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Abstract. We have studied dependence of distances on nodes degrees between verticés-of Erd
Rényi random graphs, scale-free Barabasi-Albert models, science collaboration networks, biological
networks, Internet Autonomous Systems and public transport networks. We have observed that the
mean distance between two nodes of degkeemidk; equals to{l;j) = A— Blog(kikj). A simple
heuristic theory for the appearance of this scaling is presented. Corrections due to the network
clustering coefficient and node degree-degree correlations are taken into account.
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The empirical analysis of many real complex networks (for a review see [1, 2, 3, 4])
has revealed the presence of several universal scaling laws. The best known scaling law
appears for degree distributioR¢k) ~ k™Y [5] and it is observed in a number of social,
biological and technological systems. May other scaling laws in complex networks have
been found, such as a dependence of clustering coefficient on node degree in hierarchical
networksc(k) ~ k=9 [6], scale-free behavior of the connection weight [7, 8] and load
[9] distributions, load dependence on degree [10] and others [11, 12, 13].

In [14] an analytical model for average path lengths in random uncorrelated networks
was considered and it was shown that the shortest path length betweeni modies
possessing degre&sandk; can be described as:
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wherey = 0.5772is the Euler constant, whereég and(k?) correspond to the first and
the second moments of node degree distribuB¢gk). It follows that a mean distance
between two nodes is lineary dependent on the logarithm of their degree product

(lij) = A—Blog(kikj). (2)

Below we show that the relation (2) can also be obtained from a simple model of
branching trees exploring the space of a random network [16, 17].

Let us notice that following a random direction of a randomly chosen edge one
approaches nodewith probability pj = kj/(2E), where2E = N(k) is a double number
of links. It means that in average one ned&ds= 1/p; = 2E/k; of random trials to
arrive at the nodeg. Now let us consider a branching process represented by th tree
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FIGURE 1. Tree formed by a random process, starting from the mn@ahel approaching the node

(Fig. 1) that starts at the nodaevhere an average branching factorigall loops are
neglected). If a distance between the noded the surface of the tree equalstthen

in average there ang, = kik*~1 nodes at such a surface and there is the same number
of links ending at these nodes. It follows that in average theTrésuches the nod¢
whenN; = Mj i.e. when

kikjk* 1 = N(k). (3)
Since the mean distance from the nodethe nodej is (ljj) = x thus we get the scaling
relation (2) with
A=1+ log(N{k)) and B— . (4)
logk logk

The result (4) is in agreement with the paper [18] where the concept of generating
functions for random graphs has been used.

One has to take into account that in the above considerations we have assumed that
there are no degree-degree correlations, we have neglected all loops and we have treated
the branching levet as a continuum variable to fulfill the relation (3). Assuming that the
branching factok can be expressed &)/ (k) — 1[3], one can see that the differences
between the results (4) and (1) are small, at least for the case Mhero andk is
finite. In general the mean branching fackors a mean value over all local branching
factors and over all trees in the network. In the first approximation for networks without
degree-degree correlations [3] it could be estimated as the mean arithmetic value of a
nearest neighbor degree less one (incoming edge){k)n, — 1. Such a mean value is
however not exact because local branching factors in every tremaltgplied one by
another in (3). The corrected mean valueko$hould be taken as an arithmetic mean
value over all geometric values from different trees, what is very difficult to perform
numerically. To reduce this discrepancy we calculated arithmetic mean branching factor



TABLE 1. Basic properties of examined systems and comparison between experimental
and theoretical dataAstro and Cond-matare co-authorship networkSjlwood Yeastand
Ythanare biological networks. The number after the Internet Autonomous Systems means the
year data were gatheredprzow WIkp.£édzandZielona Géraare public transport networks

in corresponding Polish citiel is the number of nodegk) - mean degree valué. andB,

are mean experimental values (Fig. 2-4) whereas A and B are given by (4).

network N (k) Ae A Be B
Erdds-Rényi random graph 1000 800 543 546 1.017 1.143
Erdés-Rényi random graph 10000 8.00 6.77 6.60 1.136 1.143
Barabasi-Albert model 1000 8.00 454 424 0.813 0.830
Barabasi-Albert model 10000 8.00 517 481 0.778 0.777
Astro 13986 25.56 5.24 430 0.707 0.595
Cond-mat 17013 946 590 5.09 0.908 0.786
Silwood 153 477 422 369 0955 0.941
Yeast 1846 239 753 6.66 1406 1.552
Ythan 135 883 339 335 0.649 0.765

Internet Autonomous Systems 1997 3015 342 399 339 0562 0.596
Internet Autonomous Systems 1998 4180 3.72 4.08 341 0.555 0.575
Internet Autonomous Systems 1999 5861 3.86 4.03 3.35 0.532 0.540
Internet Autonomous Systems 2001 10515 4.08 3.96 3.23 0471 0.481

Gorzow WIkp. 269 248 2436 16.06 12.270 5.333
todz 1023 283 24.01 11.67 8.621 3.084
Zielona Gora 312 298 10.03 896 3.908 2.682

over nearest neighborhood of every nadd.e. k(™ = <k>§m) — 1, and then averaged it

geometrically over all nodes, i.e. k = (k™).

Figs. (2-4) present mean distangég) between pairs of nodésand j as a function
of a product of their degredsgk; in selected complex networks. We include data for
Erdds-Rényi random graphs, Barabasi-Albert evolving networks, biological networks
[19, 20, 21] Silwood Ythan Yeas}, social networks [22, 23] (co-authorship groups
Astro and Cond-ma}, Internet Autonomous Systems [24] and selected networks for
public transport in Polish cities [25, 26] (Gorzow WIkp., £0dz, Zielona Gora) (see Table
1. for characteristic parameters of these networks) . One can observe, that the relation (2)
is very well fulfilled over several decades for all our data. Let us stress that the networks
mentioned above display a wide variety of basic characteristics. Among them there are
both scale-free and single scale networks, with either negligible or very high clustering
coefficient, assortative [27], disassortative or uncorrelated. The only apparent common
feature of all above systems is the small-world effect. We have checked however that
for the small-world Watts-Strogatz model [28], the scaling (2) is nearly absent and it is
visible only for large rewiring probability, and only for highly connected nodes.

Although the scaling (2) works well for distances averaged over all pairs of nodes
specified by a given produktk;, there can be large differences if one changesghile
keepingkik; constant. The Fig. 5 presents the dependence of average path ligngth
on ki, for a fixed produckik; in the case of several networks from different classes.
One can see that although tAstro network is assortative (see Table 2) (short-range
attraction), pairs of nodes with similar degrees are in average further away than different
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FIGURE 2. Mean distancelij) between pairs of nodeésndj as a function of a product of their degrees
kikj. (a) Erd6s-Rényrandom graphsik) = 8 andN = 1000(circles)N = 10000(squares)(b)Barabasi-
Albert networks: (k) = 8 andN = 1000 (circles)N = 10000(squares). Data are logarithmically binned
with the power of 2.
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FIGURE 3. Mean distancél;;) between pairs of nodésindj as a function of a product of their degrees
kik;. (a) Biological networks:Silwood (triangles), Yeast(squares),Ythan (circles), (b) Co-authorship
networks: Astro (circles), Cond-mat(squares). In (a) Data are logarithmically binned with the power
of 1.25 and in (b) with the power of 2.

degree pairs (long-range repulsion). For the disassortative network AS [27] the behavior
is opposite. For uncorrelated networks (&seRényi, Barabasi-Albert), the average path
length is constant if the produkik; is fixed [16].

Table 2 shows results for paramet@randB from real networks and from numerical
simulations as compared expressions (4). One can see that our approximate approach
(4) fits very well to random Er@is—Rényi graphs and BA models but the corresponding
coefficientsA and B for real networks are different from results of our simple theory.

In fact, the relations (4) can be improved by taking into account effects of loops and
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FIGURE 4. Mean distancél;;) between pairs of nodésindj as a function of a product of their degrees
kik;. (a) Internet Autonomous Systemgear 1997(filled squares)Year 1998 empty circles)Year 1999
(full circles), Year 2001(empty squares)b) Public transport networks in Polish citieGorzéw Wikp.
(squares)t.6dz (circles),Zielona Gora(triangles) In (a) data are logarithmically binned with the power
of 2. In (b) data are not binned.

TABLE 2. Comparison between experimental and theoretical data. ER stands &e-Eéayi
random graph network, BA for Barabasi-Albert model and AS is an acronym for Internet Au-
tonomous Systemsg;, is network’s clustering coefficient, - assortativity coefficient ang is

the scaling exponent for degree correlatiohsandBe are mean experimental values (Fig. 2-4)
whereas A and B’ are given by (6), whikg, andB,, follow (9).

network c r [0} Ae A Ay Be B By
ERN = 10° 0.007 0 - 5.43 5.48 - 1.017 1.147 -
ERN = 10* 0.001 0 - 6.77 6.61 - 1.136 1.143 -
BAN=10° 0.038 0 - 4.54 4.27 - 0.813 0.842 -
BAN=10* 0.007 0 - 5.17 4.81 - 0.778 0.779 -
Astro 0.609 0.055 1.23 5.24 4.98 4.41 0.707 0.786 0.732
Cond-mat 0.604 0.053 1.19 590 6.38 505 0908 1.150 0.935
Silwood 0.142 -0.316 0.71 4.22 3.78 3.19 0.955 1.004 0.668
Yeast 0.068 -0.158 0.59 7.53 6.87 571 1.406 1.629 0.916
Ythan 0.216 -0.254 0.61 3.39 3.45 2.81 0.649 0.832 0.466
AS 1997 0.182 -0.229 0.46 3.99 3.42 2.58 0.562 0.629 0.274
AS 1998 0.250 -0.200 0.48 4.08 3.45 2.65 0.555 0.620 0.276
AS 1999 0.250 -0.183 049 403 338 255 0532 0579 0.265
AS 2001 0.289 -0.185 0.45 3.96 3.25 2.50 0.471 0.518 0.217
Gorzéw WIlkp. 0.082 0.385 1.44 24.36 19.76 16.67 12.270 6.651 7.679
todz 0.065 0.070 1.19 24.01 12.70 11.89 8.621 3.389 3.670

Zielona Gora  0.067 0.238 141 1003 9.63 9.62 3.908 2917 3.781

degree-degree correlations.

The influence of loops of the length three can be estimated as follows. Let us assume
that in the branching process forming the tigéwo nodes from the nearest neighbor-
hood of the nodé aredirectly linked (the dashed line at Fig.1). In fact such a situation
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FIGURE 5. Dependence of average path lengthkprfor fixed kik; product. The lines connecting the
symbols are there for clarity. The bars show point weight, meaning relative numbers ofjpdite
horizontal lines are weighted averages dyeand are just average path lengths for gikgq. Note: The
very small shifts ork; axis between data for differekik; are artificially introduced to make the weight
bars not overlap.

can occur at any point of the branching tfgeSince such links are useless for further
network exploration by the tre§ thus aneffectivecontribution from both connected
nodes to the mean branching factor of the ffeis decreased. Assuming that clustering
coefficients of every node are the same, the corrected factor for the branching process
equals tak; = k — ck wherec is the network clustering coefficient. This equation is not
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FIGURE 6. Estimationg value for assortative networks. (&stra the slope corresponds to exponent
¢—1=0.23 (b) Cond-matthe slope corresponds to exponent 1 = 0.19, (c) Gorzéw WIkp.the slope
corresponds to exponeqt— 1 = 0.44,(d) £6dz the slope corresponds to exponent 1 = 0.19.

valid for the branching process around the nodénerex = k — c(ki — 1). A similar
situation arises around the nofleReplacings andk; with (k) in k/ andKJf one gets

kikj [k (1— )2 [k (1—)"° = N(K), (5)
wherec’ = c((k) — 1) /K. It follows that instead of (4) we have
3 0ON() ~2logk(1=c)] 1 ©

logk(1—c)] - loglk(1-c)]

The results (6) are presented in corresponding columns of the Table 2. One can
observe a fairly good agreement between experimental data and (6) for co-authorship
and biological networks as well as for the Internet Autonomous System and public
transport network in Zielona Géra while for two other transport systems it leads to larger
errors. Corrections due to clustering effects give a better fit for the coeffisienthile
for some networks the coefficieBtis closer to experimental valug thanB'.

Now, let us consider the presence of degree correlations. Such correlations mean that

average degreéé”n) of nodes in the neighborhood of a nad#gepend on the degrée
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FIGURE 7. Estimationg value for disassortative networks. (@litonomous systems 1998e slope
corresponds to exponemt— 1 = —0.51, (b) Autonomous systems 200Qke slope corresponds to expo-
nentp — 1= —0.55, (c) Yeast the slope corresponds to expongnt 1 = —0.41, (a) Ythan the slope
corresponds to exponept— 1 = —0.39.

Let us assume that this relation can be written as
ki=k™ _1=Dk?? 7)

If @ is larger than one then the network is assortative, i.e. high degree nodes are mostly
connected to other high degree nodes and similarly low degree nodes are connected to
other low degree nodes. Such a situation occurs for example in networks describing
scientific collaboration [27]. Ifp is smaller than one, then the network is disassortative
and high degree nodes are mostly connected with low degree nodes what is typical for
the Internet Autonomous Systems [27]. If we neglect higher order correlations then Eq.3
should be replaced by

kikjKiKjK* 3 = N(K) (8)
Taking into account Eq. 7 we can replace parameieasdB given by the Eq. 4 with
Ayp=A+2-2BlogD and By = @B (9)

The plots 6 and 7 show the degree correlations for several different networks and
illustrate the estimation ap coefficient. After obtaining the histogram ¢f,, — 1) for



FIGURE 8. Dependency ol on assortativity coefficient

each nodé and plotting the dependence of those values on the node degree we perform
the linear approximation in the log-log scale. A slope calculated in this way corresponds
to the exponentp — 1 (with accordance to the formulék,, — 1) ~ k?~1). One can

see, that the scaling (7) is not so obvious as for the relation (2). We have compared
the resultingp coefficient with standard assortativity coefficient introduced in [27] (see
fig.8). We need to point out, that positive valuesr aforrespond tap larger than one.

The linear fit of all points at the diagrafn, @) nearly crosses the poift =0,¢ = 1),

what means that our definition gfparameter is correct.

Results (9) are presented in corresponding columns of the Table 2. One can notice
that the values oA, andB, are more accurate for the networks characterized py a
coefficient above unity (assortative).

In conclusions we have observed universal path length scaling for different classes
of real networks and models. The mean distance between nodes of dega@elk;
is a linear function oflog(kikj). The scaling holds over many decades regardless of
network degree distributions, correlations and clustering. We would like to stress, that
the observed scaling holds over many decades even for strongly correlated networks
with the correlation coefficients| > 0.3. We expect that the observed scaling law is
universal for many complex networks, with applicability reaching far beyond the quoted
examples. A simple model of random tree exploring the network explains such a scaling
behavior and clustering effects have been taken into account to compare numerical
data from model and data from real networks to theoretical predictions. We have also
considered influence of first order degree-degree correlations on scaling parameters and
we have found that inclusion of such correlations improves theoretical predictions for
assortative networks, while it fails for disassortative ones. We suppose that to get better
agreement between experimental data and theoretical results, higher order correlations
should be taken into account.
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