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Abstract. We have studied dependence of distances on nodes degrees between vertices of Erdős-
Rényi random graphs, scale-free Barabási-Albert models, science collaboration networks, biological
networks, Internet Autonomous Systems and public transport networks. We have observed that the
mean distance between two nodes of degreeski andk j equals to〈l i j 〉 = A−Blog(kik j). A simple
heuristic theory for the appearance of this scaling is presented. Corrections due to the network
clustering coefficient and node degree-degree correlations are taken into account.
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The empirical analysis of many real complex networks (for a review see [1, 2, 3, 4])
has revealed the presence of several universal scaling laws. The best known scaling law
appears for degree distributionsP(k)∼ k−γ [5] and it is observed in a number of social,
biological and technological systems. May other scaling laws in complex networks have
been found, such as a dependence of clustering coefficient on node degree in hierarchical
networksc(k) ∼ k−α [6], scale-free behavior of the connection weight [7, 8] and load
[9] distributions, load dependence on degree [10] and others [11, 12, 13].

In [14] an analytical model for average path lengths in random uncorrelated networks
was considered and it was shown that the shortest path length between nodesi and j
possessing degreeski andk j can be described as:

l i j (ki ,k j) =
− lnkik j + ln

(〈k2〉−〈k〉)+ lnN− γ
ln(〈k2〉/〈k〉−1)

+
1
2
, (1)

whereγ = 0.5772is the Euler constant, whereas〈k〉 and〈k2〉 correspond to the first and
the second moments of node degree distributionP(k). It follows that a mean distance
between two nodes is lineary dependent on the logarithm of their degree product

〈l i j 〉= A−Blog(kik j). (2)

Below we show that the relation (2) can also be obtained from a simple model of
branching trees exploring the space of a random network [16, 17].

Let us notice that following a random direction of a randomly chosen edge one
approaches nodej with probability p j = k j/(2E), where2E = N〈k〉 is a double number
of links. It means that in average one needsM j = 1/p j = 2E/k j of random trials to
arrive at the nodej. Now let us consider a branching process represented by the treeTi
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FIGURE 1. Tree formed by a random process, starting from the nodei and approaching the nodej.

(Fig. 1) that starts at the nodei where an average branching factor isκ (all loops are
neglected). If a distance between the nodei and the surface of the tree equals tox then
in average there areNi = kiκx−1 nodes at such a surface and there is the same number
of links ending at these nodes. It follows that in average the treeTi touches the nodej
whenNi = M j i.e. when

kik jκx−1 = N〈k〉. (3)

Since the mean distance from the nodei to the nodej is 〈l i j 〉= x thus we get the scaling
relation (2) with

A = 1+
log(N〈k〉)

logκ
and B =

1
logκ

. (4)

The result (4) is in agreement with the paper [18] where the concept of generating
functions for random graphs has been used.

One has to take into account that in the above considerations we have assumed that
there are no degree-degree correlations, we have neglected all loops and we have treated
the branching levelx as a continuum variable to fulfill the relation (3). Assuming that the
branching factorκ can be expressed as〈k2〉/〈k〉−1 [3], one can see that the differences
between the results (4) and (1) are small, at least for the case whenN → ∞ andκ is
finite. In general the mean branching factorκ is a mean value over all local branching
factors and over all trees in the network. In the first approximation for networks without
degree-degree correlations [3] it could be estimated as the mean arithmetic value of a
nearest neighbor degree less one (incoming edge):κ = 〈k〉nn−1. Such a mean value is
however not exact because local branching factors in every tree aremultiplied one by
another in (3). The corrected mean value ofκ should be taken as an arithmetic mean
value over all geometric values from different trees, what is very difficult to perform
numerically. To reduce this discrepancy we calculated arithmetic mean branching factor



TABLE 1. Basic properties of examined systems and comparison between experimental
and theoretical data.Astro and Cond-matare co-authorship networks,Silwood, Yeastand
Ythanare biological networks. The number after the Internet Autonomous Systems means the
year data were gathered,Gorzów Wlkp., ŁódźandZielona Góraare public transport networks
in corresponding Polish cities.N is the number of nodes,〈k〉 - mean degree value.Ae andBe
are mean experimental values (Fig. 2-4) whereas A and B are given by (4).

network N 〈k〉 Ae A Be B

Erdős-Rényi random graph 1000 8.00 5.43 5.46 1.017 1.143
Erdős-Rényi random graph 10000 8.00 6.77 6.60 1.136 1.143
Barabási-Albert model 1000 8.00 4.54 4.24 0.813 0.830
Barabási-Albert model 10000 8.00 5.17 4.81 0.778 0.777
Astro 13986 25.56 5.24 4.30 0.707 0.595
Cond-mat 17013 9.46 5.90 5.09 0.908 0.786
Silwood 153 4.77 4.22 3.69 0.955 0.941
Yeast 1846 2.39 7.53 6.66 1.406 1.552
Ythan 135 8.83 3.39 3.35 0.649 0.765
Internet Autonomous Systems 1997 3015 3.42 3.99 3.39 0.562 0.596
Internet Autonomous Systems 1998 4180 3.72 4.08 3.41 0.555 0.575
Internet Autonomous Systems 1999 5861 3.86 4.03 3.35 0.532 0.540
Internet Autonomous Systems 2001 10515 4.08 3.96 3.23 0.471 0.481
Gorzów Wlkp. 269 2.48 24.36 16.06 12.270 5.333
Łódź 1023 2.83 24.01 11.67 8.621 3.084
Zielona Góra 312 2.98 10.03 8.96 3.908 2.682

over nearest neighborhood of every nodem, i.e.κ(m) = 〈k〉(m)
nn −1, and then averaged it

geometrically over all nodesm, i.e.κ = 〈κ(m)〉m.
Figs. (2-4) present mean distances〈l i j 〉 between pairs of nodesi and j as a function

of a product of their degreeskik j in selected complex networks. We include data for
Erdős-Rényi random graphs, Barabási-Albert evolving networks, biological networks
[19, 20, 21] (Silwood, Ythan, Yeast), social networks [22, 23] (co-authorship groups
Astro and Cond-mat), Internet Autonomous Systems [24] and selected networks for
public transport in Polish cities [25, 26] (Gorzów Wlkp., Łódź, Zielona Góra) (see Table
1. for characteristic parameters of these networks) . One can observe, that the relation (2)
is very well fulfilled over several decades for all our data. Let us stress that the networks
mentioned above display a wide variety of basic characteristics. Among them there are
both scale-free and single scale networks, with either negligible or very high clustering
coefficient, assortative [27], disassortative or uncorrelated. The only apparent common
feature of all above systems is the small-world effect. We have checked however that
for the small-world Watts-Strogatz model [28], the scaling (2) is nearly absent and it is
visible only for large rewiring probability, and only for highly connected nodes.

Although the scaling (2) works well for distances averaged over all pairs of nodes
specified by a given productkik j , there can be large differences if one changeski while
keepingkik j constant. The Fig. 5 presents the dependence of average path lengthl i j
on ki , for a fixed productkik j in the case of several networks from different classes.
One can see that although theAstro network is assortative (see Table 2) (short-range
attraction), pairs of nodes with similar degrees are in average further away than different
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FIGURE 2. Mean distance〈l i j 〉 between pairs of nodesi and j as a function of a product of their degrees
kik j . (a) Erdős-Rényirandom graphs:〈k〉= 8 andN = 1000(circles)N = 10000(squares),(b)Barabási-
Albert networks:〈k〉 = 8 andN = 1000(circles)N = 10000(squares). Data are logarithmically binned
with the power of 2.
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FIGURE 3. Mean distance〈l i j 〉 between pairs of nodesi and j as a function of a product of their degrees
kik j . (a) Biological networks:Silwood (triangles),Yeast(squares),Ythan (circles), (b) Co-authorship
networks:Astro (circles), Cond-mat(squares). In (a) Data are logarithmically binned with the power
of 1.25 and in (b) with the power of 2.

degree pairs (long-range repulsion). For the disassortative network AS [27] the behavior
is opposite. For uncorrelated networks (Erdős-Rényi, Barabási-Albert), the average path
length is constant if the productkik j is fixed [16].

Table 2 shows results for parametersA andB from real networks and from numerical
simulations as compared expressions (4). One can see that our approximate approach
(4) fits very well to random Erd̋os–Rényi graphs and BA models but the corresponding
coefficientsA andB for real networks are different from results of our simple theory.
In fact, the relations (4) can be improved by taking into account effects of loops and
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FIGURE 4. Mean distance〈l i j 〉 between pairs of nodesi and j as a function of a product of their degrees
kik j . (a) Internet Autonomous Systems:Year 1997(filled squares),Year 1998(empty circles)Year 1999
(full circles), Year 2001(empty squares),(b) Public transport networks in Polish cities:Gorzów Wlkp.
(squares),Łódź(circles),Zielona Góra(triangles) In (a) data are logarithmically binned with the power
of 2. In (b) data are not binned.

TABLE 2. Comparison between experimental and theoretical data. ER stands for Erdős-Rényi
random graph network, BA for Barabási-Albert model and AS is an acronym for Internet Au-
tonomous Systems,c is network’s clustering coefficient,r - assortativity coefficient andφ is
the scaling exponent for degree correlations.Ae andBe are mean experimental values (Fig. 2-4)
whereas A’ and B’ are given by (6), whileAφ andBφ follow (9).

network c r φ Ae A′ Aφ Be B′ Bφ

ER N = 103 0.007 0 - 5.43 5.48 - 1.017 1.147 -
ER N = 104 0.001 0 - 6.77 6.61 - 1.136 1.143 -
BA N = 103 0.038 0 - 4.54 4.27 - 0.813 0.842 -
BA N = 104 0.007 0 - 5.17 4.81 - 0.778 0.779 -
Astro 0.609 0.055 1.23 5.24 4.98 4.41 0.707 0.786 0.732
Cond-mat 0.604 0.053 1.19 5.90 6.38 5.05 0.908 1.150 0.935
Silwood 0.142 -0.316 0.71 4.22 3.78 3.19 0.955 1.004 0.668
Yeast 0.068 -0.158 0.59 7.53 6.87 5.71 1.406 1.629 0.916
Ythan 0.216 -0.254 0.61 3.39 3.45 2.81 0.649 0.832 0.466
AS 1997 0.182 -0.229 0.46 3.99 3.42 2.58 0.562 0.629 0.274
AS 1998 0.250 -0.200 0.48 4.08 3.45 2.65 0.555 0.620 0.276
AS 1999 0.250 -0.183 0.49 4.03 3.38 2.55 0.532 0.579 0.265
AS 2001 0.289 -0.185 0.45 3.96 3.25 2.50 0.471 0.518 0.217
Gorzów Wlkp. 0.082 0.385 1.44 24.36 19.76 16.67 12.270 6.651 7.679
Łódź 0.065 0.070 1.19 24.01 12.70 11.89 8.621 3.389 3.670
Zielona Góra 0.067 0.238 1.41 10.03 9.63 9.62 3.908 2.917 3.781

degree-degree correlations.
The influence of loops of the length three can be estimated as follows. Let us assume

that in the branching process forming the treeTi two nodes from the nearest neighbor-
hood of the nodei aredirectly linked (the dashed line at Fig.1). In fact such a situation
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FIGURE 5. Dependence of average path length onki , for fixed kik j product. The lines connecting the
symbols are there for clarity. The bars show point weight, meaning relative numbers of pairsi j . The
horizontal lines are weighted averages overki , and are just average path lengths for givenkik j . Note: The
very small shifts onki axis between data for differentkik j are artificially introduced to make the weight
bars not overlap.

can occur at any point of the branching treeTi . Since such links are useless for further
network exploration by the treeTi thus aneffectivecontribution from both connected
nodes to the mean branching factor of the treeTi is decreased. Assuming that clustering
coefficients of every node are the same, the corrected factor for the branching process
equals toκc = κ−cκ wherec is the network clustering coefficient. This equation is not
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FIGURE 6. Estimationφ value for assortative networks. (a)Astro: the slope corresponds to exponent
φ −1= 0.23, (b) Cond-mat: the slope corresponds to exponentφ −1= 0.19, (c) Gorzów Wlkp.: the slope
corresponds to exponentφ −1 = 0.44,(d) Łódź: the slope corresponds to exponentφ −1 = 0.19.

valid for the branching process around the nodei whereκ ′i = κ − c(ki −1). A similar
situation arises around the nodej. Replacingki andk j with 〈k〉 in κ ′i andκ ′j one gets

kik j [κ(1−c′)]2[κ(1−c)]x−3 = N〈k〉, (5)

wherec′ = c(〈k〉−1)/κ. It follows that instead of (4) we have

A′ = 3+
log(N〈k〉)−2log[κ(1−c′)]

log[κ(1−c)]
, B′ =

1
log[κ(1−c)]

. (6)

The results (6) are presented in corresponding columns of the Table 2. One can
observe a fairly good agreement between experimental data and (6) for co-authorship
and biological networks as well as for the Internet Autonomous System and public
transport network in Zielona Góra while for two other transport systems it leads to larger
errors. Corrections due to clustering effects give a better fit for the coefficientA′, while
for some networks the coefficientB is closer to experimental valueBe thanB′.

Now, let us consider the presence of degree correlations. Such correlations mean that
average degreesk(nn)

i of nodes in the neighborhood of a nodei depend on the degreeki .



100 101 102

10

20

30

40

100 101 102 103

101

102

100 101 102 103

101

102

100 101

2

4

6

8

10

k

(d) Ythan

 

 

<k
nn
-1
>

(a) Autonomous systems 1999

 

 

(b) Autonomous systems 2001

 

 

<k
nn
-1
>

k

(c) Yeast

 

 

FIGURE 7. Estimationφ value for disassortative networks. (a)Autonomous systems 1999: the slope
corresponds to exponentφ −1 = −0.51, (b) Autonomous systems 2001: the slope corresponds to expo-
nentφ − 1 = −0.55, (c) Yeast: the slope corresponds to exponentφ − 1 = −0.41, (a) Ythan: the slope
corresponds to exponentφ −1 =−0.39.

Let us assume that this relation can be written as

κi ≡ k(nn)
i −1 = Dkφ−1

i (7)

If φ is larger than one then the network is assortative, i.e. high degree nodes are mostly
connected to other high degree nodes and similarly low degree nodes are connected to
other low degree nodes. Such a situation occurs for example in networks describing
scientific collaboration [27]. Ifφ is smaller than one, then the network is disassortative
and high degree nodes are mostly connected with low degree nodes what is typical for
the Internet Autonomous Systems [27]. If we neglect higher order correlations then Eq.3
should be replaced by

kik jκiκ jκx−3 = N〈k〉 (8)

Taking into account Eq. 7 we can replace parametersA andB given by the Eq. 4 with

Aφ = A+2−2BlogD and Bφ = φB (9)

The plots 6 and 7 show the degree correlations for several different networks and
illustrate the estimation ofφ coefficient. After obtaining the histogram of〈knn−1〉 for
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FIGURE 8. Dependency ofφ on assortativity coefficientr.

each nodei and plotting the dependence of those values on the node degree we perform
the linear approximation in the log-log scale. A slope calculated in this way corresponds
to the exponentφ − 1 (with accordance to the formula〈knn− 1〉 ∼ kφ−1). One can
see, that the scaling (7) is not so obvious as for the relation (2). We have compared
the resultingφ coefficient with standard assortativity coefficient introduced in [27] (see
fig.8). We need to point out, that positive values ofr correspond toφ larger than one.
The linear fit of all points at the diagram(r,φ) nearly crosses the point(r = 0,φ = 1),
what means that our definition ofφ parameter is correct.

Results (9) are presented in corresponding columns of the Table 2. One can notice
that the values ofAφ andBφ are more accurate for the networks characterized by aφ
coefficient above unity (assortative).

In conclusions we have observed universal path length scaling for different classes
of real networks and models. The mean distance between nodes of degreeski andk j
is a linear function oflog(kik j). The scaling holds over many decades regardless of
network degree distributions, correlations and clustering. We would like to stress, that
the observed scaling holds over many decades even for strongly correlated networks
with the correlation coefficients|r| > 0.3. We expect that the observed scaling law is
universal for many complex networks, with applicability reaching far beyond the quoted
examples. A simple model of random tree exploring the network explains such a scaling
behavior and clustering effects have been taken into account to compare numerical
data from model and data from real networks to theoretical predictions. We have also
considered influence of first order degree-degree correlations on scaling parameters and
we have found that inclusion of such correlations improves theoretical predictions for
assortative networks, while it fails for disassortative ones. We suppose that to get better
agreement between experimental data and theoretical results, higher order correlations
should be taken into account.
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