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Statistical mechanics of the international trade network
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Analyzing real data on international trade covering the time interval 1950–2000, we show that in each year
over the analyzed period the network is a typical representative of the ensemble of maximally random weighted
networks, whose directed connections (bilateral trade volumes) are only characterized by the product of the
trading countries’ GDPs. It means that time evolution of this network may be considered as a continuous
sequence of equilibrium states, i.e., a quasistatic process. This, in turn, allows one to apply the linear response
theory to make (and also verify) simple predictions about the network. In particular, we show that bilateral trade
fulfills a fluctuation-response theorem, which states that the average relative change in imports (exports) between
two countries is a sum of the relative changes in their GDPs. Yearly changes in trade volumes prove that the
theorem is valid.
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I. INTRODUCTION

In recent years, an extensive research effort has been
devoted to analyzing the structure, function, and dynamics
of the international trade network (ITN) [1–8] from a complex
network perspective [9]. The knowledge of the topological
properties of this network and its evolution over time is not
only important per se (e.g., because it enhances our descriptive
knowledge of the stylized facts pertaining to the ITN), but it
may also be relevant to a better explanation of macroeconomic
dynamics [10–17].

Here, we use quantitative and numerical (data-driven)
methods originating from statistical mechanics to describe
and predict the behavior of the ITN. We analyze a set of
year-by-year trade relationships between all countries of the
world, covering the time interval 1950–2000. Although the
total number of countries and the overall economic conditions
influencing the network change over the course of the period, in
each year the ITN is shown to be a typical representative of the
ensemble in which every network G is assigned the probability
[18,19] P (G) ∝ e−H (G), where H (G) = ∑

i,j θijwij plays the
role of network Hamiltonian; wij represents the volume of
trade between two countries, i and j ; θij ∝ (xixj )−1 is the
field parameter conjugated to this trade connection; and xixj

corresponds to the product of the GDPs of the trade partners.
Beyond the descriptive power of our approach (which

has been confirmed in a number of tests reported in this
article consisting in a comparison of GDP-driven Monte Carlo
simulations of the trade network with real data on the ITN),
it is also important to stress the predictive abilities of the
model. In particular, we show here that bilateral trade fulfills
a simple fluctuation-response theorem [20]. Supported by the
well-known qualitative findings about economic crises, we
argue that the theorem provides valuable quantitative insights
into the dynamics of the ITN in the time of crises, and, in the
future, may be used to uncover mechanisms underlying the
emergence of worldwide crises.
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II. DATA DESCRIPTION

The results reported in this paper are based on the trade
data collected by Gleditsch [21] that contains, for each world
country in the period 1950–2000, the detailed list of bilateral
import and export volumes. The data are employed to build a
sequence of matrices W(t) corresponding to snapshots of the
weighted directed ITN in the consecutive years t = 1950, . . . .

In the network, each country is represented by a node and the
direction of links follows that of wealth flow. The entry wij (t)
of the trade matrix W(t) represents the weight of the directed
connection. From the point of view of the country denoted
by i, wij (t) refers to the volume of export to j , while, from
the point of view of the country labeled by j , it is seen as
the volume of import from i. Precisely due to differences in
reporting procedures between countries, when analyzing the
data one often encounters small deviations between exports
from i to j and imports from i to j . To overcome the problem,
in our analysis we define wij (t) as the arithmetic average of
the two values.

In this article, apart from trade matrices, which contain
complete but often excessively detailed information about
the ITN, we also use several other quantities that make a
theoretical description of the network possible. In particular,
to characterize the economic performance of a country we
use its total GDP value xi(t). To get the whole set of total
GDPs, {xi(t)}, we simply multiply the GDP per capita by the
population size of each country [22]. Furthermore, to describe
the intensity of the trade relationships of a country we define
the so-called outstrength sout

i (t) and instrength s in
i (t) of the

corresponding node. The quantities are calculated as the total
weight of connections (outgoing and incoming, respectively)
that are attached to the node, and they represent total volumes
of exports and imports of the considered country in a given
year t .

All the data used in this paper are given in millions of
contemporary US dollars. The disturbing effects of inflation
are ruled out in a natural way by the fact that whenever the
variables, xi(t) or wij (t), are used in the calculations, they
are intrinsically divided by the normalization constant that
equals the sum of all variables of a given type, i.e., X(t) =∑

i xi(t) or T (t) = ∑
i,j wij (t), respectively. (In what follows,
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whenever there is no confusion we will often omit the explicit
time dependence of the quantities). As a byproduct, the above
observation allows one to present the main results of this article
in a very concise way, with the help of relative quantities
defined as follows:

ξi = xi

X
, σ out

i = sout
i

T
, σ in

i = s in
i

T
, vij = wij

T
. (1)

III. EXPONENTIAL RANDOM GRAPHS: STRUCTURAL
HAMILTONIAN OF THE INTERNATIONAL TRADE

NETWORK

The first contributions dealing with international trade
from a complex network perspective used a binary-network
approach, in which one has assumed that a (possibly directed)
link between any two countries is either present or not,
depending on whether the trade volume that it carries is larger
than a given threshold [1–3]. With reference to this line of
research we would like to highlight the paper by Garlaschelli
and Loffredo [3]. In the paper, the authors used the same
real-world data to analyze an unweighted and undirected
version of the ITN, i.e., a network of partnership in trade. They
have shown that the total GDP of a country, xi , can be identified
with the fitness variable [23] that, once a form of the probability
of the trade connection between two countries is introduced,
completely determines the expected structural properties of
this network. This in turn implies that the ITN viewed as
a binary network is a typical representative of exponential
random graphs [18]. Furthermore, one can expect that the same
holds true for the weighted version of this network [19,24].

To verify this conjecture, we start by considering the most
general ensemble of directed weighted networks, which is
described by the following Hamiltonian,

H (G) =
∑

i

∑
j �=i

θijwij , (2)

with a separate parameter θij coupling to each weighted
connection. Our aim is to check whether the Hamiltonian is
correct and, if so, how the parameters {θij } depend on different
indicators characterizing the global economy. To do this, we
first examine the ensemble as it stands.

Thus, given that wij is a real number greater than 0 (as is
true for trade volumes), the partition function of this ensemble
can be written as

Z({θij }) =
∏

i

∏
j �=i

∫ ∞

0
e−θij wij dwij =

∏
i

∏
j �=i

1

θij

. (3)

This allows us to rewrite the probability of a network as
P (G) = e−H (G)/Z = ∏

i

∏
j �=i pij , where

pij (wij ) = e−θij wij θij (4)

is the probability that there is a directed link of weight wij

from i to j . The expression for pij that we arrive at is the
exponential distribution. Its mean value,

〈wij 〉 = 1/θij , (5)

can be used to calculate the average values of a node’s
outstrength and instrength:

〈
sout
i

〉 =
∑
j �=i

〈wij 〉 =
∑
j �=i

1

θij

and
〈
s in
i

〉 =
∑
j �=i

1

θji

. (6)

At this stage one can start to make comparisons of
theoretical predictions with the empirical data on international
trade. With good reason, it is convenient to begin by putting
together Eq. (6) and the corresponding empirical relations [see
Figs. 1(a)–1(d)]:〈

sout
i

〉 = Axi and
〈
s in
i

〉 = Axi, (7)

where A is the time-dependent parameter having the same
value for both the outstrength and instrength of the nodes.
Analyzing the expressions, one finds that the simplest way to
merge the theoretical approach with real data is to assume a
multiplicative form of the parameter θij , i.e.,

θij = θiθj , (8)

where θi and θj represent some single-node characteristics
controlling for the potential ability of the two nodes to be
connected. One should note that the symmetric expression for
θij , Eq. (8), is consistent with observations made by other
authors, showing the symmetric character of bilateral trade
relations (see, e.g., [3,8]).

To calculate explicit values of all the parameters {θi}, one
just has to insert Eq. (8) into the theoretical formula for 〈sout

i 〉,
Eq. (6), and then equate the obtained relation to the empirical
one, Eq. (7). (The analogous calculations can be done for
〈s in

i 〉.) As a result, one gets the following expression: 〈sout
i 〉 =∑

j θ−1
j /θi = Axi , which, when summed over i, yields an

important relation between theoretical and empirical quantities
describing the ITN: T = (

∑
i θ

−1
i )2 = AX, from which it

follows that

θi = 1√
T

X

xi

= 1√
T

1

ξi

and θij = 1

T

1

ξiξj

, (9)

where ξi has been introduced earlier, in Eq. (1). Now, one can
insert (9) into (5). As a result one gets a stochastic version of
the gravity model of trade [25–27],

〈wij 〉 = T

X2
xixj . (10)

In comparison with the standard gravity equation for bilateral
trade volume between i and j ,

wij = const
xixj

f (Dij )
, (11)

where f (Dij ) represents transport costs in international trade,
which depend on the geographic distance between the two
trading countries.

The expressions, Eqs. (9), together with other relative
parameters defined in Eq. (1), can be used to rewrite
the most important results of this approach in a very concise
way. In particular, as described in terms of trade, the average
outstrength and instrength of a node, Eq. (6), when divided
by the world’s trade volume T turns out to be equal to the
country’s share in the world’s GDP X, i.e.,〈

σ out
i

〉 = 〈
σ in

i

〉 = ξi . (12)
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(a) (e) (i)
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FIG. 1. Structural properties of single snapshots of the ITN. Diagrams placed in the same row refer to the same year. The data are shown
in two ways, by using regular and relative quantities; cf. Eq. (1). (a)–(d) Total import and export volumes of all world countries in 1973, 1974,
1975, and 1995 versus GDP (filled and open points correspond to imports and exports, respectively) and their comparison with the expected
values described by Eqs. (7) and (12) (solid straight lines). (e)–(h) Bilateral trade flows in the following years versus the product of the trading
countries’ GDPs (points) as compared with their theoretical predictions based on Eqs. (5) and (13) (lines). Black points correspond to real
data, while gray points represent trade volumes obtained from GDP-driven Monte Carlo simulations. In the insets of all the panels [(e)–(h)],
comparisons of the expected theoretical values (straight lines) to mean values of the real data are shown. Since trade flows smaller than a
given threshold are rarely specified in economic reports (in particular, the considered data set [21] does not contain trade volumes smaller
than 1000 USD), the clouds of black points cover smaller areas than the ones corresponding to numerical simulations. (i)–(l) Distributions of
trade volumes in the considered years. Filled and open squares correspond to real and simulated data, respectively. The solid lines represent
distributions of expected trade flows which, for each pair of countries in a given year, can be calculated using Eq. (5) or (13).
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In a similar fashion, the average weight of a directed connec-
tion when divided by T , is given by

〈vij 〉 = ξiξj = 1/ηij . (13)

Finally, the structural network Hamiltonian, Eq. (2), when
written in relative variables has the following form:

H (G) =
∑

i

∑
j �=i

ηij vij . (14)

To verify the correctness of the assumed network Hamil-
tonian, a series of data-driven Monte Carlo simulations
employing the Metropolis algorithm has been performed. The

obtained results for four years, 1973, 1974, 1975, and 1995, are
shown in Fig. 1 (diagrams placed in the same row refer to one
year marked in the left chart). The first three years correspond
to the 1973 oil crisis which caused high inflation and a global
recession which affected all aspects of living within the 1970s.
The figure shows that global economic crises, such as the one
triggered by the 1973 oil crisis, do not affect the quality of our
approach. In particular, in Figs. 1(e)–1(h), sets of all bilateral
trade volumes recorded in a given year versus the product of the
trading countries’ GDPs are compared with the corresponding
set of weights of directed connections in a typical network
of the considered ensemble. Although the two sets (clouds)

(a) (c)

(b) (d)

FIG. 2. Fluctuation-response theorem for the ITN. To confirm validity of the theorem, for each connection in the trade network at
the turns of 1950 to 2000, one has calculated quantities corresponding to both sides of Eq. (16): the relative change in normalized trade
volume, dvij /vij � [vij (t + 1) − vij (t)]/vij (t), and the sum of relative changes in the GDP of trading countries, dξi/ξi + dξj /ξj , where
dξi/ξi � [ξi(t + 1) + ξi(t)]/ξ (t). Then, the results were grouped according to similarities in both: local fields conjugated to the corresponding
trade flows, ηij , Eq. (13), and their year-by-year changes, dξi/ξi + dξj /ξj , characterizing the initial economic conditions influencing trade and
the magnitude of the applied perturbation, respectively. Each group of connections, V (m,n), was characterized by two integers, m and n. The
trade flow vij was classified as belonging to V (m,n) if m − 1 � ln ηij < m and n − 1 � 100 dηij < n. [Note that the grouping with respect
to m is in fact logarithmic binning with respect to the expected trade volume, Eq. (13), while the parameter m describes linear binning with
respect to the sum of percentage changes in relative GDPs of trade partners.] The gray circles shown in the figure correspond to geometric
averaging of the results pertaining to single connections of the ITN. The averaging was employed over the predefined groups V (m,n). The
black squares correspond to gray points averaged over the horizontal axis. More precisely, the upper left panel (a) shows all the data such as
they are described above. The upper right panel (b) presents the same data with the additional condition: it illustrates the fluctuation-response
theorem as applied to trade volumes whose expected share 〈vij 〉, Eq. (13), in the global trade was greater than 10−4. The lower left panel (c)
presents those points from the panel (a), for which the number of single trade volumes contributing to the geometric average was greater than
1000. Finally, in the lower right panel (d), the gray circles which meet the additional conditions specified in panels (b) and (c) are shown.
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of points are quite dispersed, they overlap significantly, and
their shape is well described by Eq. (13). Moreover, as shown
in Figs. 1(i)–1(l), the distributions of trade volumes within
these clouds fit very well with each other and agree with
the distribution of expected trade flows, P (〈vij 〉), testifying
in favor of our simple, yet realistic, approach.

IV. SUSCEPTIBILITY OF TRADE VOLUME TO CHANGES
IN GDP: FLUCTUATION-RESPONSE RELATION FOR

THE ITN

Extensive comparisons between real data on international
trade and its GDP-driven Monte Carlo simulations show that,
although the total number of world’s countries, N (t), and their
GDPs {xi(t)} change over the analyzed period of 50 years, the
ITN is continuously well characterized by the same Hamil-
tonian. This means that the time evolution of this network
may be considered as a continuous sequence of equilibrium
states (i.e., a quasistatic process) that is yearly sampled by the
national reporting procedures. Furthermore, since differences
between snapshots of the ITN in the consecutive years are
rather small, one can expect that they could be described
with the help of linear response theory, of which the simplest
(but not yet trivial) result is the fluctuation-response theorem
[20].

In the case of exponential random graphs with the Hamil-
tonian given by Eq. (14), the fluctuation-response theorem has
the following form:

〈
v2

ij

〉 − 〈vij 〉2 = −d〈vij 〉/dηij . (15)

The left-hand side of this expression describes fluctuations in
relative weight, vij = wij/T , of the directed connection from
i to j , whereas its right-hand side characterizes susceptibility
of this link to its conjugated local field ηij . The susceptibility
is defined as the derivative of 〈vij 〉 with respect to ηij and
describes what happens with the expected trade volume 〈vij 〉
when one changes the parameter ηij , which determines the
external conditions for the bilateral exchange.

Taking into account the exponential distribution of weights,
p(vij ) = e−ηij vij ηij , which follows from Eq. (4) and whose
variance equals the square of the mean, the fluctuation-
response theorem, Eq. (15), can be transformed into the
formula

d〈vij 〉
〈vij 〉 = −dηij

ηij

= dξi

ξi

+ dξj

ξj

. (16)

Written in such a way, the theorem states that relative changes
in normalized (i.e., divided by T ) bilateral trade volumes can
be estimated on the basis of changes in the GDP of trade
partners. Yearly changes in import/export volumes between
different countries prove that the fluctuation-response theorem
for the ITN is correct (see Fig. 2). Although, we have obtained
Eq. (16) as the fluctuation-response relation for exponential

random graphs, it is obvious that it can be also obtained as the
logarithmic derivative of Eq. (13).

Relying on Eq. (16) one can, for example, expect that a
decline of, say, 2% in the relative GDP of a country, given
that its trade partners do not change their share of the world’s
GDP, will translate into a similar decline in all its bilateral trade
volumes. The example shows that the theorem can be used to
make simple predictions about the world-wide diffusion of
trade-based economic perturbations. Furthermore, assuming
that the structure of the ITN is a proxy for meaningful financial
linkages between countries, the expression may also help
one to understand how financial ripples originating in one
country propagate to other countries, giving rise (or not) to
global financial contagion. In particular, in the light of this
theorem, it becomes apparent that a crisis is amplified if the
epicenter country is better integrated into the trade network
[15]. This happens because the decline of its GDP, through the
proportional downward effect on trade and financial linkages,
affects more countries. It also becomes clear that the impact
of a crisis on any target country is cushioned if the country in
question is better integrated into the ITN, due to the fact that,
in the case of such countries, the decline of only one bilateral
trade volume does not significantly influence GDP.

V. CONCLUDING REMARKS

The current economic crisis illustrates a critical need for
new and fundamental understandings of the structure and
dynamics of economic networks. This sentence opens the
perspective article from the special issue of Science [9] on
complex systems and networks entitled “Economic networks:
The new challenges” by Schweitzer et al. In their article [11],
the authors summarize what we know and what we need to
know about different economic networks (including the ITN)
to reduce the risk of global depression and to design effective
strategies to promote economic recovery [28]. Our approach
to the ITN is in line with this challenging research area.
Having the mathematically tractable yet realistic model of the
ITN introduced here, and given its quasistatic time evolution,
we believe that, apart from the fluctuation-response theorem,
Eq. (16), other well-known results of nonequilibrium statistical
physics [29] may be applied to estimate recession (or economic
growth) impact on international trade.

The exponential random graphs are in common use within
the statistics and social network analysis communities as
a practical tool for modeling networks for a few decades.
Although such modeling gives a good qualitative description of
the data, to our best knowledge, there is no evidence so far that
with such an approach one could achieve excellent quantitative
accuracy and reproducibility of real world phenomena.
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