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Abstract

The influence of node–node degree correlations on distances in complex networks has been

studied. We have found that even the presence of strong correlations in complex networks

does not break a universal scaling of distances between vertices of such networks as science

collaboration networks, biological networks, Internet Autonomous Systems and public

transport systems. A mean distance between two nodes of degrees ki and kj in such net-

works equals to hliji ¼ A � B logðkikjÞ for a fixed value of the product kikj : The scaling is

valid over several decades. Parameters A and B depend on the mean value of a node degree

hkinn calculated for the nearest neighbors. We have found that extending our simple theory

basing on a random branching tree by the first-order node degree correlations improves

theoretical predictions for parameters A and B in assortative networks, while it fails in

disassortative ones.
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During the last few years random, evolving networks have become a very popular
research domain among physicists [1–3]. A lot of efforts were put into the
investigation of such systems in order to recognize their structure and to analyze
emerging complex properties. It was observed that despite network diversity, most of
real web-like systems share three prominent structural features: small average path
length, high clustering and scale-free degree distribution [1–3]. The empirical analysis
of many real complex networks has revealed the presence of several universal scaling
laws. Scale-free behavior of degree distributions PðkÞ � k�g observed in a number of
social, biological and technological systems [4] is probably the most amazing.
Another interesting scaling law is related to clustering effects [5]. It was observed
that, depending on the behavior of the local clustering coefficient cðkÞ; real-world
networks can be grouped into two universality classes of hierarchical cðkÞ � k�a and
non-hierarchical cðkÞ ’ const systems [6]. Recently, there has also been found that
the distribution of connection strengths sðkÞ in many real weighted networks follows
power-law sðkÞ � kb [7,8]. It is not surprising, if we consider the fact, that connection
loads (also called betweenness) scale similarly [9] gðkÞ � kZ while load distributions is
PLð‘Þ � ‘�2 [10]. The cumulative community size distribution received for different
social networks is also given by a universal scaling law PðS4sÞ � s�a where the
exponent a 	 0:5 or 1 in different scaling regions [11]. The first value is very near to a
characteristic exponent of drainage area distribution in rivers [12] that was studied as
a problem related to allometric relations [13]. At the macro-scale one can describe a
whole network by a dependence of mean distance l between any pair of nodes in the
system on the total number N of nodes. It was found that such distances behave in
different ways for scale-free networks with different exponents of node degree
distributions [14–17].

Recently, we have observed [18] universal scaling for distances lij between nodes
possessing degrees ki and kj : The distances behave as

hliji ¼ A � B logðkikjÞ ; (1)

where the mean value is taken over all pairs of nodes having a fixed product kikj : We
have found a simple model that explains such a scaling [18] that is in agreement with
the results presented in paper [19]. The model bases on the concept of a random tree
exploring the network. In the present paper we consider influence of node degree
correlations on the scaling (1).

At Figs. 1–3 we show distances hliji for several networks [18]. One can see that the
scaling is very well fulfilled although the networks belong to very different classes
(Erd +os–Rényi random graphs, Barabási–Albert scale-free evolving networks, co-
authorship networks, biological networks, Internet Autonomous Systems and public
transport networks). This amazing scaling (1) can be connected with the small-world
effect that exists in all these systems.

To justify relation (1) we introduced [18] a very simple approach that bases on a
concept of branching trees exploring the space of a random network. The problem is
to find the mean shortest path between a node i of degree ki and a node j of degree kj :
If N is the total number of nodes in the system, hki is a node mean degree and then
the total number of all directed links (double number of all connections) is 2E ¼
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Fig. 1. (a) Erd +os–Rényi random graphs: hki ¼ 8 and N ¼ 1000 (squares) N ¼ 10 000 (circles). Data are

logarithmically binned with the power of 2. (b) Barabási–Albert networks: hki ¼ 8 and N ¼ 1000 (squares)

N ¼ 10 000 (circles). Data are logarithmically binned with the power of 2.
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Fig. 2. (a) Autonomic systems: Year 1997—N ¼ 3015; hki ¼ 3:42 (circles), Year 1998—N ¼ 4180; hki ¼
3:72 (squares) Year 1999—N ¼ 5861; hki ¼ 3:86 (diamonds), Year 2001—N ¼ 10 515; hki ¼ 4:08
(triangles). Data are logarithmically binned with the power of 2. (b) Transport networks in Polish cities:

Gorzów Wlkp.—N ¼ 269; hki ¼ 2:48 (circles), Łódź—N ¼ 1023 (squares), hki ¼ 2:83; Zielona Góra—

N ¼ 312; hki ¼ 2:98 (triangles).
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Nhki: The probability that a randomly chosen directed link ends at the node j equals
to

pj ¼ kj=2E : (2)

It follows that on average one needs

Mj ¼ 1=pj ¼ 2E=kj (3)

random trials among all directed links to find any link that ends at the node j.
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Fig. 3. (a) Co-authorship networks: Astro—N ¼ 13 986; hki ¼ 25:56 (circles), Cond-mat N ¼ 17 013;
hki ¼ 9:46 (squares). Data are logarithmically binned with the power of 2. (b) Biological networks:

Silwood—N ¼ 153; hki ¼ 4:77 (diamonds), Yeast—N ¼ 1846; hki ¼ 2:39 (circles), Ythan—N ¼ 135;
hki ¼ 8:83 (triangles). Data are logarithmically binned with the power of 1.25.
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Fig. 4. Tree formed by a random process, starting from the node i and approaching the node j:
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Now let us consider a branching process represented by a tree Ti (Fig. 4) that
starts at the node i where an average branching factor is k (all loops are neglected).
The factor k can be calculated as k ¼ hknn � 1i; i.e., as a mean value of nearest-
neighbors degrees minus one, averaged geometrically over the whole network to take
into account the product kx�1 in (4).

If a distance between the node i and the surface of the tree equals to x, then on
average there are

Ni ¼ kikx�1 (4)
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nodes at the surface of the tree and there is the same number of directed links ending
at these nodes (Fig. 4). It follows that on average the tree Ti touches the node j when
Ni ¼ Mj ; i.e., when

kikjkx�1 ¼ Nhki : (5)

Since the mean distance from the node i to the node j is hliji ¼ x thus we get the
scaling relation (1) with

A ¼ 1þ
logðNhkiÞ

log k
and B ¼

1

log k
: (6)

Eqs. (6) are in agreement with the paper [19] and slightly differ from our previous
results [16,17].

Now, let us consider the presence of degree correlations. Such correlations mean
that average degrees k

ðnnÞ
i of nodes in the neighborhood of a node i depend on the

degree ki: Let us assume that this relation can be written as

ki � k
ðnnÞ
i � 1 ¼ Dk

f�1
i : (7)

If f is larger than one, then the network is assortative, i.e., high-degree nodes are
mostly connected to other high-degree nodes and similarly low-degree nodes are
connected to other low-degree nodes. Such a situation occurs, for example, in
networks describing scientific collaboration [20]. If f is smaller than one, then the
network is disassortative and high-degree nodes are mostly connected with low-
degree nodes, which is typical for the Internet Autonomous Systems [20]. If we
neglect higher-order correlations, then Eq. (5) should be replaced by

kikjkikjkx�3 ¼ Nhki : (8)

Taking into account Eq. (7), we can replace parameters A and B given by Eq. (6) with

Af ¼ A þ 2� 2B logD and Bf ¼ fB : (9)
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Fig. 5. (a) Estimation f value for Astro network: the slope corresponds to exponent f� 1 ¼ 0:23: (b)
Estimation f value for Gorzów Wlkp. network: the slope corresponds to exponent f� 1 ¼ 0:44:
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Fig. 6. (a) Estimation f value for AS 1999 network: the slope corresponds to exponent f� 1 ¼ �0:49: (b)
Estimation f value for Ythan network: the slope corresponds to exponent f� 1 ¼ �0:39:
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Figs. 5 and 6 show the degree correlations for several different networks and illustrate
the estimation of f coefficient. After obtaining the histogram of hknn � 1i for each node
i and plotting the dependence of those values on the node degree, we perform the linear
approximation in the log–log scale. A slope calculated in this way corresponds to the
exponent f� 1 (with accordance to the formula hknn � 1i � kf�1). One can see that
scaling (7) is not so obvious as for relation (1). We have compared the resulting f
coefficient with standard assortativity coefficient introduced in Ref. [20] (see Fig. 7). One
has to point out that positive values of r correspond to f larger than one. The linear fit
of all points at the diagram ðr;fÞ nearly crosses the point ðr ¼ 0;f ¼ 1Þ; which means
that our definition of f parameter is correct.

Table 1 shows the comparison between experimental data collected from the
examined networks and the results obtained from Eqs. (6) and (9). One can note that
the values of Af and Bf are more accurate for the networks characterized by a f
coefficient above unity (assortative).

We suppose that to get a better agreement between experimental data and
theoretical results, higher-order correlations should be taken into account.

In conclusion, we have considered the influence of the first-order degree–degree
correlations on the scaling law observed for distances between nodes with a fixed
degree product kikj : We have found that inclusion of such correlations improves
theoretical predictions for assortative networks, while it fails for disassortative ones.
We would like to stress that the observed scaling holds over many decades even for
strongly correlated networks with the correlation coefficients jrj40:3: It seems that
the observed dependence is a universal property of many complex networks.
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Dynamics of Complex Systems at Warsaw University of Technology and by the ESF
programme STOCHDYN. JAH is thankful to the Complex Systems Network of
Excellence EXYSTENCE for the financial support during the Thematic Institute at
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Table 1

Comparison between experimental and theoretical data

Network r Ae A Be B f Bf Af

ER N ¼ 103 �0.066 5.43 5.46 1.017 1.143 0.96 1.097 5.36

ER N ¼ 104 �0.032 6.77 6.60 1.136 1.143 0.91 1.040 6.41

BA N ¼ 103 �0.044 4.54 4.24 0.813 0.830 0.88 0.731 4.03

BA N ¼ 104 �0.028 5.17 4.81 0.778 0.777 0.91 0.707 4.57

Astro 0.055 5.24 4.30 0.707 0.595 1.23 0.732 4.41

Cond-mat 0.053 5.90 5.09 0.908 0.786 1.19 0.935 5.05

Silwood �0.316 4.22 3.69 0.955 0.941 0.71 0.668 3.19

Yeast �0.158 7.53 6.66 1.406 1.552 0.59 0.916 5.71

Ythan �0.254 3.39 3.35 0.649 0.765 0.61 0.466 2.81

AS 1997 �0.229 3.99 3.39 0.562 0.596 0.46 0.274 2.58

AS 1998 �0.200 4.08 3.41 0.555 0.575 0.48 0.276 2.65

AS 1999 �0.183 4.03 3.35 0.532 0.540 0.49 0.265 2.55

AS 2001 �0.185 3.96 3.23 0.471 0.481 0.45 0.217 2.50

Gorzów Wlkp. 0.385 24.36 16.06 12.27 5.333 1.44 7.679 16.67

Łódź 0.070 24.01 11.67 8.621 3.084 1.19 3.670 11.89

Zielona Góra 0.238 10.03 8.96 3.908 2.682 1.41 3.781 9.62

Astro and Cond-mat are co-authorship networks, Gorzów Wlkp., Łódź and Zielona Góra are public

transport networks in Poland; Silwood, Yeast and Ythan are biological networks and AS stands for

autonomic systems with number meaning the year data were gathered. ER stands for Erd +os–Rényi graphs

and BA for Barabási–Albert networks. r is the assortativity coefficient, Ae and Be mean experimental

values of those coefficients whereas B ¼ 1= logk and A ¼ 1þ B logNhki: Bf follows Bf ¼ Bf while

Af ¼ A þ 2� 2B logD where f is the scaling exponent for degree correlations.
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Fig. 7. Dependency of f on assortativity coefficient r.
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