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Log-periodic oscillations due to discrete effects in complex networks

Julian Sienkiewicz, Piotr Fronczak and Janusz A. Ho lyst
Faculty of Physics and Center of Excellence for Complex Systems Research,

Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland

(Dated: August 11, 2006)

We show that discretization of internode distribution in complex networks affects internode dis-
tances 〈lij〉 calculated as a function of degrees kikj and an average path length 〈l〉 as function of
network size N . For dense networks there are log-periodic oscillations of above quantities. We
present real-world examples of such a behavior as well as we derive analytical expressions and com-
pare them to numerical simulations. We consider a simple case of network optimization problem,
arguing that discrete effects can lead to a nontrivial solution.

PACS numbers: 89.75.-k, 02.50.-r, 05.50.+q

During the last few years much attention has been
drawn to average path length issues in complex networks.
Several authors [1, 2, 3, 4, 5] have dealt with this problem
using different approaches to obtain analytical expres-
sions for average path lengths. One finds a good reason
to explore this quantity knowing that it was a small value
of the average path length in such systems as social [6]
and technological [7] networks that made scientists get
interested in this field. Average path length can have
different aspects, its value may be just a ”chemical dis-
tance” between routers or WWW pages [8] but it also
appears as ”degree of separation” in acquaintances be-
tween people [9], number of changes in public transport
systems [10, 11] or information handling in a city [12].

In this Letter we study a simple effect of log-periodic
oscillations in average path lengths which we observe
in several real-world examples. Using a formalism de-
veloped in [5] we give a theoretical explanation of this
feature supported by numerical simulations of scale-free
networks with different scaling exponents. We show that
such oscillations are due to discrete effects of path length
distributions for networks with large average degree val-
ues. We also study a fundamental and well known prob-
lem of optimal network density taking into account the
shortest average path length and the smallest number
of links in a network [13]. We find that the oscillations
substantially influence the solution of this problem.

Lately it has been shown [14, 15] that the average dis-
tance 〈lij〉 between nodes i and j characterized by degrees
ki and kj can be expressed as:

〈lij〉 = a − b log(kikj). (1)

This relation is fulfilled in wide spectrum of real-world
networks and their models such as random graphs or
Barabási-Albert evolving networks [15], however our re-
cent research shows deviations from this scaling law
which take a form of regular oscillations. This can be
clearly seen at Fig. 1 where four real-world networks
and two common known models have been gathered.

To explain differences between Eq. (1) and plots at
Fig. 1 we will use and modify results obtained by Fron-
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FIG. 1: (color online) Mean distance 〈lij〉 between pairs of
nodes i and j as a function of a product of their degrees
kikj for 4 real-world networks and 2 models. (a) Astro coau-
thorship network: N = 13986 〈k〉 = 25.56, (b) English lan-
guage word cooccurrence network N = 7381 〈k〉 = 11.98, (c)
Caribbean food web network N = 249 〈k〉 = 25.73, (d) Opole
public transport network N = 205 〈k〉 = 50.19. (e) Erdös-
Rényi random graph N = 10000, 〈k〉 = 40. (f) Barabási-
Albert network N = 10000 m = 20. All data are logarithmi-
cally binned. For data sources see [16].

czak et al. in [5]. In the cited paper exact expressions
for average path length using hidden variables formalism
have been received. Assuming that each node i is charac-
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FIG. 2: (color online) Comparison of two networks characterized by hidden variable distribution ρ(h) = (α − 1)mα−1h−α for
α = 3.0 and N = 10000 - upper row m = 2, lower row m = 40. (a) Samples of sparse (upper) and dense (lower) networks, (b,
c, d) - detailed description in text and in caption of Figure 3. In case of plots (b) and (c) values of A have been chosen in such
a way that the deviation is maximal.

terized by its hidden variable hi randomly drawn from a
given distribution ρ(h) and a connection probability be-
tween any pair of nodes is proportional to hihj one can
show [17] that a degree distribution P (k) is:

P (k) =
∑

h

e−hhk

k!
ρ(h). (2)

The probability p∗ij(x) that vertices i and j are x-th
neighbors can be expressed [5] as p∗ij(x) = F (x − 1) −
F (x), where

F (x) = exp (−ABx) (3)

and A =
hihj

〈h2〉N , B = 〈h2〉
〈h〉 . One should have in mind that

the parameter B is a ”global” one (i.e. its value is de-
termined only by the first and second moment of hidden
variable distribution), while A can be called ”local” - it
depends on a specific product hihj . As the expectation
value of average distance between i and j can expressed
as 〈lij〉 =

∑x=∞
x=1

xp∗ij(x) =
∑x=∞

x=0
F (x), one can write

the following equation using Poisson summation formula

〈lij〉 =
− ln A − γ

ln B
+

1

2
+ R (4)

R =

∞∑

n=1

Rn ≡ 2

∞∑

n=1

(∫ ∞

0

F (x) cos(2nπx)dx

)
,

where γ = 0.5772 is Euler’s constant. If the average
number of links is relatively small then, due to the gen-
eralized mean value theorem, the term R can be ne-
glected. Otherwise one must take into account at least

the first term from the infinite series in Eq. (4) what
leads to log-periodic oscillation 〈lij〉 with the period
∆ ln(hihj) = ln B (see dicussion below). Figure 2 shows
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FIG. 3: (color online) Function F (x) (solid lines) and its linear

approximation F̃ (x) (dotted lines) for scale-free network with
α = 3, N = 10000 and m = 40 calculated for three different
values of product hihj (see labelled dashed lines at Fig. 2):
(A

−
) hihj = 11389 - maximal negative deviation from 〈lij〉

trend (A0) hihj = 43249 - minimal (zero) deviation from 〈lij〉
trend (A+) hihj = 198730 - maximal positive deviation from
〈lij〉 trend. Dashed line represents the point of inflexion xi of
F (x) (F (xi) = 1/e) used to calculate tangent of F (x). Inset

shows R̃1 versus product hihj in case of m = 2 (dotted line)
and m = 40 (solid line).

a comparison of such oscillations in sparse (m = 2, up-
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per row) and dense (m = 40, lower row) scale-free net-
works characterized by a hidden variable distribution
ρ(h) = (α − 1)mα−1h−α with α = 3. The networks have
been generated following the procedure C in [18] and
represent the class of random networks with asymptotic
scale-free connectivity distributions characterized by an
arbitrary scaling exponent α > 2. At Fig. 2b F (x) (dot-
ted line) and p∗ij (solid line) are presented together with
points corresponding to discrete values of those functions.
It is clearly seen that for m = 40 probability p∗ij is much
more narrow than for m = 2, thus the slope of F (x) de-
cays more rapidly. Figure 2c shows the cosine transform
of F (x) given by the integral in Eq. (4). Depending on
the shape of F (x), the amplitude of this transform can
take small/large values resulting in small/large values of
R. One should keep in mind that because R is in fact a
sum of discrete values of a given transform taking only
the first term in the sum (i.e. n = 1) is sufficient to obtain
well approximated value of R (cf. points corresponding
to discrete values of Rn at Fig. 2c). Figure 2d shows
resulting average distance 〈lij〉 between nodes i and j
as a function of hidden variables hihj without (dotted
lines) and with (solid lines) included term R. In case of
sparse network the R term can be omitted (curves over-
lap), while for a dense one its value modifies the shape
of 〈lij〉 a lot.

To obtain more quantitative results one should perform
the integral in Eq. (4), however it is not analytical, so in
order to calculate the term R one can approximate F (x)

with the following piecewise linear function F̃ (x)

F̃ (x) =





1 x < x0,
1

e
(1 − ln A − x ln B) x ∈< x0, x1 >,

0 x > x1,
(5)

where x0 = (1− ln A−e)/ lnB and x1 = (1− ln A)/ ln B.
Since the function F (x) is translationally invariant with
respect to the argument x after rescaling the parameter
A (F (x; A) = F (x − x′; A′)) one can freely choose the
point in which the slope coefficient is calculated as the
tangent of F (x). In order to simplify the calculation we
have chosen the inflexion point xi of F (x). Functions

F̃ (x) and F (x) are presented at Fig. 3. Using Eq. (5)
one can approximate terms Rn with

R̃n = −
ln B sin

(
πne
ln B

)

π2n2e
sin

[ πn

ln B
(2 ln A − 2 + e)

]
. (6)

As one can see taking only the first term in the above se-
ries is justified because next terms decay as 1/n2. Equa-
tion (6) allows us to make an immediate observation that
deviations from Eq. (1) take the form of regular oscilla-
tions along hihj axis with period equal to ln B which
increases with the heterogeneity of the networks (see in-
set at Fig. 3). This very value is forced by the discrete

nature of distance in network - the period along 〈lij〉 is
equal to 1 and the tangent of the function 〈lij〉(hihj) is

(ln B)−1 (see Eq. (4)). One can also easily calculate that
the deviation vanishes as long as 〈lij〉 ≈ k/2 where k is an
integer. For dense networks the amplitude of oscillations
grows monotonically with B - that is why the effect of
oscillations is visible only in sufficiently dense networks.
Figure 4 presents a comparison of average distance 〈lij〉
versus hihj for scale-free networks with different scaling
exponents α. As expected, the amplitude of oscillations
rises with decaying α, which can be easily understood as
ln Bα1

> ln Bα2
for α1 < α2. Similar oscillations effects

can also be observed for average path length 〈l〉, which
value is obtained by integration of Eq. (4) over all pairs
of products hihj (see inset (b) at Fig. 5).
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FIG. 4: (color online) Average distance 〈lij〉 between nodes
i and j versus their hidden variable product hihj (plots (a),
(b) and (c)) or kikj (d) for scale-free networks of N = 10000
nodes and α = 2.2 (a), α = 3 (b) and (d) and α = 4 (c).
Scatter data are obtained using algorithm presented in [18]
while solid lines have been calculated from Eq. (4) where R
is taken directly from Eq. (6).

Let us now focus on possible applications of the pre-
sented phenomenon. One of them can be a network opti-
mization process which has been widely studied in recent
years [13, 19, 20]. Such an optimization is of common
interest in many different areas, among them electrical
engineering, telecommunication, road construction and
trade logistics. The simplest model is based on the as-
sumption of minimal transport costs. These costs in-
clude two main aspects of network performance: a price
of constructing and maintaining links between nodes and
a price caused by communication delays of information
transfer. The former one is proportional to the total
number of links (we assume the same price for every link),
while the later one should be proportional to the sum of
the shortest existing connections between each two nodes:
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C = (1 − λ)
N

2
〈k〉 + λ

(
N

2

)
〈l〉. (7)

Here λ is a parameter controlling a ratio between prices
of a single link and costs of communication delays. In
fact one has to find an optimal link density considering
two contradictive demands: a fully connected network
with the shortest connections and a tree with the small-
est number of links. A typical solution of this problem is
a unimodal cost function with minimum at some inter-
mediate value of 〈k〉. Discrete effects in networks stud-
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FIG. 5: (color online) Cost function C versus average degree
〈k〉 for scale-free network characterized by N = 106 nodes,
α = 3.0 and λ = 10−4. Solid line is obtained assuming os-
cillations’ correction while dotted line neglects it. Inset (a)
shows cost function C for identical network parameters N
and α but with λ = 5.4 · 10−4. Left Y-axis corresponds to
cost function with oscillations’ correction (solid line) while
right Y-axis corresponds to function that neglects the correc-
tion (dotted line). Inset (b) presents average path length 〈l〉
versus system size N for scale-free network with α = 3 and
m = 40: solid line is theory, while scatter data have been
obtained using the hidden variable algorithm [18].

ied above can lead to reshaping of the total cost func-
tion. As an example let us consider the scale-free network
generated by method described in [18] with parameters
N = 106 and α = 3. The cost function for this network
is presented at Fig. 5 (we also show how this function
could look like if we neglected discrete effects). One can
see that neglecting of the correction term can lead to
about 30% underestimation of optimal network density.
Inset (a) at this figure obtained for another value of the
parameter λ shows different situation - instead of one
global minimum we have now two well separated min-
ima. The network administrator who tries to operate in
accordance with the economic rule (7) has just to remem-
ber that the improvement of network efficiency can lead
to a temporal increase of costs and can be discouraging
since one has to pass over the cost barrier. Much sim-

pler application of the observed phenomenon is presented
at Fig. 5b, where one can see that during the network
growth there are regions where average path length in-
creases slower (faster) which can encourage (discourage)
the network administrator for further network expansion.

To summarize: we have presented an explanation of
the oscillations in relations 〈lij〉(kikj) and 〈l〉(N) ob-
served in real-world networks starting from scientific col-
laboration and ending at public transport systems. We
have also provided examples of the influence this effect
might have for simple optimization problems.
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