. At the first iteration an approximate solution for
p(n) is assumed as for an uncoupled element,

p(n)=0.51—erf{[b—Asin(wsn—Kki+ ¢)]/\/2D7}).
(7)

Next, this solution is inserted on the RHS of Ef) and the
approximate solution in the second iteration is obtained. This
procedure is repeated up to a moment when the consecutive
iterated solutions do not change significantly. This usually
requires several iterations, apart from the limit of very small
noise intensityD in which the convergence of the method is
very poor. Thus the results of this procedure are not reliable
for D—0 and they are not discussed in the following.
According to Ref.[12] the SNR can be evaluated from

p(n) as

sidered. Then it is possible to assume on the left-hand side

(LHS) of Eq. (4) thatp(n+1)=p(n). Since the input signal
is periodic in both space and time it is also possible to as-

R=10log, [Paf* 8
- OT
(p—p*)Af
whereP; is the first Fourier coefficient gb(n),
Te—1
Pi=To" 2, p(n)expl —iwgn), 9

sume that the probabilities to have 1 as the output for the

elementsi—1 andi+1 are given byp(n+k/wg) and p(n

—k/wg), respectively. Second, to obtain the joint probabili-
ties on the RHS of Eq4) the approximation that the random
variablesx!! “ andx{ *¥) are independent is implemented;

thus, e.g., P V=1x{"Y=1)=p(n+k/wgp(n

—kl/wg). The latter assumption is valid only in the limit of

smallw. Taking into account that Pxf)=0)=1-p(n), Eq.
(4) can be rewritten as

and the overbar denotes the time average dverThe re-
sulting SNR is independent of which reflects the fact that
all elements are equivalent due to periodic boundary condi-
tions and the assumption that an integer number of wave-
lengths is contained inside the chain. However, it should be
pointed out that Eq(8) is exact only in the case of an un-
coupled threshold element driven by a sum of a periodic
signal and white noisgl2]. Thus in our case Ed8) is only
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approximate since the total random input to elementEq.  put signal of an individual element embedded in the chain
(1) consists of a sum of white noisg) and nonwhite noise  will be amplified and the SNR will increase due to coupling.
w(xi D+ x0+y2 - which is, moreover, correlated with Similar arguments apply to the other above-mentioned cases.

x{). A limiting case is the one with= 7/2 for which, in fact, the
The correlation function€(" can also be evaluated using dependence of the SNR onis weak[Fig. 1(c)]. It can also
p(n) since be seen that for €k</4 an optimum value of coupling
_ _ _ Wopi>0 exists for which the maximum of the SNR reaches
<Xﬂ)>=<(xﬁ'))2>= p, its highest possible value, i.e., SR in an individual element is
_ (100  enhanced due to proper couplififig. 1(a,p]. This is in
(xﬂ)A sin(wsn—Ki+ ¢))=Asin(wsn—Kki+ ¢)p(n). analogy with array enhanced SR in systems with periodic

signal uniform in spac¢l15,16,24. For this optimum cou-
This result also does not depend band thus one get€ pling the maximum of the SNR occurs for very smallso
=cl, that the SR effect almost disappears. The fact that the maxi-
Equations(8) and(10) enable us to evaluate the SNR and mum is nevertheless retained, i.e., that the SNR decreases to
C semianalytically. It should be recollected that due to thezero forD—0, is caused by the deterministic dynamics of
assumptions made these equations are exact only in the limite chain, which becomes important for=1 in the limit of

ws—0, w—0, and not too smalD. negligible noise. Fok= 7 the SNR increases fan— —oc;
however, the increase of the maximum of the SNR is very
IV. RESULTS AND DISCUSSION small[Fig. 1(d)].

Comparison between the numerical and theoretical results
shows that the theory of Sec. Il predicts the dependence of

In this section SR in an individual element embedded inthe SNR onD quite well in the following cases: for large
the chain characterized by the SNR is discussed. The nin the whole range ok andw, for w<0 in the whole range
merical and theoretical results obtained for a chain Wth of k and D, and fork= 1 in the whole range oD andw.
=128 are summarized in Fig. 1 for various wave vectors Moreover, the increase of the SNR forsk< /4 andw
and couplingsw. The values of the SNR were obtained for >0 or k=7 andw<0, and the decrease of the SNR for 0
the middle element of the chain with=63. <k=m/4 andw<0 or k=7 andw>0 in comparison with

First, the numerical results are discussed. In general it cathe SNR in an uncoupled element, are predicted correctly for
be seen from Fig. 1 that if€k= 7/4 then positive coupling anyk andD. This is so because in Sec. Il it was assumed
increases the SNR and negative coupling decreadésgit  that the probabilities of neighboring elements having 1 at the
1(a,b] and ifk= 7 then positive coupling decreases the SNRoutput are shifted in phase Wy thus the theory takes into
and negative coupling increase$hig. 1(d)]. This is because account the above-discussed mechanism of amplification of
w>0 increases the probability of two coupled elements havthe periodic component of the output signal due to coupling.
ing the same outputs antl<O increases the probability of However, the theoretical curves of the SNR have a tendency
having opposite outputs. For example, let us consider théo diverge in the limitD—0 for 0<k=<#/4 and large posi-
case G=k=/4 in which the periodic signals at input of tive couplingw=1 [Fig. 1(a,b] (up to the accuracy of the
neighboring elements has the same sign during most of theumerical procedure used to obtain them, discussed in Sec.
periodTs. Then itis clear that ifv>0 two coupled elements Ill). This means that although, e.g., the increase of the SNR
will mutually increase their probabilities to have 1 at thefor k=0 andw=1 is predicted correctly, the effect of array
output while the periodic signal at the inputs of both ele-enhanced SR is not predicted; instead, monotonic decrease of
ments is positive. Hence the periodic component of the outthe SNR and thus disappearance of SR can be expHeigd

A. Stochastic resonance in an individual element
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FIG. 4. Spatiotemporal dia-
grams for a chain oN=128 ele-
ments driven by a plane traveling
wave with Tg=128 and for vari-
ousw, k, andD. From left to right
and from top to bottomw= 1.0,
k=m/2, D=0.05(small SNR and
C), w=1.0, k==/2, D=0.23
(maximum C), w=1.0, k= /2,
D=0.37 (maximum SNR, w
=1.0, k==/2, D=1.20 (small
SNR andC), w=1.2, k=/4, D
=0.05 (maximum SNR w=1.0,
k=0, D=0.05 (maximum SNR.
White points correspond to ele-
ments with output 1, gray points
to elements with output 0. If the
SNR or C is at a maximum the
ordering effect of nonzero noise
can be seen, i.e., the shape of the
plane traveling wave is best vis-
ible.
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0 128 256 384 512 640 768 896 1024
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1(a)]. This discrepancy between the numerical and theoreti- The theoretical results fo€ in the whole range oD, w,
cal results occurs since in the limit of vanishing noise theandk usually fit the numerical ones better than in the case of
system dynamics becomes purely deterministic, which is nothe SNR. This is because in the evaluation®from Eq.
taken into consideration in the theory of Sec.(#lg., in the  (10) only the approximations necessary for the derivation of
case of deterministic dynamics the variabbe#‘l) and  Eq. (6) are important, while in the case of the SNR E8).
xﬂ“) cannot be approximately treated as independent varirequires additional assumptions. Nevertheless, the theoretical
ables. curvesC again do not show maxima for<0k= /4 andw
~1. Hence, as in the case of SR in an individual element,
B. Stochastic resonance with spatiotemporal signal the increase ofC is predicted correctly for such values of
coupling, but the enhancement of $®ith maximum ofC

In this section SR with spatiotemporal signal character~fOr nonzeroD) is not predicted

ized by the correlation functio@ is discussed. The numeri-
cal and theoretical results are summarized in Fig. 2 in a
manner analogous to that in Fig. 1.

The results of numerical simulations show that SR with In this section the spatiotemporal noise-induced order
spatiotemporal signal can be observed for dnyi.e., the characterized by the correlation functi@y,, is discussed.
curves ofC vs D show maxima. Also, for &k=<s/2 an  The numerical curve€,,; vs D are shown in Fig. 3 for the
optimum value of coupling exists for which the maximum of same values df andw as in Fig. 1 and Fig. 2. It can be seen
the correlation function reaches its highest possible valughat these curves for all exhibit maxima for nonzero noise
Hence SR with spatiotemporal signal can also be enhanceddtensity. The presence of these maxima provides evidence
due to proper coupling. The dependenceCobn D andw  for the noise-induced order that emerges in the system due to
resembles the dependence of the SNR, e.g., fok€w/2  the cooperative influence of the spatiotemporal subthreshold
the values ofw,, are the same for both kinds of SR. There periodic signal and noise. This order results in the maximum
are, however, several notable differences. First, SR with spapatiotemporal synchronization among elements with the
tiotemporal signal can be enhanced due to coupling althougsame phase of the periodic signal at inputs. Ferkes /2
SR in an individual element is not enhanded. Fig. 1(c) an optimum value of coupling exists for which the maximum
and Fig. 2c) for k==/2]. Second, the location of the of C reaches the highest possible value, while Ker
maxima of the curves of SNR \B andC vs D for optimum  the values ofC,, increase forw—0, but with no visible
coupling need not coincidef. Fig. 1(a) and Fig. 2a)]. This  increase of the maximum. Forstk< /4 the value of this
is because the SNR and the correlation funct@nare sen-  optimum coupling and the location of the maximum@#,,;
sitive to different properties of the output signal. coincide with those for which SR in an individual element is

C. Spatiotemporal noise-induced order
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most pronouncedicf. Fig. 3a,b and Fig. 1a,b]. Thus, for and a global measure of periodicity of the output signal,
long-wave periodic signals, the situation is analogous to thatespectively. It was shown that both kinds of SR can be
in the case of array enhanced SR with a periodic signal unienhanced due to proper coupling for a wide range of wave-
form in space: the maximum spatiotemporal synchronizationengths of the periodic signal. This effect is a counterpart of
corresponds to the maximum enhancement of SR in an indihe array enhanced SR effect for spatiotemporal periodic sig-
vidual element. However, for short-wave periodic signalsnals. It was also shown that for long-wave signals the en-
e.g., withk= /2, a maximum spatiotemporal synchroniza- hancement of SR in an individual element is related to maxi-
tion occurs[Fig. 3(c)] although there is no enhancement of Mum spatiotemporal noise-induced order in the system, i.e.,
SR in an individual elemerFig. 1(c)]; thus, these two phe- Maximum synchronization among elements with the same
nomena are independent. In this case the maximum spati®hase of the periodic signal at input. This relationship disap-
temporal synchronization corresponds rather to the best efears for short-wave periodic signals, i.e., these two phe-
hancement of SR with spatiotemporal signal due to couplinglomena occur independently and for different noise intensi-
[Fig. Zc)]. tes. _ : o

In a more spectacular way the noise-induced order can be It is known that noise can increase the periodicity of the
viewed using spatiotemporal diagrartf&g. 4). Even in the temporal response of spatiotemporal systems to perturbations
casek= /2, in which SR is rather weak, for moderate noiseSPatially uniform and periodic in timfL5,16), or the period-
that maximizes the SNR @& the shape of the traveling wave ICity of.spatlal response to pe@urbauon; constant in time and
is easily visible while for small and large noise it is distorted. Periodic in spacg¢26,27. In this paper it has been demon-
In the case&<= /4 the ordering effect of noise is much more Strated that this is also the case for signals periodic in both
pronounced. It follows from Fig. 4 that in the state of maxi- SPace and time, in accordance with suggestions in [Refs:
mum spatiotemporal order induced by nonzero noise th@9). It was also shown that noise can play a constructive role
character of the plane traveling wave is best reflected in th8Y increasing spatiotemporal order in spatially extended sys-

activity of the elements of the chain. tems driven by weak periodic spatiotemporal signals. This
order means that the character of the plane traveling wave is
V. SUMMARY AND CONCLUSIONS best reflected in the activity of the elements of the chain.

Spatiotemporal SR is usually investigated in spatially ex-
In this paper we investigated SR in the case of a spatiotended bistable systenm45-17,23-2F. Our results show

temporal periodic signal, i.e., a signal that is periodic in boththat chains of threshold elements can be used for this pur-
time and space. As a model for this phenomenon we studiepose also. It follows from the results of this paper and of Ref.
a chain of coupled threshold elements driven by a plane traJ27] that SR with a spatiotemporal signal should be a ubig-
eling wave and independent noises. Two kinds of SR weraitous phenomenon and thus investigations in, e.g., bistable
studied: SR in an individual element embedded in the chairr chaotic spatiotemporal systems should further clarify its
and SR with a spatiotemporal signal, characterized by a localroperties.
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