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Abstract

Generalizations of the concept of marginal synchronization between chaotic systems, i.e. synchronization with zero largest con-

ditional Lyapunov exponent, are considered. Generalized marginal synchronization in drive±response systems is de®ned, for which the

function between points of attractors of di�erent systems is given up to a constant. Auxiliary system approach is shown to be able to

detect this synchronization. Marginal synchronization in mutually coupled systems which can be viewed as drive±response systems

with the response system in¯uencing the drive system dynamics is also considered, and an example from solid-state physics is analyzed.

Stability of these kinds of synchronization against changes of system parameters and noise is investigated. In drive±response systems

generalized marginal synchronization is shown to be rather sensitive to the changes of parameters and may disappear either due to the

loss of stability of the response system, or as a result of the blowout bifurcation. Nonlinear coupling of the drive system to the response

system can stabilize marginal synchronization. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Recently there has been growing interest in the investigation of various kinds of synchronization in
chaotic oscillators [1±7] (for review see [8,9]). This interest is spurred by the possible applications of syn-
chronous chaos in private communication [10±16]. Among various forms of synchronization the simplest
and most often studied one is identical synchronization (IS). It can be observed both in the systems of
di�usively coupled chaotic oscillators [1,17±19] and in drive±response systems [2,20±26]. In the former case
two (or more) identical chaotic oscillators with vectors of variables x t� �, x0 t� � are coupled via a function of
the di�erence between the variables, xÿ x0. If this coupling is strong enough the phase trajectories of the
two oscillators, while remaining chaotic and lying on the same attractor as for a single system, approach
each other and after a su�ciently long transient the equality x t� � � x0 t� � holds. In the drive±response
method of synchronization, variables of the chaotic system described by an ordinary di�erential equation
_x � f x t� �� � may be divided into two parts, x � u; v� �, so that the whole system is composed of two sub-
systems, _u � fu u; v� �, _v � fv u; v� �, where f � fu; fv� �. This system is called the drive system. Then, the
variables u are used to drive another chaotic system, called the response system, which is identical or at least
very similar to the v subsystem. In the simplest version of this method, called the replacement method, a
replica v0 of the v subsystem is considered which evolves according to the equation in which the u variable is
taken directly from the drive system, _v0 � fv u; v0� �. If the two subsystems are chosen appropriately
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synchronization between the drive and response systems is achieved in the sense that v t� � � v0 t� � after all
transients die out. A linearized equation for the vector Dv t� � � v t� � ÿ v0 t� � is dDv=dt � D̂vfv u; v� �, where
D̂vfv is the Jacobian of fv with respect to v, and the corresponding Lyapunov exponents are called condi-
tional Lyapunov exponents (CLE) [2,20]; the necesssary condition for synchronization is that all CLE were
negative.

In this paper we deal with the problem of marginal synchronization of chaos (MS) [3,27±29]. In the
replacement method this kind of synchronization occurs when the largest CLE is 0 or at least there is a pair
of complex conjugate eigenvalues of the matrix D̂vfv with zero real part. Another important ingredient of
MS is symmetry. For example if the v, v0 subsystems are invariant under the scaling transformation v! Av,
A � const, then the response system attractor will be a sized copy of the projection of the drive system
attractor on the v subspace, i.e. v0 t� � � A x0; v

0
0

ÿ �
v t� � (sized MS). The scaling constant A x0; v

0
0

ÿ �
may depend

on the initial conditions of the drive and response systems, x0, v00. Similarly if the v, v0 subsystems are in-
variant under the shift of variables in the direction of a vector e of unit length, v! v� Ae, A �const, then
the response system attractor will be a shifted copy of the projection of the drive system attractor on the v

subspace, i.e. v0 t� � � v t� � � A x0; v
0
0

ÿ �
e (constant MS). The above-mentioned situations occur when the

largest CLE is 0 either on average (sized MS) or there is always a zero eigenvalue of the D̂vfv matrix
(constant MS). In the case of a pair of complex eigenvalues of D̂vfv with zero real part more complicated
time-dependent relationship between the trajectories of the drive and response systems may occur, e.g. so-
called oscillatory MS [27,28], but in this paper we constraint our attention to the case of sized and constant
MS.

A more general form of synchronization is generalized synchronization (GS) [4,30±35]. Let us consider
two di�erent unidirectionally coupled chaotic systems, the drive system _x � f x� �, and the response system
_y � g h x� �; y� �. Here, h x� � is a suitably chosen function of x by which the response system is coupled to the
drive system. The unidirectional coupling is not constrained only to the possibilities o�ered by the re-
placement method, but it is still sometimes possible to divide the drive system variables into two groups,
x � u; v� � of which only the u variables take part in the coupling. The systems x and y show GS if there is a
function F which transforms points on the drive system attractor into points on the response system at-
tractor, y � F x� �. This function depends neither on initial conditions of the drive and response systems,
provided that all of them belong to the basins of attraction of the same attractors [4], nor on time. In the
case of IS in the replacement method F is identity between the v subsystem of x and the y � v0 system. As
this function cannot depend on the initial conditions x0, y0, MS is not a special case of GS, though a linear
transformation between v and v0 exists [30]. Moreover, F need not be smooth: this is the case of weak
synchronization, while if F is smooth the synchronization is called strong [32,34]. It was shown that GS can
occur with arbitrary drive and response systems (e.g. the Lorenz system driven by the R�ossler system, etc.)
provided that the response system is stable, and that GS is robust against the changes of parameters of the
drive and response systems within reasonable limits [30,31].

A method of detecting GS in drive±response systems is often based on the so-called auxiliary system
approach [30,31]. It works well both in the case of weak and strong synchronization [32,34]. The idea of the
auxiliary system approach is as follows. It may be shown that GS occurs if and only if the response system
is asymptotically stable, i.e. if we consider the drive system x with a given initial condition x0 and two
identical response systems (the second one called the auxiliary system) y1, y2, with di�erent initial condi-
tions y10, y20, the phase trajectories of the response systems approach each other as time goes to in®nity,
limt!1 y1 t� � ÿ y2 t� �j jj j � 0. In other words, the two response systems y1, y2 show GS with the drive system x

only if they show IS with each other when driven by the same signal h x� �. Clearly this is not true if the
response systems show only MS with the drive system. This con®rms that MS is not a particular case of GS.

In this paper we generalize the notion of MS. First, we introduce the concept of generalized marginal
synchronization (GMS) which concerns unidirectionally coupled drive±response systems. Second, we in-
vestigate MS in mutually coupled systems. Concerning the ®rst problem, as mentioned above, MS has been
investigated so far within the framework of the replacement method, in which the response system v0 is a
replica of the part of the drive system v. In this paper we let the drive system be di�erent from the response
system. By analogy with GS we say that the drive and response systems show GMS when there exists a
function which transforms points on the drive system attractor on the points on the response system at-
tractor. This function does not depend on time; but, in contrast with GS it is known up to a certain constant
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which depends on the initial conditions of the drive and response systems; it can be, e.g. the multiplicative
scaling constant or a constant vector by which the response system attractor may be shifted. When the
auxiliary system approach is applied to systems with GMS the two response systems show MS. The
problem of stability of GMS against the changes of parameters of the drive and response systems is also
addressed. This problem is more complicated than in the case of GS. It may happen that GMS is robust
against such changes, but in other cases they can lead even to the disappearance of the chaotic attractor of
the response system, although certain properties of GMS between the drive and response systems are
preserved. This is either due to the loss of stability of the response system, or due to the occurrence of the
blowout bifurcation [36±40] in the system. Concerning the second problem, we de®ne and consider MS in
systems which may be treated as modi®cations of drive±response systems in which the drive system is
in¯uenced by the response system. It is sometimes possible to divide such systems into groups of subsystems
so that the subsystems belonging to one group are marginally synchronized with one another. We inves-
tigate the stability of MS in such systems against changes of parameters on a suitably chosen example.

The rest of this paper is organized as follows. De®nition of GMS and the application of the auxiliary
system approach to the detection of GMS in unidirectionally coupled drive±response systems are given in
Section 2.1. In Section 2.2 a class of mutually coupled systems is de®ned in which MS is then investigated.
Sections 3.1 and 3.2 are devoted to the analysis of several examples of MS and GMS in unidirectionally
coupled drive±response systems. In Section 3.1 examples of constant GMS between di�erent systems are
considered. In Section 3.2 sized GMS between Lorenz systems with slightly di�erent parameters is inves-
tigated. In Section 3.3 an example of MS in a mutually coupled system is given, taken from solid-state
physics. All equations of motion are solved using the fourth- and ®fth-order Runge±Kutta method with
permanent error control. Finally, in Section 4 summary and conclusions are given.

2. Generalizations of marginal synchronization: de®nitions and methods of analysis

2.1. Generalized marginal synchronization: the auxiliary system approach

Let us consider two unidirectionally coupled chaotic oscillators, the drive system _x � f x� �, x 2 Rn, and
the response system _y � g h x� �; y� �, y 2 Rm. In order to introduce the concept of GMS the de®nition of GS
from Ref. [30] is extended as follows. We say that x and y show GMS if there exists a family of functions
~F : Rn ! Rm, a family of manifolds ~M � x; y� � 2 Rn � Rm : y � ~F x� �� 	

, and a subset B � Bx � By

� Rn � Rm such that all trajectories x t� �; y t� �� � with initial conditions x0; y0� � 2 B approach a manifold M
belonging to the family ~M as time goes to in®nity. The family ~F, and, equivalently, the family ~M are in turn
de®ned as classes of the following two equivalence relations: (i) Two functions F1, F2 belong to the same
family ~F if there exists a constant A such that, for every x, F2 x� � � AF1 x� � (sized GMS), or (ii) if there exists
a unit vector e and a constant A such that, for every x, F2 x� � � F1 x� � � Ae (constant GMS); in both cases
the constant A may depend on the initial conditions, A � A x0; y0� �.

If A � 1 in the case (i) or A � 0 in the case (ii) independently of the initial conditions, we obtain the
de®nition of GS from Ref. [30], but in this paper we are interested in more general cases. To be exact, such a
general de®nition of GMS does not imply synchronization in the common sense, as the transformation
between the drive and response systems is known only up to a constant. Thus in contrast with GS, this
de®nition does not imply predictability, which is an important ingredient of the common understanding of
synchronization [30]. Nevertheless, the attractors for x and y are tightly connected, as for every initial
condition x0; y0� � there is a transformation relating points on the two attractors, and the only e�ect of the
change of the initial conditions is a shift or scaling of the values of this transformation by a constant,
without changing its general form. From a di�erent point of view one can say that the function F assigns
straight lines in Rm to the points on the attractor in Rn.

In analogy with GS one can show that GMS occurs between the systems x and y if and only if there
exists a constant A and a vector e such that for two di�erent initial conditions x0; y10� � and x0; y20� � we have
limt!1 y1 t� � ÿ Ay2 t� �j jj j � 0 in the case of sized GMS, or limt!1 y1 t� � ÿ y2 t� � ÿ Aej jj j � 0 in the case of
constant GMS. This is the auxiliary system approach applied to the GMS case. In other words, the two
systems show GMS if two response systems show MS (of course, the reverse theorem is trivial). The proof is
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a slight modi®cation of that in Ref. [30]. For example let us consider the case of constant GMS. Let us
denote the ¯ows connected with the systems x, y as /t

x, /t
y , respectively, so that x t� � � /t

x x0� �, etc. For a
given point xA belonging to the attractor of the system x let us consider a full system x; y with two initial
conditions /ÿt

x xA� �; y10

ÿ �
, /ÿt

x xA� �; y20

ÿ �
, with t long enough so that all transients die out. Let us de®ne the

function F1 by F1 xA� � � /t
y y10� �. On the other hand, we could de®ne the function F2 by F2 xA� � � /t

y y20� �.
Using the properties of the auxiliary system we obtain that for su�ciently long t there are such A and e that
k/t

y y20� � ÿ /t
y y10� � ÿ A /ÿt

x xA� �; y10; y20

ÿ �
ek ! 0. So if we start with di�erent initial conditions in the y

variables the function F between x and y is de®ned up to a shift, F1 xA� � � F2 xA� � � A /ÿt
x xA� �; y10; y20

ÿ �
e.

Only the shift depends on the initial conditions of the drive and both response systems. Similarly we can
start with two di�erent initial conditions both in the x and y variables, /ÿt

x xA� �; y10

ÿ �
, /ÿt

x xB� �; y20

ÿ �
. As

both xA, xB lie on one attractor there exists such tBA that xA � /tBA
x xB� �. After tBA the phase trajectory of the

system starting from the second initial condition will reach the point �/ÿt
x xA� �;/tBA

y y20� ��. Then, as shown
above, we can de®ne the function F either as F1 xA� � � /t

y y10� � or F2 xA� � � /t
y�/tBA

y y20� ��, up to a constant
shift. Thus starting with di�erent initial conditions in the x and y variables does not change the overall form
of the function F and modi®es only the constant shift.

2.2. Marginal synchronization in mutually coupled systems

MS and GMS are particularly easy to understand in unidirectionally coupled drive±response systems.
However, there are many physical examples of chaotic systems which can be viewed as mutually coupled
systems (e.g. systems of interacting modes in plasma physics, lasers and solid-state physics). Moreover, as it
will be shown in Sections 3.2 and 3.3, MS in such systems may be more robust against changes of system
parameters. Thus in this paper also such a case is considered.

We deal with MS in mutually interacting systems which may be viewed as modi®cations of the drive±
response systems. The idea is to take a given drive±response system of which it is known that it shows MS
or GMS and to include the terms which describe the in¯uence of the response system in the equations for
the drive system. Then, many copies of the response system may be added to the system under study, and
their in¯uence on the drive system is included in the same way. If the dynamics of the drive system is not
modi®ed qualitatively in such a way that the property of MS or GMS between the drive and response
systems is lost, it is a simple consequence of the auxiliary system approach that the response systems will
show MS with one another. So a group of subsystems may be found within the whole system which exhibit
MS. There can be, of course, many such groups if di�erent response systems which show MS or GMS with
the drive system are added in a systematic way. It should be noted that this is a typical situation in
Hamiltonian systems in which the interactions among various subsystems (e.g. modes) are symmetric. One
such example is considered in Section 3.3.

Formally the above-mentioned concept may be written as follows. The equations for the drive system are
_x � f x; ~hy y1� �; ~hy y2� �; . . .

ÿ �
, and the equations for the response systems are _yi � gy yi; hy x� �ÿ �

, i � 1; 2; . . . All
response systems yi are identical and driven in the same way via the function hy x� �. They, in turn, in¯uence
the drive system via the function ~hy yi� � which is also identical for all i. A group of N response systems show
MS if the relationships characteristic of MS hold for every pair of i, j, so, e.g. in the case of sized MS for
every i, j a constant Aij exists such that yi t� � � Aijyj t� � after all transients die out. This constant may depend
on the initial conditions of the drive system x0 and all response systems y10, y20; . . . It should be pointed out
that the existence of GMS between x and all response systems yi in the case of unidirectional coupling, i.e.
when ~hy yi� � � 0 for all i, does not guarantee the existence of MS among response systems in the case of
mutual coupling. The whole system x; y1; y2; . . . is thus divided into two subsystems: the drive system x and
a group of marginally synchronized response systems yi. The choice of the drive and response systems may
be somewhat arbitrary, i.e. di�erent subsystems may be sometimes treated as the drive and response sys-
tems; we will always explain which subsystem we treat as a drive system, and which as a response system.
Next, another group of response systems zi, i � 1; 2; . . . ; which are di�erent from the yi systems may be
added so that the equation for the drive system becomes _x � f x; ~hy y1� �; . . . ; ~hz z1� �; . . .

ÿ �
, and the equations

for the response systems are as previously, with the change of y into z in the case of the systems from the
second group. This procedure may be repeated, and the whole system may be divided into groups of
subsystems showing MS.
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By analogy with the auxiliary system approach we can say that also in the case of mutual coupling
between the drive and response systems the drive system x and the response system yi show GMS (as a
replica yj of the response system shows MS with yi). However, as now, e.g. the proportionality constant
between yi, yj showing sized MS depends on the initial conditions of the drive system and all response
systems yi, i � 1; 2; . . . ; the concept of GMS in mutually coupled systems is not as straightforward as in the
unidirectionally coupled ones.

In the above de®nition we assumed that there is no direct interaction between response systems, neither
within nor among groups. They interact only indirectly, via the drive system. This allows the distinction
between the drive and response systems. The case when there is direct interaction among all subsystems
deserves separate study.

3. Results and discussion

3.1. Constant generalized marginal synchronization: the analysis using auxiliary system

In this section several examples of constant GMS between di�erent chaotic oscillators are considered. In
the ®rst example the Chua system is used:

_x � a z� ÿ xÿ G x� ��; _y � ÿbz; _z � xÿ z� y; �1�
where G x� � is a function given by G x� � � bx� aÿ b if x P 1, G x� � � ax if xj j < 1 and G x� � � bxÿ a� b if
x6 ÿ 1. In Eq. (1) the names of variables x, y were assumed as in Ref. [3] and interchanged in comparison
with the original Chua system (cf. [8]). Using the replacement method for Eq. (1) the replica v0 � x0; y0� � of
the v � x; y� � subsystem can always be marginally synchronized with v if u � z is used as a drive [3,29]. This
is an example of constant MS which appears because the equation for Dy � y ÿ y 0 is D _y � 0 and thus the
matrix D̂vfv has always one zero eigenvalue. Gonz�alez-Miranda [3,29] observed that for the parameters
a � 9, b � 14 2=7� �, a � ÿ8=7 and b � ÿ5=7 the attractor for the v0 subsystem was an exact copy of the
attractor for v subsystem, only shifted in the y direction by a vector whose length depended on the initial
conditions of the x; y� � and x0; y0� � subsystems, but not of the z subsystem. This means that for these pa-
rameters the second CLE, which is connected with the equation for Dx � xÿ x0, was always negative. In
fact, he observed fast convergence of x t� � and x0 t� � to a straight line x � x0.

Here, we consider GMS in a drive±response system composed of two unidirectionally coupled Chua
circuits with signi®cantly di�erent parameters. Moreover, in the drive system a linear transformation of
variables is performed (such transformations of variables were used in Ref. [4]), �x � x, �y � y � z, �z � z. As
the coupling variable �z is again used. Dropping bars over the drive system variables for simplicity, the
system under study may be written as

_x � a z� ÿ xÿ G x� ��; _y � ÿ b� � 2�z� x� y; _z � xÿ 2z� y; �2�

_x1 � a1 z� ÿ x1 ÿ G x1� ��; _y1 � ÿb1z: �3�
Here, the index 1 labels the response system; the auxiliary system, identical to (3), will be denoted as 2,

with a2 � a1, b2 � b1. In both drive and response systems we used G x� � as de®ned below Eq. (1), with
a � ÿ8=7, b � ÿ5=7. Since the equations for y and y1 are di�erent, the systems x; y� �, x1; y1� � do not show
MS even in the case of identical drive and response system parameters ± in this case, only the x, x1 variables
show IS. Hence we have two truly di�erent systems which, as we show below, can exhibit GMS.

The analytic test for GMS consists in evaluating CLE between the response and auxiliary systems, using
linearized equations of motion for Dx � x1 ÿ x2, Dy � y2 ÿ y2. If the largest exponent is zero then these two
systems can show MS and thus GMS between the drive and response systems can occur. In the case of the
z-driven system (3) the linearized equations will be identical to the ones obtained when MS in the system
(1) is studied, and, moreover, this will be the case independently of the signal z. Therefore there will be
always one zero and one negative CLE, which indicates the possibility to obtain GMS for the z-driven
subsystem x; y� � of the Chua system for any z. As we show below, this is not a su�cient condition for
GMS.
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We solved numerically Eqs. (2) and (3) with the following parameters: a � 9, b � 15 2=7� �, a1 � 10,
b1 � 14 2=7� �. The drive system (2) has then two symmetric separate attractors; one of them is shown in
Fig. 1(a). The original Chua system (1) with parameters a1, b1 has in turn a ``double scroll'' attractor
(Fig. 1(b)). But if the response system (3) is driven by the z variable from the drive system (2), only one loop
of this attractor is visited, depending on the initial conditions. To check for GMS between the systems (2)
and (3) we added the auxiliary system x2; y2� � and observed the plots of x1 vs. x, x2 vs. x1 and y2 vs. y1 (Figs. 2
and 3). Due to the existence of two separate attractors for the systems (2), (3) we were also able to check the
applicability of the auxiliary system method for the detection of GMS when the initial conditions were
varied, as in Ref. [21].

Figs. 2 and 3 were obtained with di�erent initial conditions for the response system and the same initial
conditions for the drive and auxiliary systems. In Figs. 2(a) and 3(a) one can see that there is no evident
functional dependence between the drive and response systems. However, as results from Fig. 2(b) and (c)
the drive and response systems show GMS. If the initial conditions for the response and auxiliary system
are chosen appropriately, the attractors of these systems are identical except that they are shifted with
respect to each other in the y-direction. This shift depends linearly on the changes of the initial conditions of
both the response and auxiliary system, but it is independent of such changes in the drive system. Thus the
systems x1; y1� � and x2; y2� � show MS and, according to the theorem of Section 2.1, they both show GMS
with the drive system. We checked that addition of zero mean Gaussian noise to the response and auxiliary
system variables did not cause any noticeable loss of MS between these systems if the noise variance was
below ca. 10ÿ4; for stronger noise, the straight lines in Fig. 2(b) and (c) became thicker. GMS in this case
seems robust against changes of the drive and response system parameters, too.

On the other hand, if the initial conditions of the response system are chosen so that the common z drive
directs the phase trajectories of the response and auxiliary systems to di�erent accessible attractors, no
GMS between the drive and response systems can be detected with the help of the auxiliary system. This can
be seen in Fig. 3(b), where there is no linear dependence between x1 and x2. Although y2 is still a shifted copy
of y1 (Fig. 3(c); this must be so in any case because of the zero CLE connected with the y variable), the
response and auxiliary systems, treated as a whole, do not show MS. This, however, does not mean that
there is no GMS between the drive and response system. Starting the auxiliary system with di�erent initial
conditions could lead it to MS with the response system and hence to the detection of GMS. The situation
here is similar to that with IS in multi-attractor systems [21] and imposes some constraints on the appli-
cability of the auxiliary system approach to the detection of not only GMS, but also GS. Such a constraint
is not in contradiction with the theorems of Section 2.1, as there can be many subsets B in the full phase
space Rn � Rm such that starting with initial conditions x0, y0 in various B will lead the phase trajectory to
manifolds M belonging to various families ~M .

Fig. 1. (a) One of the two chaotic attractors of the modi®ed Chua system (2), with a � 9, b � 15 2=7� �; (b) ``double scroll'' attractor of

the Chua system (1) with a � 10, b � 14 2=7� �.
Fig. 2. Constant GMS of two Chua systems with di�erent parameters (2), (3): (a) chaotic attractor x1 vs. x; (b) IS between the x

variables of the response and auxiliary systems, x2 � x1; (c) MS between the y variables of the response and auxiliary systems,

y2 � y1 � 2.
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At this point it should be noted that multi-attractor chaotic systems can show IS independently of the
choice of initial conditions, if a proper coupling is used [41]. The connection of this problem with the
detection of GMS with the help of the auxiliary system is still to be clari®ed.

Our next example is with the Chua x1; y1� � subsystem driven by the y variable of the Lorenz system:

_x � r y� ÿ x�; _y � r� ÿ z�xÿ y; _z � xy ÿ bz; �4�

_x1 � a1 y� ÿ x1 ÿ G x1� ��; _y1 � ÿb1y; �5�
with parameters r � 10, r � 28, b � 2 2=3� �, a1 � 9, b1 � 14 2=7� �. Both systems are well inside the chaotic
regime. As explained above, on the basis of zero CLE connected with y1, GMS between the Lorenz and
Chua systems is expected although there is no evident functional dependence between the drive and re-
sponse system variables (Fig. 4(a) and (b)). Using a copy of the x1; y1� � system as the auxiliary system we
observed that the variables x1 and x2 show IS, x1 t� � � x2 t� �, and the variables y1, y2 lie on a straight line
y2 t� � � y1 t� � � A, where A depends on the initial conditions of the response and auxiliary system. So there is
MS between the response and auxiliary systems and thus GMS between the drive and response systems (4),
(5). This GMS was also stable when the system parameters were changed. However, this case is not simple
to analyze. It is important to note that the y variable of the Lorenz system (4) has zero mean, thus the right-
hand side of the equation for y1 in Eq. (5) averaged over time is 0. Nevertheless, the absolute value of y1 can
assume large values and be very di�erent from what can be expected for the Chua system. The second point
is that the averaged frequency of chaotic oscillations of the Lorenz system (4) is much higher than that of
the Chua system (5). Both these factors cause that in the y1 vs. y plot (Fig. 4(b)) one cannot observe in fact
any attractor, but only chaotic wandering of the y1 variable, probably without any constraint, although
with zero mean. In the case when the phase trajectory for the response system does not converge to a
constrained subset of the phase space it is rather impossible to say that there is any time-independent
function relating points on the drive and response system attractors, and GMS between the systems (4) and
(5) is doubtful.

The third example is Eq. (5) driven by the z variable of the Lorenz system (4) instead of y. The mean
value of z is positive and thus the variable y1 on average diverges to in®nity. When the auxiliary system is
added, the variables x1, x2 show IS and they are both constrained; this means that the CLE connected with
Dx � x1 ÿ x2 is negative. Also there is still a linear dependence y2 t� � � y1 t� � � A, with A dependent on the
initial conditions, but both y1 and y2 diverge to in®nity. Hence though there are some indications of GMS in
the auxiliary system approach, in fact there is no GMS between the Lorenz and z-driven Chua system, as
there is no chaotic attractor in the latter. However, the largest CLE, connected with Dy � y1 ÿ y2, again
vanishes. The present case is an example of the loss of GMS due to the loss of stability of the response
system. An interesting conclusion from this example is that, in contrast with IS or GS, addition of random
noise with non-zero mean to the driving variable (and thus the change of its mean value) may strongly a�ect
the stability of MS and GMS. This example also shows that the existence of the zero largest CLE between
the response and auxiliary system does not guarantee GMS between the drive and response systems, though
it guarantees that certain features of MS between the response and auxiliary system are preserved.

Fig. 3. Apparent lack of GMS between two Chua systems with di�erent parameters (2), (3) due to poor choice of initial conditions of

the response and auxiliary system: (a) chaotic attractor x1 vs. x; (b) chaotic attractor x2 vs. x1 between the x variables of the response

and auxiliary systems; (c) MS between the y variables of the response and auxiliary systems, y2 � y1 � 2.

Fig. 4. Constant GMS between the Lorenz system (4) and the Chua system (5): (a) chaotic attractor x1 vs. x, (b) chaotic ``attractor'' y1

vs. y, unbounded wandering of y1 can be seen; (c) MS between the y variables of the response and auxiliary systems, y2 � y1 � 9.
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3.2. Sized generalized marginal synchronization: loss of stability via the blowout bifurcation

As a next example the x1; y1� � subsystem of the Lorenz system (4) will be studied, driven using the re-
placement method by the z variable of another Lorenz system with slightly di�erent parameters

_x � r y� ÿ x�; _y � r� ÿ z�xÿ y; _z � xy ÿ bz; �6�

_x1 � r1 y1� ÿ x1�; _y1 � r1� ÿ z�x1 ÿ y1: �7�

In the case r1 � r � 10, r1 � r � 28, b � 2 2=3� � these two systems show sized MS [3,27±29] with
x t� �; y t� �� � � Ax1 t� �;Ay1 t� �� � and the constant A which depends on the initial conditions for all equations.

MS occurs because the largest CLE between the drive and response system is 0 on average (i.e. it converges
to 0 when evaluated numerically). Some insight into the CLE spectrum may be obtained from the analysis
of the time-dependent eigenvalues of D̂vfv (where v � x; y� �), which are [28]:

k� � 1

2

�
ÿ r� � 1� �

���������������������������������������������������������
r� 1� �2 ÿ 4r z t� � ÿ r ÿ 1� �� �

q �
: �8�

Approximating roughly the time average hzi � r ÿ 1, where r ÿ 1 is the z coordinate of the two unstable
®xed points of the Lorenz system we obtain a crude estimate of the largest CLE as kmax � hk�i � 0. This
suggests that any small change of r changes hzi and destroys MS. Thus MS in the systems (4), (6) is sensitive
to small changes of system parameters.

In the following we consider GMS between the systems (6), (7) with r1 6� r. To this purpose the auxiliary
system x2; y2� � identical with the response system (7) is added to the above equations. It can be easily noted
that the response system (7) is linear with respect to x1, y1. Hence the the largest CLE between the drive and
auxiliary system is again roughly given by hk�i from Eq. (8). If r 6� r1 one can expect this average being
either negative (then there is IS between the response and auxiliary system and GS between the drive and
response system) or positive (no GMS at all). Another interesting observation is that the system (7) has a
trivial ®xed point x1 � y1 � 0 whose stability is again determined by the same eigenvalues (8). Thus we come
to a conclusion that the occurrence of GS between the two di�erent Lorenz systems will also lead to the
convergence of the response system to the zero ®xed point. The rate of this convergence and that of the
appearance of IS between the response and auxiliary systems are identical: simply, the response and
auxiliary systems synchronize after reaching the trivial ®xed point. This form of synchronization between
the chaotic drive system and the response systems possessing the ®xed point attractor is, of course, some
form of GS. On the other hand, if the largest CLE between the response and auxiliary systems is positive,
the response system trajectories diverge from the ®xed point and go to in®nity. Thus the lack of GS and
GMS between the drive and response systems leads to the disappearance of the response system attractor.
MS reported in Refs. [3,27±29] for identical drive and response system parameters is observed just at the
point where the ®xed point x1 � y1 � 0 loses stability and a bifurcation which causes the destruction of the
response system attractor occurs.

Despite the approximate character of the above analysis, the numerical simulations of Eqs. (6) and
(7) with r � r1 � 10, b � 2 2=3� �, r1 � 28 and r varied in the neighborhood of r1 con®rm the above
conclusions (Fig. 5). If r > r1 the response system attractor converges to the ®xed point. If r < r1 the
response system attractor ``swells'' and diverges to in®nity (Fig. 5). In both cases there is no appar-
ent functional dependence between the drive and response system variables (Fig. 5(a)). In particular in the
case with r < r1 there is neither GS nor GMS between the drive and response systems since there is no
response system attractor at all. However, due to the invariance of Eq. (7) against the scaling transfor-
mation x1; y1� � ! Ax1;Ay1� � (Section 1) the variables of the response and auxiliary system show certain
indications of MS, namely, they lie on a straight line x2 � Ax1, y2 � Ay1 (Fig. 5(b)). This happens both for
r > r1 and r < r1. The constant A depends linearly on the changes of the response and auxiliary system
initial conditions, and varies smoothly with the initial conditions of the drive system. The linear dependence
between x1; y1� � and x2; y2� � retains in the presence of zero mean Gaussian noise with variance up to ca.
10ÿ5, added to the response system variables; for higher noise the constant A changes slowly in time. Here,
the situation resembles that from the third example of Section 3.1 where GMS disappeared due to the loss
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of stability of the response system, but some features of MS between the drive and response systems were
still observed.

The mechanism for the loss of stability of the response system may be readily identi®ed as the blowout
bifurcation [36±40]. This bifurcation occurs in dynamical systems which possess chaotic attractors inside an
invariant manifold whose dimension is less than the dimension of the phase space. The blowout bifurcation
occurs when this attractor loses transverse stability. This stability is controlled by the sign of the time-
averaged largest transverse Lyapunov exponent which may be obtained from the linearization of the system
equations around the invariant manifold. In our case, the systems (6), (7) may be viewed as a ®ve-di-
mensional system with a chaotic attractor of the Lorenz system (6) contained inside the invariant manifold
x1 � y1 � 0. Eq. (7) is already linear in the neighborhood of this manifold, so the largest transverse
Lyapunov exponent is just the largest CLE between the response and auxiliary system. We calculated this
CLE numerically and observed that its value crossed zero when r � r1. When r < r1 the mean value of this
exponent is positive and the phase trajectory can depart from the invariant manifold. Usually, after the
blowout bifurcation the phase trajectory is either captured by another attractor outside the invariant
manifold (hysteretic bifurcation) or returns to the invariant manifold after a burst (non-hysteretic bifur-
cation) [36]. In the former case riddled basins of attraction [36,37,42±45]. can be observed before the
blowout, in the latter case on±o� intermittency appears [36,37,46,47]. But for all these phenomena to occur
some kind of nonlinearity with respect to x1, y1 in Eq. (7) or any other equivalent mechanism would be
necessary [40]. In the system under study they cannot be observed. However, in Eqs. (6) and (7) certain
properties of a locally riddled basin of attraction for the attractor inside the x1 � y1 � 0 manifold can be
seen. The basin is locally riddled [37,45] if in any neighborhood of a point belonging to this basin there is a
positive measure set of points whose orbits depart from the attractor beyond a given distance. Then, e.g.
under the in¯uence of additive noise bursts are observed which drive the phase trajectory far from the
invariant manifold even if the system is before blowout (attractor bubbling [37]). Such bursts of the x1, y1

variables in Eqs. (6), (7) are observed for r > r1 if noise is added to the response system variables, in fact for
any level of noise (Fig. 6).

It is known that in the drive±response method of IS it is possible to build a response system with pa-
rameters di�erent from these of the drive system, and then to modify them with time so that they approach
the parameters of the drive system. These modi®cations are based on the observation of the di�erence
between the variables of the two systems. In this way IS between the two systems is obtained. This method
is called adaptive synchronization [26]. It seems that the loss of stability of the response attractor if the
parameters of the drive and response systems are slightly di�erent makes it impossible to use the adaptive
synchronization techniques to build systems which would show sized MS with a given drive system. The
same is true if one wants to study sized MS in systems with parameters slowly varying in time [16].

Fig. 5. Sized GMS between two Lorenz systems with slightly di�erent parameters (6), (7), with r � 27:9, r1 � 28: (a) chaotic ``at-

tractor'' x1 vs. x, divergence of x1 to in®nity can be seen; (b) remnant of MS between the x variables of the response and auxiliary

systems, x2 � 3:81x1, both variables diverge to in®nity; (c) time series of x1, divergence can be seen explicitly.

Fig. 6. Bursts of the response system variable in (6), (7) under the in¯uence of additive noise for r � 28:01, r1 � 28.
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3.3. Marginal synchronization in mutually coupled systems: an example from solid-state physics

In this section, MS in a system of mutually coupled chaotic oscillators is investigated on the basis of a
model taken from solid-state physics. The structure of mutual coupling is as explained in Section 2.2. The
origin of the model is as follows. In ferromagnetic resonance the uniform mode with frequency x0 is excited
by the rf ®eld with frequency x, perpendicular to the dc ®eld direction. If both the dc ®eld and the rf ®eld
frequency are chosen appropriately, and if the rf ®eld amplitude exceeds a certain critical value, the uniform
mode can decay into pairs of spin waves with opposite wave vectors and frequencies close to x=2 in the
process called ®rst-order Suhl instability [48]. This critical value is di�erent for di�erent pairs and depends
on the wave vector length and propagation direction of spin waves. The threshold rf ®eld amplitude for the
occurrence of instability is equal to the critical amplitude minimized over all spin-wave pairs with fre-
quencies close to x=2. Usually only one spin-wave pair is excited just above the threshold and it is called the
critical pair. However, in the presence of symmetry the critical amplitude for many pairs may be equal and
all of them can be excited. For example if the system has rotational symmetry with respect to the dc ®eld
direction, the critical rf ®eld for all spin waves with frequency x=2, propagating at a given angle to this
direction, is identical. The instability threshold is particularly low in the so-called coincidence regime, when
x � x0. For rf ®eld amplitudes much above the threshold more pairs of di�erent spin waves can be excited
which can, e.g. lead to the appearance of multi-stability and chaos in the time dependence of absorption in
the sample [49].

The model we consider below was shown to describe quite well certain phenomena which occur in
chaotic spin-wave dynamics in coincidence regime (for details see Ref. [50]). Slowly varying in time parts of
the complex amplitudes of uniform mode and spin-wave pairs are denoted as a0, ai;j, respectively. Here, i
indexes the groups of spin-wave pairs with identical critical rf ®eld amplitude, and j ± spin-wave pairs within
the groups. Excitation of spin waves slightly detuned from half of the pumping frequency is allowed. All
spin-wave pairs belonging to one group have identical phenomenological damping gi, detuning
Dxi � xi ÿ x=2 and coe�cient of nonlinear interaction with the uniform mode V0i; this yields identical
critical rf ®eld amplitude. The equations of motion for the amplitudes are

_a0 � g0 � iDx0j j g1 � iDx1j jeÿ g0 � iDx0� �a0 ÿ i
P

i;j V0ia2
i;j;

_ai;j � ÿ gi � iDxi� �ai;j ÿ iV �0ia
�
i;ja0:

�9�

We considered Eq. (9) with i � 1; 2, j � 1; 2 (i.e. with two groups of two identical spin-wave pairs) and
parameters (cf. [50]) g0 � 1:25, Dx0 � ÿ1:5, g1 � 1:0, Dx1 � 3:0, g2 � 0:8, Dx2 � 2:62, V01 � 1:0,
V02 � 0:754 and e being the control parameter (rf ®eld amplitude normalized to the instability threshold).
Spin-wave pairs from the group i � 2 have higher critical value of the rf ®eld amplitude and may be called
``weak'' pairs. It was shown in the model with i � 1; 2, j � 1 [50] that for e < ec � 3:167 . . . the weak pair
amplitude shows on±o� intermittency: in its time series a sequence of laminar phases during which the
amplitude is practically 0, and chaotic bursts is observed which is a trademark of on±o� intermittency
[46,47]. For e > ec the weak pair amplitude decays to 0. The transition at e � ec is, of course, blowout
bifurcation.

With the parameters as given above, solutions of Eq. (9) are chaotic even if only one group of spin-wave
pairs (that with i � 1) is present. We treat the system of equations for a0, a1;j as the drive system and add
the response system which consists of equations for a2;j. This response system in¯uences the drive system
via the terms V02a2

2;j in the ®rst equation of Eq. (9). Therefore the mutual coupling structure between the
drive and response systems is as described in Section 2.2. The results of the investigation of Eq. (9) for
e � 3:0 are summarized in Fig. 7, but they are similar for a wide range of e < ec. A typical attractor is
shown in Fig. 7(a). For e < ec we again observed on±o� intermittency in the time series of all a2;j

(cf. Fig. 7(b); the condensation of points along the n1 � a2;1j j � 0 axis betokens the occurrence of long
laminar phases with n1 � 0). We also observed that the system (9) could be subdivided into groups of
subsystems (i.e. groups of spin-wave pairs with the same i) which have the property that there is no ap-
parent functional dependence among the variables of subsystems belonging to di�erent groups (Fig. 7(b)),
while subsystems within groups show sized MS (Fig. 7(c)). In Fig. 7(c) MS between spin-wave pairs from
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the i � 2 group was illustrated using experimentally observable quantities ± absolute values of amplitudes
of spin-wave pairs, but it occurs also for real and imaginary parts of a2;j. This is an example of MS in a
mutually coupled system.

We also investigated Eq. (9) without the nonlinear terms V02a2
2;j in the ®rst equation, as a unidirec-

tionally coupled drive±response system. It turns out that such a system is very similar to the z-driven
Lorenz system (6). For e > ec, i.e. below the occurrence of blowout bifurcation, the solutions for a2;j

converge to 0, and for e < ec ± diverge to in®nity. Hence GMS is again sensitive to small changes of the
system parameters. In both cases there is always linear dependence between individual amplitudes of spin
waves belonging to one group, i.e. even in the case of destruction of the response system attractor some
features of GMS between the drive and response systems survive. Similarity between this system and
Eq. (6) is caused by the fact that in Eq. (9) the equations for amplitudes of spin-wave pairs are again
linear with respect to ai;j and invariant under the scaling transformation ai;j ! Aai;j. This result shows
that the drive system dynamics is modi®ed substantially by the in¯uence of the response system for e < ec

which can lead to the stabilization of GMS between the drive and response systems in the region of
parameters above the blowout bifurcation.

4. Summary and conclusions

In this paper two generalizations of the concept of MS in chaotic systems were considered. First, two kinds
of GMS were de®ned in unidirectionally coupled systems in which the drive and response systems were
di�erent chaotic systems or subsystems: the constant GMS and the sized GMS. In the case of constant GMS
the function between the points on the drive and response system attractors was de®ned up to a constant shift
which depended on the initial conditions, and in the case of sized GMS ± up to a constant scaling factor.
The auxiliary system approach applied to these cases results in MS between the response and auxiliary system
if there is GMS between the drive and response system. However, in the case of a multi-attractor response
system this method may be incapable of detecting GMS. Constant GMS can be robust against changes of the
drive and response system parameters and noise, but we also analyzed an example from which it follows that,
e.g. addition of small noise with non-zero mean or small shift in the mean values of the drive system variables
can lead to the disappearance of GMS. This is due to the loss of stability of the response system. In this
situation, certain properties of MS between the response and auxiliary system are preserved, but there is no
GMS as there is no stable response system attractor. Sized GMS is, in general, sensitive to the changes of
system parameters, and the response system attractor may be destroyed due to the blowout bifurcation.
Again, certain properties of MS between the response and auxiliary systems retain though there is no GMS
between the drive and response systems. The fact that the response and auxiliary systems can still exhibit
certain indications of MS though there is no GMS with the drive system is caused by the invariance of
the response system equations against shifts or scaling transformations. As pointed out in Ref. [29]
these symmetries are more fundamental for the occurrence of MS than the existence of the zero largest
CLE. Hence zero largest CLE between the response and auxiliary system is not a su�cient condition for
the occurrence of GMS (see the case of Eqs. (4) and (5)), and also if this exponent is positive on average,
some remnants of MS between the response and auxiliary system are still visible (see the case of Eqs. (6)
and (7)).

Fig. 7. MS in a mutually coupled system (9): (a) chaotic attractor n � a1;1

�� �� vs. n0 � a0j j; (b) chaotic attractor n1 � a2;1

�� �� vs. n, con-

densation of points near n1 � 0 indicates on±o� intermittency in the time series of n1; (c) MS between two spin-wave pairs from the

same group, n2 � a2;2

�� �� � 6:31� 10ÿ5n1.
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Second, we de®ned and analyzed MS in mutually coupled systems, which were drive±response sys-
tems with the in¯uence of the response system on the drive system added. In such systems, built in a
systematic way, groups of response subsystems may be identi®ed which show MS within groups. An
example from solid-state physics of such MS was given. On its basis it was also shown that addition of
nonlinear coupling from the response systems to the drive system stabilizes the response system at-
tractor above the blowout for e < ec. Instead of the divergence of the response system variables to
in®nity they show on±o� intermittency, and, moreover, the property of MS between response systems is
preserved. It turns out, then, that coupling the drive system to the response system can stabilize GMS
between the drive and response systems (in the sense discussed in Section 2.2). An interesting point is
that this does not require any modi®cation of the response system. As pointed out at the end of Section
2.2, the occurrence of on±o� intermittency above blowout bifurcation, and resulting stabilization of
sized GMS, requires some nonlinearity [40]. However, if this nonlinearity were added to the response
system equations, it could destroy GMS by, e.g. turning it into stronger GS, since this could violate the
invariance of the response system equations under the scaling transformation. So it seems that in order
to have sized GMS (but not GS) which is robust against changes of system parameters it is useful to
couple the drive system to the response system via appropriately chosen nonlinearity. It can be seen
that the problem of in¯uence of nonlinearities on the stability of MS and GMS is quite interesting and
deserves a separate study.

MS observed in Eq. (9) is an extension of the well-known results from the theory of stationary state in
nonlinear ferromagnetic resonance above the Suhl instability threshold to the case of chaotic spin-wave
dynamics. For example for the stationary state in parallel pumping it is known [51±53] that if many spin-
wave pairs have the same critical rf ®eld amplitude, all of them will be excited above the instability
threshold. The sum of absolute values of amplitudes of spin-wave pairs is ®xed, while, depending on the
initial conditions, the individual amplitudes are di�erent. In chaotic state similar results can be interpreted
as an example of MS among spin-wave pairs. MS can lead to the decrease of the correlation dimension of
attractors observed in chaotic spin-wave dynamics [54±56]. Results concerning MS in nonlinear ferro-
magnetic resonance will be published separately.

We think that the generalizations of MS introduced in the present paper may provide a starting point for
future investigation of MS and GMS in various physical systems. In particular, it would be interesting to
check if there is any possibility to distinguish between GS and GMS only on the basis of time series for the
drive and response systems, without the auxiliary system [4]. Other problems which deserve further in-
vestigation are connected with the in¯uence of asymmetric noise and various nonlinearities on the stability
of MS and GMS. It would be also interesting to ®nd examples of GMS in chaotic systems other than
analyzed in this paper; as pointed out in Section 2.2, some form of MS can be present in systems consisting
of many interacting modes.
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