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We investigate, by numerical simulations, how the avalanche dynamics of the Bak-Tang-Wiesenfeld sand-
pile model can induce emergence of scale-free networks and how this emerging structure affects dynamics of
the system.
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Since Bak, Tang, and Wisenfeld’s �BTW� discovery of
self-organized criticality �SOC� �1�, the phenomenon has re-
ceived enormous attention from researchers. During these
almost 20 years dozens of original sandpile model’s variants
�1,2� have been studied �3–6� and a number of SOC ex-
amples in the real world have been discovered. One of the
most remarkable features that characterizes self-organized
criticality is the events’ power law distribution. This feature,
combined with the abundance of real-world networks with
scale-free �SF� degree distribution �7–10�, may give rise to
the suspicion that a relationship exists between the two is-
sues. Although a few papers have mentioned this idea al-
ready �see, for example, Ref. �11��, Hughes et al. �12,13�
have established a real link between the two phenomena for
the first time in a rather complex model for cascades of mag-
netic field lines’ reconnection in the solar atmosphere. Here
we would like to present a simple mechanism of such a phe-
nomenon.

At the beginning let us recap the rules of the sandpile
model, which is a simple, intuitive example of self-organized
criticality. It is a cellular automaton whose configuration is
determined by the integer variable ci �the “sand column’s”
height� at every node i in the network. Depending on net-
work’s structure, minor differences in definition can occur.
Here we follow the BTW model’s definition for random net-
works with a given degree distribution p�k� �15�. The dy-
namics are defined by the following simple rules: A grain of
sand is added at a randomly selected node i: ci→ci+1. A
sand column with a height ci�ki, where ki is equal to degree
of node i, becomes unstable and collapses by distributing one
grain of sand to each of its ki neighbors. This may cause
some of them to become unstable and to collapse in the next
time step. This in turn can lead to an avalanche of subsequent
instabilities. During the evolution a small fraction f of grains
is lost, which prevents the system from becoming over-
loaded. When the avalanche dies another grain of sand is
added.

In the sandpile model the avalanches’ sizes’ distributions
�measured as the total number of topplings in the avalanche�,
the avalanches’ areas �the number of distinct nodes partici-
pating in a given avalanche� and the avalanches’ durations,
as well as many other statistics, follow power law distribu-
tions �1,2�.

Studies of sandpile dynamics carried out to date show that
the measured distributions’ characteristic exponents depend
on the network’s dimension and topology.

The one-dimensional �1D� BTW model can be exactly
solved and yields an avalanche area distribution Pa�a ,L�
=a−1Fa�a /L� where a is an avalanche’s area �total number of
lattice sites toppling at least once during the avalanche�, L is
the system’s size and Fa�a /L� is a finite size scaling function
�18�. Despite plenty of numerical studies of the two-
dimensional �2D� BTW model and its analytical tractability
�19�, the scaling behavior in this case is probably not yet
completely understood �20–24� partly due to the fact that
avalanches involve a large fraction of multiple topplings. It
follows that an avalanche’s area a differs from an ava-
lanche’s size s. A result is a finite size scaling for Pa�a ,L�
with the characteristic exponent �a=6/5, while the distribu-
tion Ps�s ,L� exhibits multifractal scaling behavior �22�. The
three-dimensional �3D� cubic BTW model does not suffer
from the problems caused by multiple topplings and is one of
the simplest undirected models of self-organized criticality
with nontrivial �non-mean-field� critical behavior. In this
case �=4/3 �1�. For D�4, a mean-field description of ava-
lanche propagation is adequate, and the corresponding expo-
nents are the same as those of the clusters’ sizes in critical
percolation theory �25�. The exponent �’s mean-field value
obtained from exact solutions on the Bethe lattice �26� and
on the full graph �27� is 3 /2. Similarly to Erdős-Rényi �ER�
random networks, �=1.5 �14�.

Recently, Goh et al. have studied sandpile dynamics on
scale free networks p�k��k−� �15,16� and they have shown
that the avalanche’s area exponent � is independent of the
average network connectivity �k� and changes with the de-
gree distribution’s exponent �. They have obtained

� =
�

� − 1
�1�

in the range 2���3 and �=1.5 for ��3. The question we
ask in the paper is the following: how does the avalanche’s
area exponent behave when the network’s topology depends
on sandpile dynamics; i.e., when mutual interactions occur
between the network’s structure and network’s dynamics?

In Ref. �11�, Bianconi and Marsili proposed a simple
model in which the network reorganizes its structure as a
consequence of avalanches of rewiring processes. The only
parameter of the model that influences the rewiring, and con-
sequently, the network’s structure, is a type of probability in
which a chosen node becomes unstable and has to be re-
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wired. Choosing this probability as a power law sets the
system in a critical state and forces the network to take a
power law degree distribution.

In the present paper, instead of forcing the network to stay
in a critical state, we allow the system to naturally evolve
toward the critical region. In our model:

�1� the considered networks’ degree distribution changes
due to the sandpile’s avalanches’ distribution on this network
and

�2� the avalanches’ size distribution changes because the
network structure evolves.

These two mechanisms influence each other and lead to
the equilibrium point at which the avalanches’ distribution’s
and the degree distribution’s shapes become very similar.

In order to complete our model’s rules, apart from the
sandpile model’s rules recapitulated above, we define the re-
wiring process in the following way: each end of a link has
been assigned a value specifying the last time when it was
rewired. After an avalanche of area A, the number of A “old-
est” ends of links �from the whole network� are rewired to
the node which triggered the avalanche. An example of a
rewiring process is shown in Fig. 1.

A node can become unstable by losing links, i.e., ci�ki
because ki has been decreased. Such a node will participate
in the next avalanche caused by the addition of a new grain.
If a node loses all its links it has no possibility of creating an
avalanche or of connecting to other nodes. Taking the above
rules literally would mean to let this node redistribute 0
grains indefinitely. To avoid this problem we assume ci=1
for this node’s critical height. This means that if a grain is
added to such a node, it will generate an avalanche of size 1,
which will lead to ki→ki+1.

In our studies all networks have: �k�=4 and f =10−4. We
tested different sizes of networks and we checked that the
number of nodes N=105 is sufficiently large to be sure that
the exponents are not affected by the scaling function’s pres-
ence. It is important to stress that because this model is more
complex than the majority of standard SOC models it is dif-
ficult to determine an explicit form of the finite sized scaling

function. Instead we compared the exponents � of different
sized networks.

We start our simulation with an Erdős-Rényi random net-
work �which corresponds to �=� in static SF networks�. The
time unit used was simply one avalanche and we have car-
ried out our simulations for t=10 000 steps. Figure 2 pre-
sents three snapshots of the node degree distribution in three
different moments: tstart=0, tmid=2500, and tend=10000. Dis-
tributions at time t were calculated from the time period from
t to t+500. Comparing the snapshots shows that the network
reorganizes itself from Poissonian, through a mixture of
Poissonian and scale free and finally settles on a pure scale-
free degree distribution with the well established character-
istic exponent ��2.1. At the same time the avalanches’ area
distribution’s characteristic exponent increases from �=1.5,
which is the known result for ER random networks �14�, to
��2.1. Figure 3 shows that in the course of simulation both
exponents converge to approximately the same equilibrium
value.

Figure 4 presents the convergence process in a more de-
tailed way. We define there a new parameter �̃�t� that in
some sense may be understood as the characteristic exponent
of fat-tailed degree distributions and may be compared to �.
�̃�t� is simply obtained from the second moment of the de-
gree distribution, which is known from simulations. Given
�k2�, we numerically solve the equation below for �̃�t�

�k2� = 	
k=1

N

k2pan�k� , �2�

where

pan�k� = �k�
��̃ − 2��̃−1

��̃ − 1��̃−2

��k − �̃ + 1,�k� �̃−2
�̃−1�

��k + 1�
�3�

is the static model’s known analytic solution �17�. The new
parameter has been introduced because in the simulation’s

FIG. 1. Example of rewiring process. A gray colored node
started an avalanche of size 2. The number close to each end of the
link describes a moment of its last rewiring. FIG. 2. Node degree distributions of rewired network in three

time moments: tstart=0, tmid=2500, and tend=10 000. Inset: the same
data binned logarithmically.
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intermediate times the degree distribution does not follow a
pure power law. In the mentioned figure it is apparent that
the value of the exponent �̃ �open triangles� decreases from
� to 2.1. Simultaneously, the parameter � characterizing the
sandpile’s dynamics �solid squares� increases from 1.5 and
finally settles at the equilibrium value of 2.1. The values of �
agree fairly well with the values of �theor �solid line� calcu-
lated from relation �1� derived for static SF networks by Goh
et al. �15�. The last observation suggests that during simula-
tion the system moves close to the trajectory given by the
formula �see Fig. 5�

��t� =
�̃�t�

�̃�t� − 1
, �4�

and an approximate equilibrium point may be calculated
from the above equation when taking into account the ob-
served numerical relation �̃��.

According to a simple theory of complex networks’ co-
evolution, such systems’ final critical state should be charac-
terized by equation �̃=�=2 and the last quality can be robust
against different threshold assignment strategies in sandpile
dynamics. In order to support the last statement let us men-
tion two papers �12,16� in which we have found probable
symptoms of such a universality. Paper �16� studies a class of
sandpile models. In this class a node’s threshold height is set
as k1−	, where 0
	�1 is a parameter of the class. The
avalanches’ size exponent is received as �= ��−2	� / ��−1
−	� for 2
��3. Assuming that our model’s self-
organization and rewiring process make �=�, then �=�=2 is
independently obtained on 	. The second example is a model
of rapid rearrangements in the Sun’s corona’s magnetic field
flows’ network �12�. The authors show that the considered
network’s link reconnections’ avalanches and scale free
structure co-generate each other. They also show that for the
equilibrium, the degree distribution exponent is �=2. Unfor-
tunately, they do not present a reconnection distribution ex-
ponent which corresponds to �.

In fact, the precise value of the fixed point observed in our
simulations is a bit larger than 2, about 2.1. We have no
unique explanation for this discrepancy. It can result from
finite size effects; however, we have verified that for the
studied networks of order N=105 the exponents did not

FIG. 3. Distributions of avalanche area and node degree in time
tend. Data are logarithmically binned. Lines are linearly fitted with
the values indicated at the figure. A K-S test gives a p value 0.997
at the level of significance �=0.05. In other words, the difference
between the samples is not significant.

FIG. 4. Process of equilibration of exponents �̃ and �. Solid line
presents theoretical �theor obtained from �̃ and Eq. �1�. Inset: second
moment of the degree distribution in time.

FIG. 5. Dependence of avalanche area exponent � on parameter
�̃ of generated scale-free network. The arrow shows direction of a
movement in space of parameters during the process of equilibra-
tion. Measurements are done in equal time steps �t=500 and
marked as open circles. The black dot depicts the fixed point of the
process. Dashed line presents theoretical �theor obtained from �̃ and
Eq. �1�.
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change with the system size N. The difference may also
originate from structural degree-degree correlations that oc-
cur in the neighborhood of equilibrium. It is well know
�8,10� that in the vicinity of �=2 scale-free networks must be
highly disassortatively correlated but the way we perform
rewiring includes a small random contribution. To ensure
such correlations perhaps requires rewiring the least disas-
sortative link instead of the oldest one which was, however,
much more difficult to implement in a fast computing code.
The discrepancy’s other possible explanation may arise from
the fact that the theoretical formula �4� has been obtained
�15� using a theory of multiplicative branching processes
that, similarly to our simulations, does not take the men-
tioned degree-degree correlations into account.

To conclude, in this paper we have presented by numeri-
cal simulations how Bak-Tang-Wiesenfeld’s sandpile mod-
el’s avalanche dynamics and the network’s structure may in-
fluence each other. Such an interplay between dynamics and

structure leads to self-organization in which the avalanches’
distribution’s and degree distribution’s shapes become simi-
lar. We suspect that the value of both exponents �=��2
may be universal for a large class of SOC phenomena in
which the critical behavior occurs not “on” the network’s
structure but “in” the structure.
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