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Abstract—A model of parallel pumping with many interacting parametric spin-wave pairs is
investigated numerically. Two ways of obtaining on-off intermittency in the time series of absorption
are discussed: random or chaotic modulation of the rf ficld amplitude or of the dc field, slow in
comparison with the rf field frequency. If the possibility of thermal excitation of spin waves is
neglected, only one spin-wave pair is excited above the intermittency threshold and exhibits bursts. In
the opposite case, a phenomenon of widening of the phase space in the presence of thermal noise is
observed: a packet of parametric spin waves is excited with frequencies close to half the pumping
frequency. This modifies quantitatively, but not qualitatively the characteristics of on—off intermit-
tency in the presence of thermal noise. © 1997 Elsevier Science Ltd

1. INTRODUCTION

Recently, there has been growing interest in the investigation of systems exhibiting on—off
intermittency (OOI) [1-9]. This kind of intermittency is characterized by a sequence of (flat)
laminar phases, during which the observed signal remains practically constant, and bursts,
when the signal behaves chaotically [1]. This phenomenon occurs if, for certain values of the
control parameter, there exists an invariant subspace with dimension lower than that of the
phase space of a system, in which a global chaotic attractor is located. When the control
parameter is increased above a certain critical value (the OOI threshold), this attractor loses
stability. Then the phase trajectory is no longer attracted to the invariant subspace, but
departs from it occasionally; the more frequently, the greater is the difference between the
actual and critical value of the control parameter. If the distance from the invariant subspace
is measured as an observable, this results in a sequence of flat phases and bursts. The loss of
stability by the attractor is an example of the so-called blowout bifurcation [2].

In Ref. [1], a distinctive geometric mechanism was proposed which explains the occurrence
of bursts. The influence of the chaotic motion within the invariant subspace on the observed
dynamics in the directions perpendicular to the invariant subspace may be described by
means of an effective time-dependent bifurcation parameter. This parameter is a function of
system variables and behaves chaotically in time. If the amplitude of its chaotic oscillations is
high enough, a bifurcation occurs in the subspace orthogonal to the invariant one from the
stable fixed point (flat state) to chaotic bursts. A direct application of this idea is possible in
systems in which, for a certain value of the control parameter, a stable fixed point loses
stability and a new fixed point or a limit cycle appears. If the control parameter (normally
constant in time) is replaced by a properly chosen chaotic time series, the fixed point is

tA brief version of this paper was presented at the Furopean Conference Physics of Magnetism 96, June 24-28,
1996, Poznari, Poland, and will appear in the Conference Proceedings in Acta Phys. Polon. in 1997.
tAlso at Institute of Physics, Polish Academy of Sciences, Al. Lotnikéw 32/46. 02 668 Warsaw. Poland.
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sometimes stable and sometimes not. Then, if the cases of the stability loss occur frequently
enough, or, in other words, if the amplitude of chaotic oscillations of the control parameter
is high enough, OOI appears. An example of such a system is the logistic map with random
control parameter [3, 4]

Yn+1 zgxl,n))n(l _yn)+§x2.nr 8>0' (1)

Here, x,,,x,, are uncorrelated random variables with uniform distribution in the interval
[0,1] and the last term represents thermal noise with amplitude £. It should be noted that the
map in equation (1) is two-dimensional, with two independent dynamical variables x, ,,,y,.
Let us consider the case with zero thermal noise: £ =0. Then y, =0 is a fixed point for the
logistic map which is stable if x,,, <1 and unstable if ex,, > 1. It turns out [3] that if ¢ <e
then y, always approaches this fixed point, independently of the choice of the initial
condition. If £ > e, then y, may remain practically equal to zero for long stretches of time,
but occasionally departs from the fixed point rather abruptly, producing a burst. Thus, for
€ <e, there is a global one-dimensional stable attractor of the map (1) within the invariant
subspace y, = 0 which loses stability for £ > e. This attractor is the unit interval [0,1]. Within
this attractor, the dynamics is described by x; , which in this case is a random variable, but
may be replaced with any chaotic variable. The time-dependent control parameter £x;, in
this description becomes the time-dependent bifurcation parameter, and ¢ is the control
parameter for the map (1) whose critical value for the occurrence of OOI (the OOI
threshold) is e. = e.

The characteristics of OOI derived for the case of the map (1) are as follows [3]. If §=0
then, for given ¢, the probability that a laminar phase has length tis P(7) = A exp(—B7 e —
et 2, or P(r)=xt ¥ for sufficiently small 7,l¢ — ¢]. The mean laminar phase length
changes with the control parameter as (t)=a + B¢ —&| '. Here A, B, a and B are
constants. For any & >0 [4], the OOI threshold decreases abruptly to &. = 1. In this case, the
7 *? law for the laminar phase lengths distribution is valid only for small 7 and the
exponential decay of P(7) begins at 7= 7* substantially smaller than that in the noise-free
case. The characteristic time 7* scales with the noise amplitude as t* = [In(y,/¢)]*, where y, is
the onset threshold for a burst, which may be chosen quite freely. There exists strong, mainly
numerical evidence that, apart from some exceptional cases [5], the above characteristics
remain valid for all systems with OOI, though sometimes they may be difficult to measure
[6,7].

In this paper, OOI is studied in a certain model of parallel pumping. Parallel pumping
means ferromagnetic resonance with the magnetic rf field applied parallel to the dc field. In
contrast with conventional experiments with parallel pumping, in the model considered here
either the high-frequency 1f field amplitude is modulated with some slowly varying in time
random or chaotic function or the dc field has a slowly varying in time random or chaotic
component. Nonlinear interactions of many pairs of spin waves (SW) excited by the rf field
are taken into account. This model is an extension of the one previously studied, in which
only one pair of SW was excited by the rf field [10]. Besides the characterization of OOl in a
system not previously studied, a phenomenon of widening of the phase space of the system
with OOI due to the presence of thermal noise is found. A good review of the theory of
parallel pumping is [11]; derivation of the model equations for the SW amplitudes in Section
2 closely follows the one presented in that paper for the case of constant rf field amplitude.

2. THE MODEL

High-power ferromagnetic resonance has been for more than fifteen years a useful tool in
the study of nonlinear phenomena, including multistability [12], auto-oscillations of the
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magnetization and chaos [12-18], hyperchaos [19], control of chaos [20, 21], various kinds of
intermittency [22-24], and chaotic transients [25,26]. OOI was also predicted theoretically
[27] and observed experimentally [28] in this system. All the work mentioned above was
performed with the rf field amplitude constant in time. In parallel pumping with a certain
stochastic component of the rf field amplitude, only the stationary state was investigated
[29]). Recently a case in which the rf field amplitude possessed a random or chaotic
component varying in time slowly in comparison with SW relaxation time was analyzed. It
was shown that, both in perpendicular resonance and parallel pumping, OOI should then be
observed in the time series of absorption [10]. However, the model considered in the
previous work seems to be oversimplified as it does not take into account nonlinear SW
interactions. This drawback is removed in the model considered in the present paper.

In order to construct the model, let us assume first that the rf field amplitude 4, is constant
in time. Both the dc field H,, and rf field &, cos wt (whose frequency w is of the order of some
GHz) are applied along the z-axis which is an easy axis of an anisotropic ferromagnet. As
the rf field amplitude exceeds a certain threshold A, the so-called parallel pumping
instability occurs [30]: the rf field excites pairs of SW with half the pumping frequency and
opposite wave vectors. These SW pairs interact with one another via four-mode interactions.
The respective Hamiltonian 3 of the S-theory of interacting SW is then [11]

€ = h, cos wt E (S —xaifa* +c.c.) + 2 Wy agay + 2 (Tyxafafayay + Sycada*aya ).
k k k.k’

(2)

Here, k is the wave vector of a SW with frequency w,, af and a, are complex SW
amplitudes, J, , are coefficients of interactions between SW pairs and the rf field, 7y ,-and
Sy are coefficients of diagonal four-mode interactions, and the asterisk denotes the
complex conjugate. The overall SW dispersion relation is

oy = Y (H; + DK’)(H, + Dk* + 4nM, sin? 6y), (3)

where H; is the resultant dc magnetic field consisting of the external, demagnetization and
anisotropy fields, D is the exchange constant, M, is the saturation magnetization, vy is the
gyromagnetic ratio and 6y is the angle between the dc field and k. An observed quantity is
usually absorption in the sample which is proportional to the sum of the absolute values of
SW amplitudes. Equations of motion for the SW amplitudes are obtained as d, = —n,.a, +
133/ da¥ (and their complex conjugates), where the dot denotes the time derivative and 7,
is phenomenological SW damping. Taking into account the fact that the amplitudes of the
SW belonging to a pair k, —k differ only by a constant phase factor gy, i.e. a_y = a, exp(igy),
these equations may be rewritten in new variables by (1) = a,(t)exp(igy/2)exp(iowt/2), where
by vary slowly in time in comparison with the rf field frequency [11]:

. h
b= (~m +ibw)by+ 15 hb + i > 2T | bl bi + S b by). (4)
-

Here, Jy =J «+J xx and Awy = w, —~ w/2. The paralie]l pumping instability threshold is
AY" = min 27, /|4 |, where the minimum is taken over all SW pairs with w, = /2. The pair
for which this expression is at a minimum is called a critical pair.

First it is necessary to reduce the dimensionality of the (infinite) system of equation (4).
The SW amplitudes differ significantly from zero only in the neighbourhood of the resonance
surface wy = /2. After introducing new coordinates in k-space, with @ and ¢ being the



860 A. KRAWIECKI and A. SUKIENNICKI

spherical coordinates at the resonance surface and « the coordinate perpendicular to the
resonance surface, it is possible to retain the dependence on « only in Aw,, and replace
other parameters with their values at the resonance surface. Because the system has a
rotational symmetry with respect to the anisotropy axis, this yields 7, , = 7(6,6',¢"' — ¢),
Sux =5(6,6",¢' — @) and J, =J(0)exp(2ip). The dependence on ¢ is removed from
equation (4) by replacing the sum over ¢’ by an integral, introducing new variables
b,(8) = by exp( —i¢) and rescaled coefficients of four-mode interactions

1(0.6)=[ d@' - 916,64 - 9)
2n (5)
S©0.0)= [ A6~ $)S0.6,6" - ).

)

In order to remove the dependence on 8, a more radical assumption is necessary. It was
shown experimentally [31] and explained theoretically [11] that, above the instability
threshold in the stationary state, only the critical pairs of SW are excited (normally, the ones
with 6, = 6.;; = 90°); excitation of other SW is possible only if the rf field amplitude exceeds
significantly the instability threshold. Amplitudes of all other SW are then equal to zero and
equation (4) assumes the form [11]

. h,
b.=(—ntiAw,)b, + i;‘]b:‘ +i > (T |b|> b+ Sb2.b¥). (6)

In this equation b, = b, (6..), etc. If the state of the system is not stationary (i.e. absorption
in the sample is time-dependent), there is no theoretical background for the above
simplification and the only reason for its application is the possibility of performing
numerical calculations using equation {6).

It should be noted that in equation (6), Aw, may differ from zero; thus the excitation of
SW pairs with non-zero detuning from half the pumping frequency is allowed. In the
following, SW will be labelled by «;, j =-N,-N + 1,...,.N. where 2N + 1 is the dimension of
the system (6) (or the number of SW pairs) and their detunings will be placed symmetrically
around zero: Aw,(' = jAw. Here, Aw is a parameter connected with a characteristic dimension
of the sample d (e.g. the diameter of a spherical sample). In finite samples, SW do not form
a continuous spectrum (3) because the wave vector lengths assume values from a discrete set
k =nn/d. Thus the frequency distance between neighbouring modes is Aw = (dwy/dk)r/d,
where the derivative is taken at w, = /2 and 8 = 6.

Equations (6) have a stationary solution b, =0 (zero absorption) which is stable for
h.<h" and unstable otherwise. There are two independent parameters which may be
varied externally to obtain QOI in this system, in the same way as in the map (1): the rf field
amplitude and the dc field. In the former case, the rf field time dependence may be assumed
to be h.(t)cos wr, where h,(t) is the time-dependent rf field amplitude which varies in time
randomly or chaotically, slowly in comparison with cos wt. In the latter case, the dc field
which has a certain random or chaotic time-dependent component h(r) may be written as
H, + hy(t), where H, is the constant part and A,(¢) << H,. Though both the dc and rf fields are
applied along the anisotropy axis, these two cases must be distinguished.

In the first case, the amplitude of the high-frequency oscillations is modulated, but the SW
spectrum (3) remains unchanged. Because this modulation is slow, it is still possible to
exclude the fast time dependence from the SW amplitudes by changing the variables from a,
to by, as in the case of constant rf field amplitude. Other assumptions made during the
derivation of equation (6) are still valid: thus this equation may be simply rewritten with the
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replacement h, — h, (). Introducing new variables u, = T”Zbkl and a dimensionless rf field
amplitude &(r) = h,(¢)/hY™, one gets

. . . S
i, = (—n +idw, )u, +ie()muE +i), (2ux, lue,|* + ;ut,ui,) + &y therm: (7)

In this equation £, herm represents phenomenological thermal noise. By including this term,
one accounts for the fact that, even with the rf field turned off, SW are thermally excited to
some equilibrium level u, herm Assuming that £, snerm = £[1 + (Aw,/7)*]"? and neglecting
all nonlinear terms in equation (7), one gets [U,, iherm| = Utherm = &/1. This expression is
constant in time because processes of thermal excitation are much faster than the time
dependence of b,

If the dc field has some time-dependent component, the SW frequencies become
time-dependent too (through H; in equation (3)), so in this case the quantities Aw, in
equation (6) become randomly or chaotically time-dependent. They may be written in the
form Aw,, + dw(r), where dw(t) = yho(t). Thus equation (6) may be rewritten as

S
i, =[—n+i(Aw, + dw(t)]u,, +ienut +i 2 (2”'<, loa, P+ ?u:’uf;) + &y therm» (8)

where & = h,/h™ is a constant in this case.

Equations (7) and (8) are the system of equations in which OOI is studied in Section 3.
For the purpose of numerical calculations in Section 3, it is convenient to divide both sides of
these equations by 7 and work with renormalized time ¢’ = nr. The parameter values may be
estimated as follows. The coefficients S and T given in equation (5) may assume both
positive and negative values and depend strongly on the wave vector length of the excited
SW pairs. All numerical calculations in Section 3 were performed with §/7 =1, but the
overall behaviour of the solutions turned out to be insensitive to the choice of this
parameter. The SW damping 7 is of the order of 10°s™ in yttrium iron garnet (YIG). Then,
in the room temperature, Upe,m = £/7 =10%s"2 [10], but higher (even unphysical) thermal
excitation levels were also considered because then the intermittency characteristics differ
sharply from the ones without thermal noise. The parameter Aw ranged from 107y to 1.07;
typically results are presented for 0.025n (SW densely distributed in w-space or big samples)
and 1.07 (discrete SW spectrum or small samples).

The &(t) and Sw(t) functions were assumed as follows. Let x(¢,,z,) be the characteristic
function of the time interval (¢,,t,), i.e. y =1 for t;=<r<r, and y =0 otherwise. The
time-dependent bifurcation parameters in equations (7) and (8) were assumed as random
square waves, i.e. functions changing their values every Ar = At’/n time units, which may be
written as

{52(2)} - {ai,} 2, {x,, ino.s}" (st + 88), ey =1, + AL )

In equation (9), x,, is a random variable with uniform distribution in the interval [0,1], as in
equation (1), and ¢, dw are control parameters for equations (7) and (8), respectively. The
function &(r) was chosen to be always positive, with mean ¢/2, while dw(¢) assumes both
positive and negative values and has zero mean. With such a choice of &(t) and dw(?),
equations (7) and (8) are in fact turned into a discrete-time map (as in the experiment [9]),
but such a random square wave may serve as an approximation for any stochastic or chaotic
signal with a finite amplitude of oscillations and varying in time with a characteristic time
scale At (see Section 4 for further discussion). Between the time steps the system (7,8) was
integrated numerically using a fourth and fifth order Runge—Kutta method with permanent
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step size and error control. It turns out that, in order to observe OOI in sufficiently wide
intervals of the control parameters ¢ and dw, the time step At must be comparable or greater
than the SW relaxation time 1/7n [10]. Thus the results of Section 2 were obtained for
At’ = 2.0 unless pointed out otherwise. The number of interacting SW in the system (7,8)
ranged from 2N+ 1=25 up to 121; in particular, more SW were usually taken into
consideration when the solutions with small frequency distance between neighbouring modes
Aw/n <« 1 and non-zero thermal noise iy, .m %0 were investigated. The numerical results
presented in Section 3 are checked to be independent of the number of equations, of course
within some reasonable borders. For the purpose of characterization of OOI, absorption in
the sample was defined simply as a sum of absolute values of SW amplitudes, i.e. the
proportionality factor was assumed to be unity.

3. RESULTS

3.1.  On-off intermittency thresholds

Let us consider equations (7) and (8) with uyer, = 0. For the time dependence of the
bifurcation parameters as in equation (9), the critical values of the control parameters for the
occurrence of QOI, ¢, and Sw. may be estimated after linearizing these equations around
the fixed point u, =0 [3]. The eigenvalues of the stability matrix for 1, <t <¢,,, are, in the
case of equation (7),

Nt = —n+ Vern'x, — Ao, (10)
and, in the case of equation (8),
M= —n £ Ve'n’ - [Aw,, + dw(x, ~ 1/2), (11)

where j is the SW index. As Re A’* <( then the most rapidly growing (or most slowly
decreasing) part in the solution for u,, after no time steps At in the linear approximation will
be proportional to exp(Z;» Re AL"Ar) —exp(n,Ar{Re AL")), as no— <, where the (..)
denotes the average over n. Thus u, will decrease to zero if (Re A%") <0 and increase if
(Re A%")>0. The OOI threshold for the jth SW pair is then defined by the condition
(Re ;") = 0. Moreover, it can be easily noted that (Re A%”) is at a maximum for j=0 in
both cases of equations (7) and (8), so only the SW pair with Aw, =0 will exhibit OOI just
above the intermittency threshold and &, and 8w, calculated for this SW pair will be the
critical values of the control parameters for the whole system (7,8). This conclusion is
confirmed by numerical calculations (see Section 3.2).

For the case of random rf field amplitude, equation (7), and j=0, (ReA{")=—n+
en{x,) = —n + en/2 (see equation (9)) and . =2 or h, . =2h"". So OOI appears when the
mean value of the rf field amplitude exceeds the parallel pumping instability threshold. This
result was obtained earlier in Ref. [10] and confirmed by numerical calculations with A¢’
ranging from 0.5 up to 20.0.

Let us now turn to the case of equation (8). In order to simplify the notation, let us
introduce a new random variable z, = dw(x,, — 0.5) with zero mean and uniform distribution
p(z) =1/8w in the interval [—8w/2,6w/2]. Then (Re A.") =(—n + Re Ve’n? — z2), and two
separate cases must be considered. If w/2 < €7, the expression under the square root is
always positive and

Sewl2

1
(Veln® —z7) = Vsznz—zzga—,dz=nﬁ(e,8w/n)

—dw/2

1 5 1(60))2 ey . (6(»)]
=glz4[e2--(22) +22 2201 12
n[2 \/8 g 5 2TCSID 2em 12)
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If Sw/2 > €n, the expression under the square root is positive only if —en <z, =<¢n and
otherwise the square root is purely imaginary, thus
2.2

£n 1
(Re Vein? — z;) =J Vein® - zzg;dz = nF(g,8w/n) = nszgwn' (13)
e

For a given &, the critical value of the control parameter dw. may then be evaluated from the
condition
Fi(g,dw/n), dw/n <2,

F(g,8w/n), dw/n>2e. (14)

Fesodm) =1, Febolm)~ |
A numerical solution of the above equation is depicted in Fig. 1. For £ <1, there is no
0Ol at all; S, increases monotonically with ¢ and depends linearly on the SW damping 7.
Contrary to the previous case, OOI is obtained for dw < dw,, i.e. for a decreasing control
parameter. The OOI threshold was also calculated numerically from equation (8) with N =0
(single SW pair) by observing the long-time behaviour of the solution (Fig. 1). It turns out
that, for moderate At’, the actual values of Sw, are greater than the ones predicted
theoretically but, for increasing At’, both numerical and theoretical values coincide. This is
so probably because, for A¢’ ~ 1.0, the influence of the eigenvalues A" on the solution for U
cannot be completely neglected. The increase of the number of SW in equation (8) does not
influence the OOI threshold. A more general conclusion which may be drawn from this
result is that in time-continuous systems the critical value of the control parameter for the
occurrence of OOl may depend on the characteristic time of chaotic oscillations of the
time-dependent bifurcation parameter.

3.2.  Results of numerical modelling

In this section, the results of numerical modelling of OOI with the use of equation (7) are
presented. Solutions in the case of the dc field with random time-dependent component have
properties identical to these in the case of randomly modulated rf field amplitude, so only
this latter case is discussed in detail.

If equation (7) is solved without thermal noise (Uperm = 0) then, for £>2.0, OOl in the
time series of absorption appears. Laminar phases, during which all SW amplitudes are
practically equal to zero and thus absorption is negligible, can be easily distinguished from

Fig. 1. The OOI threshold for eqn (8): squares, At' = 2.0; triangles, A¢’ = 20.0; solid line, theoretical results of
eqn (14).
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Fig. 2. Time series of absorption for eqn (7), with £ = 2.033, uyerm = 0.

the bursts, during which absorption behaves chaotically (see Fig. 2). Only one pair of SW is
excited during the bursts, independently on Aw, at least within the borders stated in Section
2. Just above the OOI threshold, this is the pair with zero detuning from half the pumping
frequency, j = 0. However, the index j of the excited pair decreases from 0 to —N with the
rise of £ and hence, for greater values of the control parameter, amplitudes of SW pairs with
greater detuning exhibit bursts. Amplitudes of all other SW decay to zero. In fact, in order
to avoid the convergence of the solution to zero during long laminar phases uyeqy = 107>
was assumed. This can be more easily observed if Aw <« 1, because, for Aw =1.0 and
2.0<g<2.2, for example, always the mode with j =0 is excited and only for greater values
of the control parameter SW with j = —1,—2,... exhibit bursts. For a given ¢, the mean length
of laminar phases is independent of Aw and decreases with the rise of the rf field amplitude
proportionally to |¢ — &' (see Fig. 3). Similarly, the probability distribution of the laminar
phase lengths for a given £ obeys identical scaling law P(t)xt™>? for all Aw. Moreover,
these scaling laws are quantitatively identical to the ones obtained in Ref. [10] within a

[

= &
o &
T ~ e
. &
O w
Z ﬁ_ﬂ'
G S
#*
() N I A R E R ‘
0 40 80 120
1/(5* éc)

Fig. 3. Scaling of the mean laminar phase length {7), with ¢ (in the time series of absorption): circles, Aw = 1.0;
triangles, Aw = 0.025; solid line, the least squares fit for Aw = 1.0. Here and in all other figures, the onset threshold
for a burst was 0.39; the maximum values of absorption were of the order of 1.0 X 10°.
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Fig. 4. Mean values of the SW amplitudes over a long time interval as a function of their detuning from half the
pumping frequency Aw: solid line, ., = 0; dotted line. .o = 1.0 % 1077 dashed line, e = 1.0X 1077,

simplified model with only one SW pair for the case of zero thermal noise. This is so because
the distribution and mean length of laminar phases depend on the equations of motion
linearized around the invariant manifold u, =0 [3]. If only one SW pair is excited the
linearization of the full system (7) and of the model with one SW pair yield identical
equations. Hence, the description of OOl in randomly driven parallel pumping in the
previous work [10] yields results quantitatively correct in the case of zero thermal noise.

Let us now consider the case ty,.,m > 0. The OOI threshold is decreased to ¢ = 1.0 and
the system behaviour becomes strongly dependent on the parameter Aw. For instance if
Aw = 1.0 still only one SW pair (with j=0) is excited during the bursts, and other SW
remain at the thermal level uom. But if Aw <« 1.0 a whole packet of SW with frequencies
close to w/2 is excited (see Fig. 4). A maximum of the SW packet in the w-space is shifted
towards greater detunings from /2 in comparison with the case without thermal noise, and
the packet as a whole widens with the rise of uyerm, 1.6. more and more modes exhibit
significant bursts with the rise of thermal noise. One can say that, in both cases of small and
big Aw, the packet of excited SW should have a finite width, but if SW form a discrete
spectrum (e.g. in small samples) the frequency difference between neighbouring modes may
exceed this width and it is too big for more than one mode to be excited. Thus it turns out
that addition of thermal noise results not only in the decrease of the OOI threshold, but also
in the widening of the phase space part visited by the system trajectory during the time
evolution.

For both Aw ~ 1 and Aw <« 1, the scaling law (1) = |¢ — &, is invalid, but (keeping in both
cases the same onset threshold for a burst and the same number 2N + 1 of SW) the mean
laminar phase length in the time series of absorption, e.g. for Aw =0.025, is substantially
shorter than for Aw = 1.0 (see Fig. 5) and the relative difference increases with increasing
thermal noise. The power law P(t)= 1 *? for the probability distribution of the laminar
phase lengths is replaced by an exponential fall for large 7 (see Fig. 6). The characteristic
duration of the laminar phase t* which separates the power and exponential scaling areas
(signed by an arrow in Fig. 6) is again shorter in the system with Aw = 0.025 than with
Aw =1.0. In both cases, 7* scales with the square of the logarithm of up.,, which is a little
generalized form of the scaling behaviour characteristic of OOLl: 7=A 102U perm +
B In ttyperm + C, where A, B, and C are fitting parameters, different for various Aw (see Fig.
7). On the basis of these results, it may be concluded that systems which have identical
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Fig. 5. As in Fig. 3. but for u =1.0x10"".
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Fig. 6. Probability distribution of the laminar phase lengths (in the time series of absorption) for u,..., = 1.0 X 107*
and ¢ = 2.033: (a) Aw = 0.025; (b) Aw = 1; straight line, a perfect 7~ scaling. )
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Fig. 7. Scaling of 7* vS uy,,,, at £ =2.033 (in the time series of absorption): solid line, Aw = 0.025; dotted line,
Aw = 1.0; the lines are the least squares fits for the scaling characteristic of OOL.



On-off intermittency in randomly driven parallel pumping 867

O_

E ~

A -5
-10 ;

Fig. 8. As in Fig. 6, but for the time series of individual SW: (a) j = =2, (b) j = 6 t4;peem = 1.0 X 107°, Aw = 0.025.

characteristics of OOl without thermal noise may behave in a different manner when
thermal noise is added. Thus the description of OOI in the previous paper [10] in parallel
pumping with thermal noise taken into account yields results which are only qualitatively
correct.

It is also important to note that the laminar phase lengths in the time series of amplitudes
of individual SW also obey the distributions characteristic of OOI. For example, the
distribution of laminar phase lengths for two different SW with various detunings Aw,, is
shown in Fig. 8. For these SW the onset thresholds for a burst were assumed equal. It can be
seen that the laminar phases in the time series of amplitudes of SW far from the maximum of
the SW packet (Fig. 4) are longer on average. This is connected with the fact that such SW
are more weakly excited in comparison with the ones close to the maximum of the packet.
The characteristic duration of the laminar phase t* for individual SW also obeys the scaling
law for OOl quite well (see Fig. 9). It turns out that the SW do not burst independently:
during the burst all SW become excited, though the width of the SW packet varies in time.
The shape of the SW packet envelope during the burst is very similar to the one depicted
previously in Fig. 4.
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Fig. 9. As in Fig. 7, but for the time series of individual SW: solid line. j = — 2: dotted line, j = —8; dashed line,
j = 6. Aw = 0.025. The error estimates were omitted.
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4. DISCUSSION AND CONCLUSIONS

In this paper, the results of our previous work on OOI in nonlinear ferromagnetic
resonance with randomly or chaotically varying in time rf field amplitude [10] have been
generalized by including nonlinear interactions among parametrically excited SW pairs.
Another method of obtaining OOI in such a system, namely adding a random or chaotic
component to the magnetic dc field, was also discussed. It was shown that OOI can appear if
the characteristic period of the random or chaotic oscillations of the respective bifurcation
parameter is comparable to or greater than the SW relaxation time. The mechanism for the
occurrence of bursts is analogous to the case of the logistic map with random control
parameter (1). The qualitative predictions of the simplified model with one SW pair were
confirmed, but quantitative differences were found, in particular in the case when the
possibility of thermal excitation of SW which form a quasi-continuous spectrum is taken into
account. Scaling laws of OOI in the system studied are of the same kind as for a simple
one-dimensional map (1).

Some remarks concerning the numerical results of Section 3.2 are necessary. The
behaviour of the system in equation (7) in the case uyem = 0 is analogous to the one found
when the stationary state of equation (4) is investigated [11]: just above the parallel pumping
instability threshold the SW pair with Aw, =0 is excited and with the rise of the rf field
amplitude SW with non-zero detuning become excited. This is a result of the four-mode
interactions among SW which shift the effective detuning of the modes, Ao, — Db, =
Aw, +2T2; |u,</l2 (see equation (4)) so that SW with A@, =0 are always excited. The
difference with the case analysed in Ref. [29] should also be noted. In that paper, the rf field
amplitude varied randomly and fast in comparison with the SW relaxation time, and hence
the stationary state appeared above the parallel pumping instability threshold and a whole
packet of SW with frequencies from a certain interval of non-zero width was excited. Here,
for the rf field amplitude varying slowly in comparison with 1/7, the excited SW have rather
a singular distribution in the w-space.

The excitation of a whole SW packet for small Aw in the presence of thermal noise may
have been expected on the basis of the investigation of the transient behaviour of the SW
amplitudes after switching on the rf field [32,33]. It is known that in this case, before the
stationary state is established with only one SW pair excited above the thermal level, a
transient is observed. First, a packet of SW is excited with the envelope shape very similar to
the one in Fig. 4. In the course of time, this packet becomes narrower and at least the
distribution of SW amplitudes becomes singular. OOI in the model discussed in the present
paper may be observed simply if the period Az of the random oscillations of, for example, the
rf field amplitude is long enough to ensure the possibility of exciting or decaying of the SW
packets, but short enough that the stationary state could not be achieved between i, and
t, + At

From the mathematical point of view, equations (7) and (8) are systems of non-equivalent
oscillators coupled via nonlinear interactions. Without thermal noise, the OOI threshold is
different for every oscillator (SW pair) with different Aw, (see Section 3.1). One can argue
that the excitation of the whole SW packet in the case uerm 0 is another example of the
decrease of the OOI threshold, this time for every individual SW pair, due to the inclusion of
thermal noise. This conjecture is supported by the observation that the intermittency
characteristics of every individual SW pair amplitude obey the scaling relations typical of
OOI (see Section 3.2). Thus it seems that the observed phenomenon of widening of the
phase space of the system with OOI in the presence of thermal noise is not a particular
feature of the system considered, but should appear in various large ensembles of
interacting, non-equivalent subsystems. In such systems, addition of thermal noise can lead
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to two qualitative changes in the OOI picture: the decrease of the overall OOI threshold and
the widening of the part of the phase space visited by the system trajectory. So far, OOI in
high-dimensional systems was investigated only in coupled map lattices [34-38] which are
ensembles of identical subsystems (maps), so any similar phenomenon cannot be observed in
them. The results of the present paper suggest that new phenomena connected with OOI
may be also found, for example, in the ensembles of interacting non-equivalent oscillators.

From the observer’s point of view, the excitation of a whole SW packet manifests itself as
if greater thermal noise was present in the system (for a given onset threshold for a burst,
the mean laminar phase length is shorter in equation (7) with Aw « 1 than with Aw ~1,
etc.). This may cause difficulties in measuring the OOI characteristics in real high-
dimensional systems, where thermal noise is always present.

It would be interesting to check if the behaviour of the system (7) and (8) depends on the
particular form of the time dependence of £(¢) and dw(r). In Ref. [10], it was shown that, if
the rf field amplitude is modulated by one of the variables of the Lorenz system, the OOI
characteristics change only quantitatively, not qualitatively. This is in agreement with the
conjecture that these characteristics are insensitive to the particular form of the time
dependence of the bifurcation parameter [3]. Preliminary numerical calculations in which the
random square wave (9) was replaced by one of the variables of the Lorenz system indicate
that this is true also for equations (7) and (8). In particular, the phenomenon of widening of
the phase space in the presence of thermal noise was also observed in this case.
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