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Control of chaotic solitons by a time-delayed feedback mechanism
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We investigate a control of chaotic solitons using a modified time-delayed autosynchronization method.
Numerical results for the maximal Lyapunov exponent are in very good agreement with analytical theory
developed originally for low-dimensional systems. The control is most efficient when the spatial distribution of
the control force is proportional to the kink translational mode. Observations of the motion of the kink center
and the total power transmitted to the system lead to the same values of the maximal Lyapunov exponent.
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Recently, the control of spatiotemporal chaos has attra
more and more interest@1–21#. Examples of possible appli
cations include such diverse cases as stabilization of peri
patterns in optical turbulence@1–4#, selection of spatiotem
poral current densities in semiconductors@5#, tracking of the
no-motion state in the Rayleigh-Bernard experiment@6#, as
well as the control of the El Nino model@8#. A common
feature of all of these systems is their complex spatiotem
ral behavior, which cannot be captured by low-dimensio
dynamics. Existing control methods mirror in part a
proaches developed for low-dimensional systems and ca
divided intononfeedbackand feedbackclasses. Stabilization
of the desired spatiotemporal state by the former method
achieved due to a weak driving signal that mimics the tar
pattern. This driving signal usually does not disappear a
the controlled system reaches the final state. Feedback m
ods includepinning schemes that make use of appropria
perturbations of system variables@8,12–14# or system pa-
rameters@15,16# that are proportional to temporal differenc
between the actual and the desired state. The perturba
are applied at a proper number ofcontrolling points ~for
discrete space models! @9# or sensors~for continuous space
models! @14#. The main disadvantage of such an approac
the necessary identification of the desired spatiotemp
state, which, in practice, is only possible for simple statio
ary states with high-spatial symmetry. This weakness d
not appear for methods based ontime-delayed feedbac
~TDF! @17–19#, which make use of the autosynchronizati
effect, which can appear when the control force is prop
tional to the difference between the present and a past
of the system. The value of the time delay between both
these states should be equal to the period~or to its multiple!
of the stabilized periodic orbit@20#. An additional space-
dependent part of the feedback force allows us to stab
time and space periodic patterns@1,21# or even experimen-
tally observed traveling waves@22#. A similar effect results
as a combination of the TDF method with Fourier filte
@2,4#.

At present, three main problems that are to be solved
control of chaos in spatially extended systems are: How
collect a minimal amount of information needed to perfo
control procedure? Can one control the whole system
influencing only a part of its degrees of freedom, e.g., p
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ning a few sites of a coupled map lattice? Are there a
optimal amplitudes and spatial distributions of contr
forces? Previous studies in this field have been based ma
on numerical simulations and up to now there are no th
retical investigations~beside cases of stationary states@23#!
of these issues.

In this paper, we will apply the TDF for the control of
spatially extendedsoliton bearingw4 model in the presence
of a phase boundary and a periodic pumping force. In fa
we make use of an important feature of soliton system
which is the separability of their solutions into distin
classes@24,25#. This attribute is characteristic for a clas
of partial differential equations integrable by the inver
scattering transform@24#, e.g., sine-Gordon or nonlinea
Schrödinger equation and it is only approximately valid fo
the considered model. We will show that for the control
chaotic soliton motion, it is enough to observe the center
the kink soliton and we will find a characteristic dependen
of the control efficiency on the shape and the amplitude
the control force. Our numerical results are in a very go
agreement with analytic calculations that are based on T
theory developed recently for low-dimensional syste
@26,27# using the Floquet theory. We stress here that
could use this theory due to specific character of soliton be
ing systems where most of the degrees of freedom are n
active and it is enough to control the soliton coordinates.

Let us consider a model of a classical scalar fieldw(x,t)
governed by the equation of motion

wxx2w tt2gw t1
1

2
w2

1

2
w352F~x!2G~x,t !, ~1!

where g.0 is a damping constant, the static forceF(x)
5B(4B221)tanh(Bx) represents a typical phase bounda
centered at the pointx50, andG(x,t) is a pumping force.
For G(x,t)50, there is a static soliton solution of Eq.~1! in
the form of a kink

wk~x,t !52B tanh~Bx! ~2!

that is pinned by the forceF(x) to the sitex50. The linear
stability of this solution was analyzed in@28# and it was
proved that in the limit of zero damping, the kink is stab
©2002 The American Physical Society19-1
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provided thatB.1/2. We choose the space-time-depend
pumping forceG(x,t) in such a way that its spatial pa
corresponds exactly to the ground-state function of the
erator describing small oscillations~linear phonons! around
the kink @28–30#, i.e., G(x,t)5P cos(vt)cosh22(Bx). Since
the forceG(x,t) is proportional to the first derivative of th
kink shape, thus in the limit of small amplitudesP!1 it
pumps energy mostly into the kink translational mode an
shifts the position of the kink center without large distu
bances of the kink shape. This effect is however limited o
to the case when the kink is close to the sitex50, because
for larger distances, the kink translational mode changes
nificantly and nonlinear effects appear. Chaos in the mo
~1! was predicted in@28# and observed in@31,32,34# where
several transitions between periodic, quasiperiodic, and
otic kink motion were found. In@32#, it was shown that the
chaos can be suppressed using the concept of geome
resonance@33#.

It is well known @29# that dynamics of a soliton can b
described by means of modes: translational, breathing,
radiating. For our paper, the translational mode has the m
influence on soliton behavior@31#, which can be character
ized by the time dependence of the center of the soliton m
xc(t). Therefore, the dynamics of the whole phase space
our spatially extended system will be truncated to only o
scalar quantityxc(t).

In order to stabilize the chaotic soliton we add to t
right-hand side of Eq.~1! a force in the form

f c~x,t !5
K@xc~ t !2xc~ t2T!#

cosha@B~x2xc~ t !2D!#
. ~3!

Here,T52p/v is the period of the periodic pumping forc
G(x,t), while K, a, andD are constants. The nominator o
f c(x,t) can be considered as the standard control term u
in the time-delayed feedback for a low-dimensional dyna
cal system with the position of the soliton centerxc(t) as the
control variable and the parameterK as the control ampli-
tude. The role of the denominator is to spread out the con
force along the whole soliton. The shape of this spreadin
connected with the form of the kink translational mode, t
width of the control force is governed by the parametera
and the parameterD describes the spatial shift between t
control force and the soliton. One should take note that
center of the control force~3! is movingwith the soliton@a
static case will be considered in Eq.~6!#. In numerical simu-
lations, we always use initial conditions in the form~2! with
boundary conditions]w/]x50 for x56L where 2L was
the total length of our system. An example of the succes
control is presented in Fig. 1.

Let us start our investigations with the caseD50. Figure
2~a! shows the dependence of the maximal Lyapunov ex
nentL of the controlled system on the rescaled control a
plitude K̃5KS(a) for different values of the width param
etera. The Lyapunov exponentL has been calculated from
observations of the motion of the kink centerxc(t). The con-
trol amplitude K has been rescaled by the factorS(a)
5*2L

L cosh2a(x)dx proportional to the total area of the sp
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tial part of f c(x,t). Obviously, the chaotic kink motion is
suppressed whenL,0, which is fulfilled only for some
ranges of the parameterK̃. Values of the edgesK̃min ,K̃max of
the control regions depend strongly on the parametera and
the smallest value ofK̃min occurs fora52. It means that the
optimal shape of control force is the translational solit
mode. To describe analytically the numerical results, we
ply the theory of TDF control developed in@26# for low-
dimensional systems. In the linear approximation, the s
tem’s Lyapunov exponent should depend on the con
amplitudeK̃ as @26#

L~K̃ !5l1x8K̃@11exp~2LT!cos~TDV!#, ~4!

DV~K̃ !52x8K̃ exp~2LT!sin~TDV!. ~5!

FIG. 1. Example of the control of chaotic soliton with param
eters: B50.53, g50.15, v50.36, P50.36, K50.17, a52.
The same parameters are used for the next figures. The fieldw(x,t)
is depicted only fort5nT/2.

FIG. 2. Dependence of the maximal Lyapunov exponent~a!,
frequency deviation~b!, and the power of nontranslational mode
~c! on the normalized amplitude of the control force for differe
parameters, solid lines and points—numerical computations, do
lines—theory. Dotted vertical lines show the region of success
control for a52.
9-2
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Here,l is the Lyapunov exponent of the uncontrolled sy
tem,x8 is the initial susceptibility of the Lyapunov expone
to the amplitude of the control force, andDV is the deviation
of revolution frequency of the perturbation around the u
stable periodic orbit from the revolution frequency of t
uncontrolled system@26#. The equation is valid provided tha
the corresponding Floquet multiplier of the uncontrolled s
tem is negative, i.e., when the linear perturbation perform
flip around the orbit. Fitting for each plotL(K̃) ~with values
of a fixed! two unknown constantsl and x8, we obtained
results that are depicted in Fig. 2~a!. One can easily see tha
all curves merge within a very close neighborhood of
point L(K̃50)'0.037 corresponding to the Lyapunov exp
nent of the uncontrolled system. The quantitative agreem
between theoretical and numerical results is within a f
percent. Some discrepancy can be observed in the right
of each curve, especially for higher values of the param
K̃, however, one should keep in mind that the theoret
predictions are just the first-order computation in the con
amplitude and that the whole theory has been developed
low-dimensional dynamical systems. In Fig. 2~b!, we show
frequency deviationsDV. Similarly as for the plotsL(K̃),
the theoretical curves obtained with the help of Eq.~5! fit
very well to numerical calculations. The characteristic cu
appearing in Fig. 2~a! correspond exactly to these values
the control parameterK̃ at which the frequency deviation
DV start to differ from zero.

Treating the cusps of the plots in Fig. 2~a! as points of the
optimal control, we find that although the optimal values
amplitudes K˜ opt depend on the width parametera, the values
of the optimalexponentsLopt are nearly independent of thi
parameter. The situation changes, however, under the in
ence of the shift parameterD. Figure 3 shows that the contro
is more effective (Lopt is smaller! for positive values ofD
and large values ofa. Since the investigated chaotic traje
tory xc(t) ~see Fig. 1! is shifted to positivex values, the
control is more effective when the center of the control fo
is at the opposite side of the soliton than the phase boun
and pumping center.

As the next case, let us consider the control of the soli
using the force that ispinnedto one fixed pointx50 in the
space

f c~x,t !5K@xc~ t !2xc~ t2T!#cosh2a@Bx#. ~6!

FIG. 3. Dependence ofLopt ~dashed lines! and corresponding

K̃opt ~solid lines! on the shift parameterD for three different values
the width parametera.
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Now, the optimal Lyapunov exponent increases with the
rametera ~Fig. 4! but similarly, as for the case of the movin
control force~3!, the lowest value of theK̃opt corresponds to
the casea52. It means that depending on our aims, we c
choose between better stability of the controlled system~then
we usea→0) or the smallest amplitude of the control forc
~then we usea52). Comparing Figs. 3 and 4, one observ
that the moving control force~3! with non-negative values o
the shift parameterD leads to lower values ofLopt and to
higher values ofK̃opt as compared to the pinned contr
force ~6!, except for the casea→0, when both approache
give the same value ofLopt . In this sense, the moving con
trol force ~3! is superior over the pinned control force~6!.

The amount of energy transferred to the system during
control can be considered as a measure of control quality
our paper, the corresponding powerPin(t) can be calculated
as the space integral of the local power densitypin(x,t)
5 f c(x,t)ẇ(x,t). Figure 5 shows the powerPin(t) for differ-
ent parametersK̃ together with corresponding Lyapunov e
ponents. We observed three phases during the control pr
dure. After a short initial phase when the soliton moves
from unstable periodic orbit, the phase of exponential de
of the power follows~the linear range in Fig. 5!. During this
phase, the soliton is directed by the action of the con
force towards the periodic trajectory and this moveme
should be well described by the maximal Lyapunov expon
of the spatially extended system. In fact, we found that
values of slop coefficients corresponding to the seco

FIG. 4. Dependence of the optimal Lyapunov exponentLopt on

the rescaled amplitudeK̃ of the control force for different values o
the parametera.

FIG. 5. Power transferred to the system as function of time

different parametersK̃. Inset shows corresponding values
Lyapunov exponents.
9-3
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phases of the plotsPin(t) are equal~within numerical accu-
racy! to the maximal Lyapunov exponentsL estimated from
the motion of the soliton centerxc(t). We stress here that th
powerPin defines the energy transfer toall degrees of free-
dom of our system. The fact that the decay of this powe
well described by the exponentL corresponding to the trans
lational soliton motion, means that other degrees of freed
can be discarded during the second phase of the control f
action. In the final control phase, the powerPin no longer
decreases, which corresponds to a balance between the
bilization action of the control force and destabilizing effec
of created modes. Since we truncated the dynamics of
spatially extended system to the translational kink moti
the creation of spatial additional modes can be considere
a kind of noise acting on the moving soliton. In Fig. 2~c!, one
can see that this noise level is much lower when the cha
motion of soliton is controlled. The existence of this thi
phase seems to be a characteristic feature of chaos cont
spatially extended systems since control forces in TDF m
ods tend to zero in low-dimensional models in the absenc
noise. In spatially extended systems, this limit can
reached only if all unwanted collective degrees of freed
are suppressed by the action of the control force, which
impossible in practice when the control force creates mod
ng

ys

.

o
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In conclusion, we have observed that it is possible to c
trol chaos in a spatially extended soliton bearing model
serving the position of the soliton center and applying
control force as the time-delayed feedback with a collect
degree of freedom being the center of the soliton mass.
resulting values of the system maximal Lyapunov expon
are in very good agreement with the control theory dev
oped recently for low-dimensional models. This expone
can be calculated either from observations of the kink traj
tory or from the total power transfer. The optimal spat
distribution of the control force corresponds to the ki
translational additional mode. We stress that the behavio
the whole spatially extended system has been approxim
by theeffectivedynamics of a single pointlike particle. It is
peculiar feature of soliton bearing systems; they can be c
sidered as a kind of bridge between low-dimensional a
spatially extended models.
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