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Stochastic resonance and noise-enhanced order with spatiotemporal periodic signal
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3Central Institute for Labour Protection, Czerniakowska 16, 00-701 Warsaw, Poland
~Received 15 June 2000!

Stochastic resonance is investigated in a chain of coupled threshold elements driven by independent noises
and a plane traveling wave. Both stochastic resonance in an individual element embedded in the chain,
characterized by a maximum of the signal-to-noise ratio for nonzero noise intensity, and stochastic resonance
with spatiotemporal signal, characterized by a maximum of the spatiotemporal input-output correlation func-
tion, are observed. For a wide range of wavelengths of the plane wave an optimum value of coupling exists for
which both kinds of stochastic resonance are most pronounced, i.e., the phenomenon of array enhanced
stochastic resonance is observed. For large wavelengths the enhancement of stochastic resonance coincides
with a maximum of spatiotemporal synchronization among elements with the same phase of the periodic signal
at inputs. This synchronization is a manifestation of spatiotemporal order induced in the system by the coop-
erative influence of noise and periodic signal.

PACS number~s!: 05.40.2a, 05.45.Ra
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I. INTRODUCTION

Stochastic resonance~SR! @1# is a phenomenon in which
noise plays a constructive role by increasing the degre
periodicity of a properly defined output signal in a syste
driven by a combination of a periodic signal and noise~for a
review, see@2,3#!. A commonly used measure of SR is th
signal-to-noise ratio~SNR!, evaluated from the output powe
spectral density, which shows a maximum as a function
the input noise intensity. The models of SR most often st
ied are based on bistable dynamical systems@4–6# and both
dynamical @7–9# and nondynamical@10–13# threshold-
crossing systems. For a few years SR has been investig
in spatially extended systems also, under the general nam
spatiotemporal SR~for a review, see@14#!, e.g., in chains of
diffusively coupled stochastic bistable oscillators@15,16#,
coupled map lattices@17#, systems with solitons@18–20#,
reaction-diffusion models@21#, pattern-forming systems
@22#, and the Ising model@23–25#. In the case of coupled
oscillators it was found that an optimum value of coupli
and optimum noise strength exist such that the maximum
the SNR in every oscillator is most significantly enhanc
over that in an uncoupled oscillator. This phenomenon
called array enhanced SR@15# and it occurs because all os
cillators then show maximum spatiotemporal synchroni
tion with the input periodic signal and among themselves
similar enhancement of SR due to proper ferromagnetic c
pling was also observed in the Ising model@24#.

A common feature of the above-mentioned spatiotem
ral models is that the noise can be uncorrelated in both sp
and time, but the periodic signal oscillates only in time and
uniform in space. Only recently has the spatial counterpar
SR with the signal constant in time and periodic in spa
been demonstrated in the one-dimensional Ising model@26#
and in the one- and two-dimensionalf4 model with advec-
tion @27#. In this case the SNR is evaluated from the struct
factor and exhibits a maximum for nonzero noise intens
@27#. Moreover, in Ref.@27# it was pointed out that the re
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sults for spatial SR can be generalized to the case of a
tiotemporal signal, e.g., a plane traveling wave in a bista
medium. SR with a signal like this was also investigated
us in a small system of two coupled threshold elements
by periodic signals with identical amplitudes and freque
cies, but shifted in phase@28,29#. In this case the enhance
ment of the SNR due to proper coupling and the presenc
a maximum of the spatiotemporal input-output correlati
function for nonzero input noise intensity were demonstra
for almost any phase shift between the two signals. The p
nomenon was called SR with spatiotemporal signal. Th
examples revealed an unusual feature of SR, namely,
noise can increase not only temporal order in the output t
series of certain systems, but also spatial order in spati
extended systems.

In this paper we extend our previous study of SR w
spatiotemporal signal to the case of a chain of coup
threshold elements. Such elements are known to exhibit
@10–13# and can be used for qualitative simulations of SR
biological neuron models@13#. The spatiotemporal periodic
signal is a plane traveling wave, and the elements are
driven by independent noise sources. The study of this k
of SR seems natural since signals at two distant points ca
shifted in phase due to the finite velocity of the signal. O
investigations are based on numerical simulations and sim
theoretical considerations. First we show, for a wide range
wavelengths of the signal, the effect of array enhanced
i.e., the enhancement of SR in an individual element emb
ded in the chain due to proper coupling. Second, we dem
strate SR with spatiotemporal signal characterized by
maximum of the spatiotemporal input-output correlati
function for nonzero input noise intensity. Third, we prese
evidence for an ordering effect of noise on the spatiotem
ral structure of the chain characterized by a maximum o
suitably defined spatial correlation function for nonze
noise intensity. Finally, we also explore the connection
tween the spatiotemporal order induced by noise and
enhancement of the SNR due to coupling.
7683 ©2000 The American Physical Society
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FIG. 1. The SNR vsD for
various wave vectorsk and cou-
pling constantsw, and for the
length of the chainN5128 and
period Ts5128: ~a! k50, ~b! k
5p/4, ~c! k5p/2, ~d! k5p. Nu-
merical results are shown with
symbols:~h! w521.5, ~n! w5
20.1, ~1! w51.0, ~3! w51.5.
Theoretical results are shown wit
numbered solid lines:~1! w5
21.5, ~2! w520.1, ~3! w51.0,
(4)w 51.5.
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II. SYSTEM AND METHODS OF ANALYSIS

We investigate a chain ofN coupled threshold element
denoted asi, i 50,1,2, . . . ,N21, with two-state output 0 or
1. The coupling is typical of artificial neural networks, sym
metric and constrained to nearest neighbors. The time s
n50,1,2, . . . arediscrete, which significantly speeds up n
merical simulations while retaining intact the basic featu
of SR @9,17#. The chain is driven by a plane traveling wav
with amplitudeA, frequencyvs , periodTs52p/vs , wave
vectork, and wavelengthl52p/k. In addition, the elements
are driven by independent white Gaussian noiseshn

( i ) with
varianceD. The system dynamics is given by

xn11
( i ) 5QFA sin~vsn2ki1f!1hn

( i )

1
w

2
~xn

( i 21)1xn
( i 11)!2bG , ~1!

xn
(0)5xn

(N21) ,

wherexn
( i ) is the output of the elementi at timen, Q(•) is the

Heaviside step function,f is the initial phase,w is the cou-
pling strength, andb is the threshold. The periodic signal
assumed as subthreshold withA,b, and the length of the
chain N is an integer multiple of the wavelength, i.e.,N
5N8l.

As a measure of SR in an individual element we take
SNR (R) in the middle element of the chain, obtained fro
the power spectral densityS(v) of its output signal and de
fined as R510 log10@SP(vs)/SN(vs)#. Here SP(vs)
5S(vs)2SN(vs) is the height of the peak atv5vs and
SN(vs) is the noise background in the vicinity ofvs . In our
numerical simulations the SNR is normalized to the f
quency bandwidthD f 52212 Hz.

As a measure of SR with spatiotemporal signal we ta
the correlation function between the spatiotemporal perio
input signal and the output signal,
ps

s

e

-

e
ic

C5
1

N (
i 50

N21

C( i ), C( i )5
^xn

( i )A sin~vsn2ki1f!&

A~A2/2!@^~xn
( i )!2&2^xn

( i )&2#
,

~2!

where the angular brackets denote the time average.
functions C( i ) are obtained under the assumption that
mean value of the periodic signal at the input of every e
ment is zero and the mean value of the square of this sig
is A2/2.

Further, we introduce the idea of spatiotemporal noi
induced order as a concept concerning the varying in sp
and time of the chain. As a measure of this order we take
mutual correlation function between elements, averaged o
all pairs of elements with the same phase of the perio
signal at inputs,

Cmut5
1

NN8
(
$ i , j %

Cmut
( i , j ) ,

~3!

Cmut
( i , j )5

^xn
( i )xn

( j )&

A@^~xn
( i )!2&2^xn

( i )&2#@^~xn
( j )!2&2^xn

( j )&2#
,

where in the casekÞ0 the sum extends over all pairs o
elements such thatu i 2 j u5ml, m50,1,2, . . . ,N8, and in the
casek50 over all pairs. By definitionCmut is a measure of
spatiotemporal synchronization among elements with
same phase of the periodic signal at inputs. The maximum
the spatiotemporal noise-induced order coincides with
maximum of this correlation function for nonzero noise. Th
emphasizes that the increase of order is a cooperative e
of noise and the spatiotemporal periodic signal. In the m
ordered state, defined in such a way, the character of
plane traveling wave is best reflected in the activity of t
elements of the chain.

III. SIMPLIFIED ADIABATIC THEORY

In this section we present a simple extension of the the
of SR in threshold elements with discrete time@12# to the
case of a chain of coupled elements. The method of dea



d

PRE 62 7685STOCHASTIC RESONANCE AND NOISE-ENHANCED . . .
FIG. 2. C vs D for various
wave vectorsk and coupling con-
stantsw, and for the length of the
chain N5128 and period Ts

5128: ~a! k50, ~b! k5p/4, ~c!
k5p/2, ~d! k5p. Numerical re-
sults are shown with symbols:~h!
w521.5, ~n! w520.1, ~1! w
51.0, ~3! w51.5. Theoretical re-
sults are shown with numbere
solid lines: ~1! w521.5, ~2! w
520.1, ~3! w51.0, ~4! w51.5.
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with this problem is similar to that used previously for tw
coupled elements@28,29#. The quantities SNR andC can be
evaluated provided the time-dependent probability thatxn

( i )

51, denoted as Pr(xn
( i )51), is known. This probability is

obtained here under certain simplifying assumptions.
The starting point is the equation for the complete pro

ability that xn
( i )51,

Pr~xn11
( i ) 51!5Pr~xn11

( i ) 51uxn
( i 21)51,xn

( i 11)51!

3Pr~xn
( i 21)51,xn

( i 11)51!1•••

1Pr~xn11
( i ) 51uxn

( i 21)50,xn
( i 11)50!

3Pr~xn
( i 21)50,xn

( i 11)50!. ~4!

Henceforth, for a given elementi, the following notation will
be used: p(n)5Pr(xn

( i )51) and Pb,g(n)5Pr(xn11
( i )

51uxn
( i 21)5b,xn

( i 11)5g), where b,gP$0,1%. The condi-
tional probabilities can easily be evaluated analytically:

Pb,g~n!50.5„12erf $@b2~db,11dg,1!w/2

2A sin~vsn2ki1f!#/A2D2 %…, ~5!

wheredj,z is the Kronecker delta.
In order to solve Eq.~4! for p(n) the following assump-

tions are made. First, only the adiabatic limitvs→0 is con-
sidered. Then it is possible to assume on the left-hand
~LHS! of Eq. ~4! thatp(n11)5p(n). Since the input signa
is periodic in both space and time it is also possible to
sume that the probabilities to have 1 as the output for
elementsi 21 and i 11 are given byp(n1k/vs) and p(n
2k/vs), respectively. Second, to obtain the joint probab
ties on the RHS of Eq.~4! the approximation that the random
variablesxn

( i 21) andxn
( i 11) are independent is implemente

thus, e.g., Pr(xn
( i 21)51,xn

( i 11)51)5p(n1k/vs)p(n
2k/vs). The latter assumption is valid only in the limit o
smallw. Taking into account that Pr(xn

( i )50)512p(n), Eq.
~4! can be rewritten as
-

de

-
e

p~n!5(
b,g

Pb,g~n!@db,02~21!bp~n1k/vs!#

3@dg,02~21!gp~n2k/vs!#. ~6!

Equation~6! is a nonlinear difference equation which,
our knowledge, cannot be solved analytically forp(n).
However, numerical solution is possible using the iterat
method. At the first iteration an approximate solution f
p(n) is assumed as for an uncoupled element,

p~n!50.5„12erf $@b2A sin~vsn2ki1f!#/A2D2 %….
~7!

Next, this solution is inserted on the RHS of Eq.~6! and the
approximate solution in the second iteration is obtained. T
procedure is repeated up to a moment when the consec
iterated solutions do not change significantly. This usua
requires several iterations, apart from the limit of very sm
noise intensityD in which the convergence of the method
very poor. Thus the results of this procedure are not relia
for D→0 and they are not discussed in the following.

According to Ref.@12# the SNR can be evaluated from
p(n) as

R510 log10

uP1u2

~ p̄2 p̄2!D f
~8!

whereP1 is the first Fourier coefficient ofp(n),

P15Ts
21 (

n50

Ts21

p~n!exp~2 ivsn!, ~9!

and the overbar denotes the time average overTs . The re-
sulting SNR is independent ofi, which reflects the fact tha
all elements are equivalent due to periodic boundary con
tions and the assumption that an integer number of wa
lengths is contained inside the chain. However, it should
pointed out that Eq.~8! is exact only in the case of an un
coupled threshold element driven by a sum of a perio
signal and white noise@12#. Thus in our case Eq.~8! is only
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FIG. 3. Numerical curvesCmut

vs D for various wave vectorsk
and coupling constantsw, and for
the length of the chainN5128
and periodTs5128: ~a! k50, ~b!
k5p/4, ~c! k5p/2, ~d! k5p;
~h! w521.5, ~n! w520.1, ~1!
w51.0, ~3! w51.5.
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approximate since the total random input to elementi in Eq.
~1! consists of a sum of white noisehn

( i ) and nonwhite noise
w(xn

( i 21)1xn
( i 11))/2, which is, moreover, correlated wit

xn
( i ) .

The correlation functionsC( i ) can also be evaluated usin
p(n) since

^xn
( i )&5^~xn

( i )!2&5 p̄,
~10!

^xn
( i )A sin~vsn2ki1f!&5A sin~vsn2ki1f!p~n!.

This result also does not depend oni and thus one getsC
5C( i ).

Equations~8! and~10! enable us to evaluate the SNR a
C semianalytically. It should be recollected that due to
assumptions made these equations are exact only in the
vs→0, w→0, and not too smallD.

IV. RESULTS AND DISCUSSION

A. Stochastic resonance in an individual element

In this section SR in an individual element embedded
the chain characterized by the SNR is discussed. The
merical and theoretical results obtained for a chain withN
5128 are summarized in Fig. 1 for various wave vectork
and couplingsw. The values of the SNR were obtained f
the middle element of the chain withi 563.

First, the numerical results are discussed. In general it
be seen from Fig. 1 that if 0<k<p/4 then positive coupling
increases the SNR and negative coupling decreases it@Fig.
1~a,b!# and if k5p then positive coupling decreases the SN
and negative coupling increases it@Fig. 1~d!#. This is because
w.0 increases the probability of two coupled elements h
ing the same outputs andw,0 increases the probability o
having opposite outputs. For example, let us consider
case 0<k<p/4 in which the periodic signals at input o
neighboring elements has the same sign during most of
periodTs . Then it is clear that ifw.0 two coupled elements
will mutually increase their probabilities to have 1 at t
output while the periodic signal at the inputs of both e
ments is positive. Hence the periodic component of the o
e
it

n
u-

n

-

e

he

-
t-

put signal of an individual element embedded in the ch
will be amplified and the SNR will increase due to couplin
Similar arguments apply to the other above-mentioned ca
A limiting case is the one withk5p/2 for which, in fact, the
dependence of the SNR onw is weak@Fig. 1~c!#. It can also
be seen that for 0<k<p/4 an optimum value of coupling
wopt.0 exists for which the maximum of the SNR reach
its highest possible value, i.e., SR in an individual elemen
enhanced due to proper coupling@Fig. 1~a,b!#. This is in
analogy with array enhanced SR in systems with perio
signal uniform in space@15,16,24#. For this optimum cou-
pling the maximum of the SNR occurs for very smallD so
that the SR effect almost disappears. The fact that the m
mum is nevertheless retained, i.e., that the SNR decreas
zero for D→0, is caused by the deterministic dynamics
the chain, which becomes important forw'1 in the limit of
negligible noise. Fork5p the SNR increases forw→2`;
however, the increase of the maximum of the SNR is v
small @Fig. 1~d!#.

Comparison between the numerical and theoretical res
shows that the theory of Sec. III predicts the dependenc
the SNR onD quite well in the following cases: for largeD
in the whole range ofk andw, for w,0 in the whole range
of k and D, and for k5p in the whole range ofD and w.
Moreover, the increase of the SNR for 0<k<p/4 and w
.0 or k5p andw,0, and the decrease of the SNR for
<k<p/4 andw,0 or k5p andw.0 in comparison with
the SNR in an uncoupled element, are predicted correctly
any k and D. This is so because in Sec. III it was assum
that the probabilities of neighboring elements having 1 at
output are shifted in phase byk; thus the theory takes into
account the above-discussed mechanism of amplificatio
the periodic component of the output signal due to coupli
However, the theoretical curves of the SNR have a tende
to diverge in the limitD→0 for 0,k<p/4 and large posi-
tive couplingw>1 @Fig. 1~a,b!# ~up to the accuracy of the
numerical procedure used to obtain them, discussed in
III !. This means that although, e.g., the increase of the S
for k50 andw51 is predicted correctly, the effect of arra
enhanced SR is not predicted; instead, monotonic decrea
the SNR and thus disappearance of SR can be expected@Fig.
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FIG. 4. Spatiotemporal dia-
grams for a chain ofN5128 ele-
ments driven by a plane travelin
wave with Ts5128 and for vari-
ousw, k, andD. From left to right
and from top to bottom:w51.0,
k5p/2, D50.05 ~small SNR and
C), w51.0, k5p/2, D50.23
~maximum C), w51.0, k5p/2,
D50.37 ~maximum SNR!, w
51.0, k5p/2, D51.20 ~small
SNR andC), w51.2, k5p/4, D
50.05 ~maximum SNR! w51.0,
k50, D50.05 ~maximum SNR!.
White points correspond to ele
ments with output 1, gray points
to elements with output 0. If the
SNR or C is at a maximum the
ordering effect of nonzero noise
can be seen, i.e., the shape of t
plane traveling wave is best vis
ible.
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1~a!#. This discrepancy between the numerical and theor
cal results occurs since in the limit of vanishing noise
system dynamics becomes purely deterministic, which is
taken into consideration in the theory of Sec. III~e.g., in the
case of deterministic dynamics the variablesxn

( i 21) and
xn

( i 11) cannot be approximately treated as independent v
ables!.

B. Stochastic resonance with spatiotemporal signal

In this section SR with spatiotemporal signal charact
ized by the correlation functionC is discussed. The numer
cal and theoretical results are summarized in Fig. 2 in
manner analogous to that in Fig. 1.

The results of numerical simulations show that SR w
spatiotemporal signal can be observed for anyk, i.e., the
curves ofC vs D show maxima. Also, for 0<k<p/2 an
optimum value of coupling exists for which the maximum
the correlation function reaches its highest possible va
Hence SR with spatiotemporal signal can also be enhan
due to proper coupling. The dependence ofC on D and w
resembles the dependence of the SNR, e.g., for 0<k,p/2
the values ofwopt are the same for both kinds of SR. The
are, however, several notable differences. First, SR with s
tiotemporal signal can be enhanced due to coupling altho
SR in an individual element is not enhanced@cf. Fig. 1~c!
and Fig. 2~c! for k5p/2#. Second, the location of th
maxima of the curves of SNR vsD andC vs D for optimum
coupling need not coincide@cf. Fig. 1~a! and Fig. 2~a!#. This
is because the SNR and the correlation function~2! are sen-
sitive to different properties of the output signal.
ti-
e
ot

ri-

-

a

e.
ed

a-
h

The theoretical results forC in the whole range ofD, w,
andk usually fit the numerical ones better than in the case
the SNR. This is because in the evaluation ofC from Eq.
~10! only the approximations necessary for the derivation
Eq. ~6! are important, while in the case of the SNR Eq.~8!
requires additional assumptions. Nevertheless, the theore
curvesC again do not show maxima for 0,k<p/4 andw
'1. Hence, as in the case of SR in an individual eleme
the increase ofC is predicted correctly for such values o
coupling, but the enhancement of SR~with maximum ofC
for nonzeroD) is not predicted.

C. Spatiotemporal noise-induced order

In this section the spatiotemporal noise-induced or
characterized by the correlation functionCmut is discussed.
The numerical curvesCmut vs D are shown in Fig. 3 for the
same values ofk andw as in Fig. 1 and Fig. 2. It can be see
that these curves for allk exhibit maxima for nonzero noise
intensity. The presence of these maxima provides evide
for the noise-induced order that emerges in the system du
the cooperative influence of the spatiotemporal subthresh
periodic signal and noise. This order results in the maxim
spatiotemporal synchronization among elements with
same phase of the periodic signal at inputs. For 0<k<p/2
an optimum value of coupling exists for which the maximu
of Cmut reaches the highest possible value, while fork5p
the values ofCmut increase forw→0, but with no visible
increase of the maximum. For 0<k<p/4 the value of this
optimum coupling and the location of the maximum ofCmut
coincide with those for which SR in an individual element
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most pronounced@cf. Fig. 3~a,b! and Fig. 1~a,b!#. Thus, for
long-wave periodic signals, the situation is analogous to
in the case of array enhanced SR with a periodic signal
form in space: the maximum spatiotemporal synchroniza
corresponds to the maximum enhancement of SR in an i
vidual element. However, for short-wave periodic signa
e.g., withk5p/2, a maximum spatiotemporal synchroniz
tion occurs@Fig. 3~c!# although there is no enhancement
SR in an individual element@Fig. 1~c!#; thus, these two phe
nomena are independent. In this case the maximum sp
temporal synchronization corresponds rather to the best
hancement of SR with spatiotemporal signal due to coup
@Fig. 2~c!#.

In a more spectacular way the noise-induced order ca
viewed using spatiotemporal diagrams~Fig. 4!. Even in the
casek5p/2, in which SR is rather weak, for moderate noi
that maximizes the SNR orC the shape of the traveling wav
is easily visible while for small and large noise it is distorte
In the casek<p/4 the ordering effect of noise is much mo
pronounced. It follows from Fig. 4 that in the state of ma
mum spatiotemporal order induced by nonzero noise
character of the plane traveling wave is best reflected in
activity of the elements of the chain.

V. SUMMARY AND CONCLUSIONS

In this paper we investigated SR in the case of a spa
temporal periodic signal, i.e., a signal that is periodic in b
time and space. As a model for this phenomenon we stu
a chain of coupled threshold elements driven by a plane t
eling wave and independent noises. Two kinds of SR w
studied: SR in an individual element embedded in the ch
and SR with a spatiotemporal signal, characterized by a lo
v.

L.
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n
i-
,
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n-
g
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.

e
e

-
h
ed
v-
re
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al

and a global measure of periodicity of the output sign
respectively. It was shown that both kinds of SR can
enhanced due to proper coupling for a wide range of wa
lengths of the periodic signal. This effect is a counterpart
the array enhanced SR effect for spatiotemporal periodic
nals. It was also shown that for long-wave signals the
hancement of SR in an individual element is related to ma
mum spatiotemporal noise-induced order in the system,
maximum synchronization among elements with the sa
phase of the periodic signal at input. This relationship dis
pears for short-wave periodic signals, i.e., these two p
nomena occur independently and for different noise inten
ties.

It is known that noise can increase the periodicity of t
temporal response of spatiotemporal systems to perturba
spatially uniform and periodic in time@15,16#, or the period-
icity of spatial response to perturbations constant in time
periodic in space@26,27#. In this paper it has been demon
strated that this is also the case for signals periodic in b
space and time, in accordance with suggestions in Refs.@27–
29#. It was also shown that noise can play a constructive r
by increasing spatiotemporal order in spatially extended s
tems driven by weak periodic spatiotemporal signals. T
order means that the character of the plane traveling wav
best reflected in the activity of the elements of the chain

Spatiotemporal SR is usually investigated in spatially e
tended bistable systems@15–17,23–27#. Our results show
that chains of threshold elements can be used for this
pose also. It follows from the results of this paper and of R
@27# that SR with a spatiotemporal signal should be a ub
uitous phenomenon and thus investigations in, e.g., bist
or chaotic spatiotemporal systems should further clarify
properties.
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