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Abstract

We give a microscopic explanation of both Debye and non-Debye thermalization processes that have been recently

reported by Gall and Kutner [Physica A 352 (2005) 347]. Due to reduction of the problem to first passage phenomena we

argue that relaxation functions f ðtÞ introduced by the authors directly correspond to survival probabilities SðtÞ of particles

in the considered systems. We show that in the case of broken ergodicity (i.e., in the case of mirror collisions) the survival

probability decays as a power law SðtÞ ¼ t=t.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction: motivation and aims

Relaxation of a typical macroscopic observable A towards its equilibrium value is usually described by
exponential function

f ðtÞ ¼
DAðtÞ
DAð0Þ

¼ e�t=t0 , (1)

where t represents time, and DAðtÞ ¼AðtÞ �Að1Þ. On that score, probably the best-known example is the
Newton’s law of cooling where the relaxation function f ðtÞ refers to thermalization process (i.e.,A ¼ T).
Apart from ordinary exponential relaxation, there also exist phenomena which obey slower relaxation. For
example, a large class of systems is characterized by power-law decay (e.g., Refs. [1–5])

f ðtÞ ¼
t

t

� ��d

. (2)

In particular, Weron et al. [6–8] have analysed the probabilistic approach to non-Debye relaxation. The
authors have shown that fat-tailed relaxation functions may result from a superposition of exponential
e front matter r 2006 Elsevier B.V. All rights reserved.
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processes with different relaxation times. In Ref. [8], they have studied model of dielectric materials where the
regression to equilibrium of polarization fluctuations is a random variable that depends for each relaxing
dipole on two other random variables: the waiting time, and the dissipation rate drawn from some given
distributions.

It was also noticed that non-Debye relaxation is usually observed in systems which violate the ergodicity
condition. In such systems, the lack of ergodicity results from long-range interactions, microscopic memory
effects or from (multi)fractal structure of phase space. It was argued that such systems are well described by
the so-called non-extensive statistics introduced by Tsallis [9,10]. The conjectured relaxation function for such
systems [11,12] is given by the q-exponential decay1

f ðtÞ ¼ e�t=tq
q ¼ 1þ ðq� 1Þ

t

tq

� �1=ð1�qÞ

(3)

which is equivalent to formula (1) for q ’ 1, whereas for q41 it coincides with (2).
In the context of the ongoing discussion on possible relations between non-ergodicity and non-extensivity,

the phenomenon of non-Debye relaxation that has been recently reported by Gall and Kutner [15] seems
to be particularly interesting (see also Ref. [16]). The authors have numerically studied a simple molecular
model as a basis of irreversible heat transfer through a diathermic partition. The partition has separated
two parts of box containing ideal point particles (i.e., ideal gases) that have communicated only through
this partition (see Fig. 1a). The energy transfer between the left and right-hand side gas samples has consisted
in equipartition of kinetic energy of all outgoing particles colliding with the partition during a given
time period. The authors have analysed and compared two essentially different cases of the system’s
dynamics:
(i)
1A

fluct
the first case, where the border walls of the box and the diathermic partition have randomized the direction
of the motion of rebounding particles, and
(ii)
 the case, where mirror collisions of particles with the border walls and the partition have been considered.
They have found that although the mechanism of heat transfer has been analogous in both cases the long-
time behaviour of both thermalization processes has been completely different. In the first case (i) ordinary
Debye relaxation of the system towards its equilibrium state has been observed

DTðtÞ�e�t=t0 , (4)

where DTðtÞ ¼ T1ðtÞ � T2ðtÞ is the temperature difference between both gas samples, while in the second case
(ii) the power-law decay has been noticed

DTðtÞ�
t
t
. (5)

In order to describe the phenomenon of the non-Debye relaxation Gall and Kutner [15] have derived an
extended version of the thermodynamic Fourier–Onsager theory [17,18] where heat conductivity was assumed
to be time-dependent quantity. The authors have argued that from the microscopic point of view the non-
Debye relaxation results from the fact that the gas particles always move along fixed orbits in the case (ii).
They have also argued that this regular motion may be considered as non-ergodic, violating the molecular
chaos hypothesis (Boltzmann, 1872).

In this paper we propose a more rigorous microscopic explanation of both Debye and non-Debye
thermalization processes reported by Gall and Kutner. We also stress that our explanation is restricted to the
phenomenon observed in Ref. [15] and does not extend to non-Debye relaxation in general.
s a matter of fact, the only satisfactory proof of the property (3) exists for such systems in which non-extensivity arises from intrinsic

uations of some parameters describing the system’s dynamics [13,14].
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Fig. 1. (a) Original experimental system [15]. Two gas samples exchanging heat through a diathermic partition. (b) Reduced model system.

Gas sample in thermal contact with a huge heat reservoir at constant temperature T1 (detailed description is given in the text).
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2. Microscopic model for non-Debye heat transfer

In the paper [15], the authors have analysed two-dimensional systems consisting of two gas samples of
comparable size (see Fig. 1a). Here, due to analytical simplicity we assume that one gas sample is significantly
larger and denser than the second one i.e., the larger sample may be referred to as a heat reservoir with
constant temperature T1 ¼ const (see Fig. 1b). We also assume that the smaller sample is confined in a square
box of linear size l, and its initial temperature equals T0. We have numerically checked that such a
simplification of the original system does not affect general properties of the observed relaxation processes. It
is natural to expect that in the course of time thanks to the existence of the diathermic partition the
temperature of the smaller sample will tend to the reservoir temperature TðtÞ ! T1.

At the moment, before we analytically justify the relaxation functions (4) and (5) let us recall crucial
assumptions of the numerical experiment performed by Gall and Kutner [15]. First, the authors have defined
the temperature of the given gas sample TðtÞ as proportional to the average kinetic energy of all particles in
the sample

kTðtÞ ¼
1

N

XN

i¼1

eiðtÞ. (6)

Second, they have assumed a monoenergetic energy distribution function PðeÞ ¼ dðe� kTiÞ as the initial
condition for each gas sample i ¼ 1; 2 (see Fig. 1a). In fact, since the applied thermalization mechanism evens
out kinetic energies of all particles colliding with the diathermic partition at a given time not only initial but
also final (i.e., equilibrium) energy distributions are monoenergetic.

Now, having in mind the above assumptions, one can simply conclude that during the heat transfer
occurring in the system presented at Fig. 1b particles of the smaller and thinner gas sample get the final energy
immediately after the first collision with the diathermic partition2 i.e., e0! e1, where e0 ¼ kT0 and e1 ¼ kT1
(6). It is possible due to existence of the huge and dense heat reservoir which causes that the number of
particles with energy e1 colliding with the diathermic partition at a given time is overwhelmingly larger than
2Gall and Kutner have proved that the systems presented at Fig. 1a possess a similar feature for asymptotic times (cf. Eq. (45) in

Ref. [15]).
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the number of particles with the energy e0 which at the same time collide with the partition from the other site
(see the inset in Fig. 1b).

The above considerations allow us to write the temperature difference between both gas samples in the
following way:

DTðtÞ ¼ TðtÞ � T1 ¼
NðtÞ

N
ðT0 � T1Þ, (7)

where NðtÞ is the number of particles of the smaller sample which have not hit the diathermic partition by
time t. Now, one can see that the relaxation function f ðtÞ of the considered systems is equivalent to the particle
survival probability3 SðtÞ ¼ NðtÞ=N

f ðtÞ ¼
TðtÞ � T1

T0 � T1
� SðtÞ. (8)

The last formula makes possible to reduce the phenomena of Debye and non-Debye relaxations to the first
passage processes [19–21]. In this sense, the case (i) of rough border walls directly corresponds to the problem
of diffusing particles in a finite domain with an absorbing boundary. The survival probability S ðtÞ typically
decays exponentially with time for such systems [19]. That is the reason why the thermalization process
characterizing the case (i) is equivalent to Debye relaxation (see Eq. (4)). In the remainder of the section we
show that the case (ii), where mirror bouncing walls and absorbing diathermic partition are taken into
account, is indeed characterized by the power-law decay of the survival probability S ðtÞ (see Eq. (5)).

In order to achieve the claimed scale-free decay of the survival probability SðtÞ one has to find the first
passage (life-time) probability density function F ðtÞ, which describes probability that a particle of the
considered gas sample hits the diathermic partition for the first time at time t

S ðtÞ ¼ 1�

Z t

0

F ðt0Þdt0. (9)

In the case of mirror bouncing walls, due to asymmetry of the initial conditions (i.e., due to the fact that
particles can either move towards the diathermic partition—in the direction described by an angle a, or
towards mirror reflection of the partition—in the direction characterized by an angle b, c.f. Fig. 2b) the
integral in Eq. (9) must be replaced by two integrals

SðtÞ ¼ 1�
1

2

Z t

ta

Faðt
0Þdt0 �

1

2

Z t

tb

Fbðt
0Þdt0, (10)

where ta ¼ x=v0 and tb ¼ ð2l � xÞ=v0 represent the shortest time periods after which the collision of particles
with the partition or its mirror reflection may occur.

At the moment, let us remind that before the collision with the diathermic partition each particle has the
same velocity v0, thus FfðtÞ (where f 2 fa;bg) is simply related to the particle path length probability density
function eFfðrÞ

FfðtÞ ¼
dr

dt

����
���� eFfðrÞ ¼ v0 eFfðrÞ. (11)

Let us also note, that due to the symmetry of the considered problem (i.e., due to equivalence of paths
0! A! B! C! D and 0! A! b! c! d, see Fig. 2a) one may further simplify the last expression

FfðtÞ ¼ v0PðfÞ
df
dr

����
���� ¼ v0

2

p
df
dr

����
����, (12)

where in accordance with the original experiment [15] we have assumed uniform angle distributions
PðfÞ ¼ PðaÞ ¼ PðbÞ ¼ 2=p.
3Note that the system’s survival probability is an appropriate function of this ratio.
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Fig. 2. Ideal point particles in the box with mirror border walls (detailed description is given in the text).
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Finally, inserting the below relations

da
dr

����
���� ¼ d arcsinðx=rÞ

dr

����
����, (13)

and

db
dr

����
���� ¼ d arcsinðð2l � xÞ=rÞ

dr

����
���� (14)

to Eq. (12), and then substituting the equation into (10) one obtains the desired formula for the survival
probability SðtÞ

SðtÞ ¼
1

p
arcsin

ta

t

� �
þ

1

p
arcsin

tb

t

� �
, (15)

which justifies the non-Debye thermalization process for tbta; tb
4

SðtÞ ’
t
t
; where t ¼

2l

pv0
. (16)

We have numerically verified the last relation for a few different values of both the initial velocity v0 and the
box size l. In all the considered cases we have obtained very good agreement of recorded survival probabilities
with the formula (16) (see Fig. 3).
3. Summary and concluding remarks

In this paper we have given a microscopic explanation of Debye and non-Debye thermalization processes
that have been recently reported by Gall and Kutner [15]. The authors have studied a simple molecular
mechanism of heat transfer between two comparable gas samples. Owing to analytical simplicity we have
reduced the problem to one gas sample being in thermal contact with the huge and dense heat reservoir at
constant temperature. For the case we have shown that the thermalization mechanism described by Gall and
4The Maclaurin series for the inverse sine with �1pxp1 is given by arcsin x ¼ xþ 1
6
x3 þ 3

40
x5 þOðx7Þ [22].
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Fig. 3. Survival probability SðtÞ against time t in systems presented at Fig. 2. Points correspond to results of numerical simulations

whereas solid lines represent theoretical prediction of the formula (16). Each simulation was performed for N ¼ 105 particles. Deviations

from the strait line result from finite size effects.

A. Fronczak et al. / Physica A 375 (2007) 571–576576
Kutner can be reduced to first passage phenomena. Taking advantage of the idea we have found an analytical
justification for both exponential (4) and non-exponential (5) relaxation functions observed in Ref. [15].
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