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Control of chaotic solitons by a time-delayed feedback mechanism
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We investigate a control of chaotic solitons using a modified time-delayed autosynchronization method.
Numerical results for the maximal Lyapunov exponent are in very good agreement with analytical theory
developed originally for low-dimensional systems. The control is most efficient when the spatial distribution of
the control force is proportional to the kink translational mode. Observations of the motion of the kink center
and the total power transmitted to the system lead to the same values of the maximal Lyapunov exponent.
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Recently, the control of spatiotemporal chaos has attracteding a few sites of a coupled map lattice? Are there any
more and more intere$l—21]. Examples of possible appli- optimal amplitudes and spatial distributions of control
cations include such diverse cases as stabilization of periodferces? Previous studies in this field have been based mainly
patterns in optical turbulendd—4], selection of spatiotem- ©0n numerical simulations and up to now there are no theo-
poral current densities in semiconductfB$, tracking of the  retical investigationgbeside cases of stationary stafs])
no-motion state in the Rayleigh-Bernard experimigit as  Of these issues.
well as the control of the El Nino mod¢B]. A common In this paper, we will apply the TDF for the control of a
feature of all of these systems is their complex spatiotempospatially extendedoliton bearinge* model in the presence
ral behavior, which cannot be captured by low-dimensionaPf & phase boundary and a periodic pumping force. In fact,
dynamics. Existing control methods mirror in part ap-We make use of an important feature of soliton systems,
proaches developed for low-dimensional systems and can behich is the separability of their solutions into distinct
divided intononfeedbaclandfeedbackclasses. Stabilization classes[24,25. This attribute is characteristic for a class
of the desired spatiotemporal state by the former methods igf partial differential equations integrable by the inverse
achieved due to a weak driving signal that mimics the targescattering transforn{24], e.g., sine-Gordon or nonlinear
pattern. This driving signal usually does not disappear aftebchralinger equation and it is only approximately valid for
the controlled system reaches the final state. Feedback metthe considered model. We will show that for the control of
ods includepinning schemes that make use of appropriatechaotic soliton motion, it is enough to observe the center of
perturbations of system variabl¢8,12—14 or system pa- the kink soliton and we will find a characteristic dependence
rameterg 15,16 that are proportional to temporal differences of the control efficiency on the shape and the amplitude of
between the actual and the desired state. The perturbatiofize control force. Our numerical results are in a very good
are applied at a proper number obntrolling points (for ~ agreement with analytic calculations that are based on TDF
discrete space modegl9] or sensors(for continuous space theory developed recently for low-dimensional systems
models [14]. The main disadvantage of such an approach i§26,27 using the Floquet theory. We stress here that we
the necessary identification of the desired spatiotemporaiould use this theory due to specific character of soliton bear-
state, which, in practice, is only possible for simple stationing systems where most of the degrees of freedom are non-
ary states with high-spatial symmetry. This weakness doeactive and it is enough to control the soliton coordinates.
not appear for methods based t¢ime-delayed feedback  Let us consider a model of a classical scalar fig{d,t)
(TDF) [17—19, which make use of the autosynchronizationgoverned by the equation of motion
effect, which can appear when the control force is propor-
tional to the difference between the present and a past state 1 1. = G 1
of the system. The value of the time delay between both of P eu YRt e 5= —F)=GY, (D)
these states should be equal to the pet@do its multiple
of the stabilized periodic orbif20]. An additional space- where y>0 is a damping constant, the static forE¢x)
dependent part of the feedback force allows us to stabilize=B(4B2—1)tanhBXx) represents a typical phase boundary
time and space periodic patteri4,21] or even experimen- centered at the point=0, andG(x,t) is a pumping force.
tally observed traveling wave®2]. A similar effect results  For G(x,t)=0, there is a static soliton solution of Ed)) in
as a combination of the TDF method with Fourier filtersthe form of a kink
[2,4].

At present, three main problems that are to be solved for or(X,t)=2B tanhBx) (2)
control of chaos in spatially extended systems are: How to
collect a minimal amount of information needed to performthat is pinned by the force(x) to the sitex=0. The linear
control procedure? Can one control the whole system bgtability of this solution was analyzed 28] and it was
influencing only a part of its degrees of freedom, e.g., pinfproved that in the limit of zero damping, the kink is stable
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provided thatB>1/2. We choose the space-time-dependent e Conirol ON
pumping forceG(x,t) in such a way that its spatial part “ m “ “ [ (
corresponds exactly to the ground-state function of the op- (] R
erator describing small oscillatioiinear phononsaround

the kink [28-30, i.e., G(x,t) = P cost)cosh ?(Bx). Since N\

the forceG(x,t) is proportional to the first derivative of the N W

kink shape, thus in the limit of small amplitudés<1 it ] “mh hﬁhnm ’ RH
pumps energy mostly into the kink translational mode and it ¢(«\'0 3 300 600
shifts the position of the kink center without large distur- 2/ t
bances of the kink shape. This effect is however limited only

to the case when the kink is close to the site0, because

for larger distances, the kink translational mode changes si
nificantly and nonlinear effects appear. Chaos in the mod
(1) was predicted 28] and observed if31,32,34 where

several transitions between periodic, quasiperiodic, and chgyy, part of f.(x,t). Obviously, the chaotic kink motion is

otic kink motion were found. 1132], it was shown that the suppressed wher <0, which is fulfilled only for some

f:;gr?aﬁigsg]e suppressed using the concept of geometrlcr%Inges of the parametkr. Values of the edge i, K max Of

It is well known [29] that dynamics of a soliton can be the control regions depend strongly on the parametend

described by means of modes: translational, breathing, ari#e smallest value df;, occurs fora=2. It means that the
radiating. For our paper, the translational mode has the maiiPtimal shape of control force is the translational soliton
influence on soliton behavidB1], which can be character- Mode. To describe analytically the numerical results, we ap-
ized by the time dependence of the center of the soliton magdly the theory of TDF control developed {26] for low-
X.(t). Therefore, the dynamics of the whole phase space dgilimensional systems. In the linear approximation, the sys-
our spatially extended system will be truncated to only ond€m’s Lyapunov exponent should depend on the control

{

|
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FIG. 1. Example of the control of chaotic soliton with param-
eters: B=0.53, y=0.15, ®=0.36, P=0.36, K=0.17, a=2.
[he same parameters are used for the next figures. Thefeld)

§ depicted only fot=nT/2.

scalar quantity.(t). amplitudeK as[26]
In order to stabilize the chaotic soliton we add to the
right-hand side of Eq(1) a force in the form A(K)=N+x'K[1+exp—AT)cog TAQ)], (4)
f(xt)= KDe(D) =xe(t=T)] 3 AQ(K)=— 'K exp(—AT)sin(TAQ). (5)
cosH[B(x—X.(t)—A)]
0.04[(a)
Here, T=2m/w is the period of the periodic pumping force "';__-_.,‘
G(x,t), while K, «, andA are constants. The nominator of 0.02} ..

f.(x,t) can be considered as the standard control term use:
in the time-delayed feedback for a low-dimensional dynami-<  o0.00
cal system with the position of the soliton centgft) as the
control variable and the parameti€ras the control ampli- -0.02
tude. The role of the denominator is to spread out the control
force along the whole soliton. The shape of this spreading is
connected with the form of the kink translational mode, the
width of the control force is governed by the parameter
and the parametek describes the spatial shift between the % 0.02
control force and the soliton. One should take note that the
center of the control forc€3) is movingwith the soliton[a
static case will be considered in E®)]. In numerical simu-
lations, we always use initial conditions in the fof@) with 0.14
boundary conditionsi¢/dx=0 for x==*=L where 1 was
the total length of our system. An example of the successful o 012}
control is presented in Fig. 1.

Let us start our investigations with the case=0. Figure
2(a) shows the dependence of the maximal Lyapunov expo-
nentA of the controlled system on the rescaled control am-
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0.00 0.02 0.04 ~ 006 0.08 0.10
K

: ~ . . FIG. 2. Dependence of the maximal Lyapunov expon@ht
plitude K=KS(«) for different values of the width param- fequency deviatiorb), and the power of nontranslational modes
eter . The Lyapunov exponent has been calculated from (¢) on the normalized amplitude of the control force for different
observations of the motion of the kink centg(t). The con-  parameters, solid lines and points—numerical computations, dotted
trol amplitude K has been rescaled by the fact8(«) lines—theory. Dotted vertical lines show the region of successful
=f':,_ cosh “(x)dx proportional to the total area of the spa- control for a=2.
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FIG. 3. Dependence ok, (dashed linesand corresponding
Ropt (solid lines on the shift parametek for three different values
the width parametett. FIG. 4. Dependence of the optimal Lyapunov exponegy, on

the rescaled amplitud~é of the control force for different values of
the parametety.
Here, \ is the Lyapunov exponent of the uncontrolled sys-
tem, x' is the initial susceptibility of the Lyapunov exponent Now, the optimal Lyapunov exponent increases with the pa-
to the amplitude of the control force, and) is the deviation  rametera (Fig. 4) but similarly, as for the case of the moving
of revolution frequency of the perturbation around the un-gonirol force(3), the lowest value of thgopt corresponds to
stable periodic orbit from the revolution frequency of the ihe caser=2. It means that depending on our aims, we can
uncontrolled systerf26]. The equation is valid provided that choose between better stability of the controlled sysisen
the corresponding Floquet multiplier of the uncontrolled sys-,o usea— 0) or the smallest amplitude of the control force
tem is negative, i.e., when the linear pertlirbation performs fthen we usexr=2). Comparing Figs. 3 and 4, one observes
flip around the orbit. Fitting for each plat(K) (with values  that the moving control forcé) with non-negative values of
of « fixed) two unknown constants and ', we obtained the shift parameteA leads to lower values af,,, and to
results that are depicted in Figi@ One can easily see that higher values Oﬂzopt as compared to the pinned control

all curves merge within a very close neighborhood of thes e (6), except for the case— 0, when both approaches
point A (K=0)~0.037 corresponding to the Lyapunov expo- give the same value of, ;. In this sense, the moving con-
nent of the uncontrolled system. The quantitative agreemengol force (3) is superior over the pinned control for¢g).
between theoretical and numerical results is within a few The amount of energy transferred to the system during the
percent. Some discrepancy can be observed in the right pagbntrol can be considered as a measure of control quality. In
of each curve, especially for higher values of the parametegur paper, the corresponding powy,(t) can be calculated

K, however, one should keep in mind that the theoreticahs the space integral of the local power density(x,t)

predictions are just the first-order computation in the control=f (xt) o(x,t). Figure 5 shows the powét;,(t) for differ-

amplitude and that the whole theory has been developed fQf; arameteri together with corresponding Lyapunov ex-
low-dimensional dynamical systems. In Figbg we show  ,, 0045 We observed three phases during the control proce-
frequency deviationa (). Similarly as for the plotsA(K),  dure. After a short initial phase when the soliton moves far
the theoretical curves obtained with the help of E8). fit  from unstable periodic orbit, the phase of exponential decay
very well to numerical calculations. The characteristic cuspsf the power follows(the linear range in Fig.)5During this
appearing in Fig. @) correspond exactly to these values of phase, the soliton is directed by the action of the control
the control parametel at which the frequency deviations force towards the periodic trajectory and this movements
AQ start to differ from zero. should be well described by the maximal Lyapunov exponent
Treating the cusps of the plots in FigaRas points of the of the spatially extended system. In fact, we found that the
optimal control, we find that although the optimal values ofvalues of slop coefficients corresponding to the second

amplitudesﬁq}gpt depend on the width parametey the values

opt

of the optimalexponents\,; are nearly independent of this 10" T~ 1 ' Toooo 1 T T 7
parameter. The situation changes, however, under the influ- i -0.004[A Nk
ence of the shift parametér. Figure 3 shows that the control A ool '
is more effective {\,, is smalley for positive values ofA oozl © 3

and large values of. Since the investigated chaotic trajec-
tory x(t) (see Fig. 1 is shifted to positivex values, the
control is more effective when the center of the control force
is at the opposite side of the soliton than the phase boundary
and pumping center.

As the next case, let us consider the control of the soliton
using the force that ipinnedto one fixed poinx=0 in the

-0.016

0.016 0.020 0.024

100 150 t200 250 300

space FIG. 5. Power transferred to the system as function of time for
different parametersK. Inset shows corresponding values of
fo(X,1)=K[X.(t)—x.(t—T)]cosh ¢[Bx]. (6)  Lyapunov exponents.
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phases of the plotB;,(t) are equalwithin numerical accu- In conclusion, we have observed that it is possible to con-
racy) to the maximal Lyapunov exponents estimated from  trol chaos in a spatially extended soliton bearing model ob-
the motion of the soliton centeg(t). We stress here that the Serving the position of the soliton center and applying the
power P, defines the energy transfer &i degrees of free- control force as the time-delayed feedback with a collective
dom of our system. The fact that the decay of this power is‘degre.e of freedom being the center of the soliton mass. The
well described by the exponent corresponding to the trans- resulting values of the system maximal Lyapunov exponent

lational soli . h her d t freed are in very good agreement with the control theory devel-
ational soliton motion, means that other degrees of freedo ped recently for low-dimensional models. This exponent

can be discarded during the second phase of the control forggn pe calculated either from observations of the kink trajec-
action. In the final control phase, the powRf, no longer tory or from the total power transfer. The optimal spatial
decreases, which corresponds to a balance between the sgfistribution of the control force corresponds to the kink
bilization action of the control force and destabilizing effectstranslational additional mode. We stress that the behavior of
of created modes. Since we truncated the dynamics of thée whole spatially extended system has been approximated
spatially extended system to the translational kink motionPy theeffectivedynamics of a single pointlike particle. Itis a
the creation of spatial additional modes can be considered &gculiar feature of soliton bearing systems; they can be con-
a kind of noise acting on the moving soliton. In Figck one S|de(ed as a kind of bridge between low-dimensional and
can see that this noise level is much lower when the chaotiﬁpatIaIIy extended models.

motion of soliton is controlled. The existence of this third e are grateful to Dr. Krzysztof Kacperski for a critical
phase seems to be a characteristic feature of chaos control jigading of this manuscript. One of (&A.H.) is thankful to
spatially extended systems since control forces in TDF methProfessor Dirk Helbing for his hospitality during the stay in
ods tend to zero in low-dimensional models in the absence dbresden. This project has been partially supported by the
noise. In spatially extended systems, this limit can beKBN Grant Nos. 3T0O9C 037 16, 2 P0O3B 035 18, and
reached only if all unwanted collective degrees of freedon604M0629 and by the ALTANA AG due to the Herbert
are suppressed by the action of the control force, which iQuandt-Programm as the project “Nichtlineare Dynamik von
impossible in practice when the control force creates modesModellen Komplexer Systeme.”
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