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In this paper the linear theory of nonequilibrium thermodynamics, developed by Onsager and others, is
applied to random networks with arbitrary degree distribution. Using the well-known methods of nonequilib-
rium thermodynamics we identify thermodynamic forces and their conjugated flows induced in networks as a
result of single node degree perturbation. The forces and the flows can be understood as a response of the
system to events, such as random removal of nodes or intentional attacks on them. Finally, we show that cross
effects �such as thermodiffusion, or thermoelectric phenomena�, in which one force may not only give rise to
its own conjugated flow, but to many other flows, can be observed also in complex networks.
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Onsager relations �1� constitute one of the most prominent
results of the traditional nonequilibrium statistical physics
�2,3�. In short, they explain why and how small perturbations
of some system parameters can induce fluctuations of other
parameters.

The relations are derived from the assumption that the
response of the system, which is close to equilibrium, to
small external perturbation is the same as its response to a
spontaneous fluctuation. Since the considered systems are
close to equilibrium the change in entropy dS is mainly due
to entropy production diS, the rate of which can be written as

� =
diS

dt
= �

j

FjJj , �1�

where Fj are thermodynamic forces, such as the gradient of
1 /T, and Jj are flows, such as the heat flow. In the vicinity of
thermodynamic equilibrium, the following linear relation be-
tween the flows and the forces holds:

Jj = �
i

LjiFi, �2�

where Lji represent the so-called phenomenological coeffi-
cients, which have been proved to fulfill the Onsager recip-
rocal relations

Lji = Lij . �3�

The relation �2� implies that not only can a force such as
the gradient of 1 /T cause the heat flow but it can also drive
other flows, such as a flow of matter or an electrical current.
In other words, an entropic force Fi may not only give rise to
its corresponding flux Ji, but to many other fluxes Jj in a
dazzling variety. Moreover, due to Eq. �3�, one flow Jj causes
the other Ji in exactly the same way and to exactly the same
extent. The thermoelectric effect is one such cross effect.
Thermodiffusion is another example. The proliferation of
fluxes described above is the main reason why it is so diffi-
cult to perceive causality in complex systems, in which rela-
tionships between constituents may give rise to very compli-
cated behaviors. Notwithstanding these difficulties, in the

paper we examine effects of the Onsager causality in com-
plex networks, which during the last decade have broadened
the purview of physics.

In a nutshell, real-world networks and their theoretical
models are called complex by virtue of a set of nontrivial
topological features among which the most prominent are
heavy tails in the degree distribution, tendency of nodes to
form clusters, small world effect, assortativity or disassorta-
tivity among vertices, community structure at many scales,
and evidence of a hierarchical structure �for an extensive
review, see Refs. �4,5��. Since Onsager relations operate
when the considered systems are close to equilibrium, in the
following we will concentrate on equilibrium networks, pre-
cisely on exponential random graphs, also known as p*
models, neglecting a huge class of evolving nonequilibrium
networks.

Exponential random graphs are ensemble models. They
are already well known for mathematicians �6,7�, and re-
cently have also aroused interest among physicists �8–10�.
As a matter of fact, the methodology behind the models di-
rectly follows the methodology behind the maximum entropy
school of thermodynamics �11�. In order to correctly define
an ensemble of networks, one has to specify a set of graphs
G that one wants to study. In the following we restrict our-
selves to labeled simple graphs with a fixed number of nodes
N. Next, since the set G of possible networks has been estab-
lished, one has to decide what kind of constraints should be
imposed on the ensemble. The choice may be, for example,
encouraged by properties of real networks such as high clus-
tering, significant modularity, or scale-free degree distribu-
tion P�k��k−�. Then, one specifies probability distribution
P�G� �G�G� over the ensemble, which consists in maximi-
zation of the Shannon entropy S=−�GP�G�ln�G� subject to
the given constraints. The procedure leads to the Boltzmann-
like probability distribution

P�G� =
e−H�G�

Z
, �4�

where Z stands for the partition function, whereas H�G�
=� j� jmj�G� is called the graph Hamiltonian. The set �mj�
represents ensemble free parameters �like energy E in the
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canonical ensemble� upon which the relevant constraints act,
and �� j� is a set of fields conjugated to these parameters �like
�= �kT�−1 representing field conjugated to the energy E�.
Further in the paper, we will consider network ensembles
characterized by a desired degree sequence �h1 ,h2 , . . . ,hN�,
i.e., by the Hamiltonian of the form �8�

H�G� = �
i=1

N

�iki�G� . �5�

The ensembles are formally equivalent to uncorrelated net-
works with a given node degree distribution P�k� �9�, which
have been repeatedly used in recent years as the simplest �but
not yet trivial!� models of real networks �12–14�. The On-
sager formalism applied to this ensemble will allow us to
study dynamical response of the considered networks to ex-
ternal perturbations.

In the following, we will study the simplest kind of per-
turbation consisting in a sudden change of single node’s con-
nectivity, e.g., ki�t0�=0. The perturbation is particularly well
suited for the Hamiltonian �5� because node degrees are en-
semble free parameters in the case. Let us also stress that the
perturbation directly corresponds to frequently discussed
problems of random or intentional removal of sites and links
in complex networks, which have been considered in relation
with such important issues as resilience of real networks to
random breakdowns, their susceptibility to intentional at-
tacks, and finally the issue of cascading failures in these
networks. Although, however, a number of analyses in the
field have been performed, most of them may be classified
into one of two categories: the first one focusing on static,
percolation properties of new networks arising as a result of
a given perturbation �14,15�, and the second one encompass-
ing a variety of processes which excel at imitating specific
phenomena �like clogging in the Internet� and give some
insight into dynamical behavior of the considered networks
after such a perturbation �16–18�. The approach presented in
this paper does not fall into either category. Although in the
paper we concentrate on a similar kind of perturbation the
true challenge of our approach is to present how the most
fundamental results of nonequilibrium thermodynamics can
help in the understanding of complex networks. The ap-
proach is all the more important, since it can be applied to
any ensemble of networks with an arbitrary graph Hamil-
tonian �4�.

Thus let us apply the Onsager formalism to the ensemble
of networks described by the Hamiltonian �5�. Our first aim
is to determine thermodynamic flows and forces �1� which
appear in the networks after the perturbation consisting in a
sudden change of a single node’s degree. In order to do it one
has to expand the ensemble entropy S�k1 ,k2 , . . . ,kN� about
equilibrium as a power series in its independent variables,

diS = S − Seq =
1

2�
i,j

�2S

�ki � kj
�ki − hi��kj − hj� , �6�

where �S /�ki=0. Next, computing the time derivative of the
above expression one obtains a new microscopic expression
for the rate of the entropy production,

� =
diS

dt
= − �

i,j
gij�ki − hi�

d�kj − hj�
dt

, �7�

where gij =−�2S / ��ki�kj�. Identifying the derivative

Jj =
d�kj − hj�

dt
�8�

as a thermodynamic flow, and then comparing Eq. �7� with
Eq. �1� allows one to show that the term

Fj = − �
i

gij�ki − hi� �9�

corresponds to the thermodynamic force.
Now, assuming that the probability of a fluctuation in our

ensemble is given by the Einstein formula P�diS�
�exp�diS� one can show that elements of the matrix g−1

�which is the inverse of g� describe correlations between
fluctuations �2,3�,

gij
−1 = 	�ki − hi��kj − hj�
 = 	kikj
 − hihj . �10�

At this point it is also worthwhile to stress that from a physi-
cal point of view the parameters gij

−1 correspond to general-
ized susceptibilities �ij

���=−�hi /�� j �see Eq. �39� in Ref. �9��,
which measure the response of hi to the variation of the field
� j. Having the ensemble averages �19�

	kikj
 = hi�1 −
hi	h2

	h
2N

��ij + hihj , �11�

one immediately finds that in sparse and uncorrelated net-
works described by the Hamiltonian �5�, for which 	h2
 / 	h

� ln N �9,21�, the matrix g is always diagonal,

gij 
�ij

hi
. �12�

The last result is interesting for two reasons. First, it al-
lows us to simplify the expression for the thermodynamic
force Fj acting on the node j when the studied networks are
thrown out of equilibrium. Namely, inserting Eq. �12� into
Eq. �9� one finds that the force is equivalent to the normal-
ized fluctuation on the considered node,

Fj =
hj − kj

hj
. �13�

Second, it shows that correlations between fluctuations on
various nodes are negligibly small. Although at first glance
the remark seems to contradict the expected cross effects,
further in the paper we show that the effects consisting in
cascading development of different flows between the nodes
do really exist in the considered networks.

In the following, in order to examine the mentioned cross
effects we will write the rate equation for kj −hj, which will
make possible the detailed analysis of the thermodynamic
flows Jj �8� in the considered ensemble. Before, however, we
proceed with this equation let us discuss structural and dy-
namical properties of the studied networks. First, since the
networks are uncorrelated the probability of a link between
any pair of nodes i and j with degrees respectively equal to ki
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and kj is given by pij =kikj / �	k
N�. Next, due to the fact that
the networks are close to equilibrium one can assume that
their dynamics after a small perturbation is the same as their
dynamics in equilibrium. One can expect that the analyzed
networks make only small steps in the configuration space G
forming a sort of reasonable physical trajectory, along which
successive networks G appear with probabilities proportional
to their weights, that is, proportional to e−H�G� �4�. The sim-
plest and physically the most reasonable method providing
such a sampling is known as the Metropolis algorithm �22�.
In the algorithm the ratio

w =
P�G1�
P�G2�

=
e−H�G1�

e−H�G2� = e−	H �14�

is interpreted as the probability of making a transition from
one network configuration G1 to the other configuration G2
�if 	H
0 then w�1 and such a transition is always ac-
cepted�. The considered difference between the two configu-
rations G1 and G2 should not be too large, since then the
acceptance probability w would be small.

Now, having in mind the expounded properties of the con-
sidered ensemble, and assuming that during a single time
step only one link may be added or removed from the net-
work, one can easily write the rate equation for kj −hj

��kj − hj�
�t

=
1

�N

2
��

i�j
��− 1�

kikj

	k
N
min�e�i+�j,1�

+ �+ 1��1 −
kikj

	k
N
�min�e−��i+�j�,1�� . �15�

The first term on the right-hand side of Eq. �15� corresponds
to the node’s degree decrement by a link removal, and re-
spectively the second term represents the node’s degree in-
crement by a link addition. At the moment, our aim is to
reformulate the last equation into the form similar to relation
�2�. In order to do it let us recall two properties of the ana-
lyzed ensemble �5�, which have been proved in Ref. �9�. The
first property 	k
= 	h
 is trivial and does not require any com-
ment. The second property, that is of our interest, relates the
expected node’s degree hj with its conjugated field � j, i.e.,
hj e−�j�	h
N. The last expression is only true in sparse and
uncorrelated networks for which fields ��i� conjugated to
nodes’ degrees are positive. Putting the mentioned expres-
sions into Eq. �15�, after some algebra one gets a new rate
equation,

��kj − hj�
�t

= −
2

N2�kj�1 +
hj	h2

N	h
2� − hj�

−
2kjhj

	h
2N4�
i�j

hi�ki − hi� , �16�

which after putting kj =hj in the second term �since we oper-
ate in the vicinity of equilibrium the assumption is reason-
able� simplifies to the desired form �2�,

��kj − hj�
�t

=
2hj

N2 �hj − kj

hj
� + �

i�j

2hi
2hj

2

	h
2N4�hi − ki

hi
� , �17�

having the exact solution

k��t� − h� = e−Lgt�k��t0� − h�� , �18�

and providing us with the matrix of phenomenological coef-
ficients L describing non-equilibrium phenomena occurring
in the considered networks,

Lij = �
2hi

N2 for i = j

2hi
2hj

2

	h
2N4 for i � j

.

Now, let us discuss the results of the last paragraph. At the
beginning let us note that Eq. �17� clearly shows that cross
effects do really exist in complex networks. Furthermore, the
obtained matrix L is symmetrical. It means that the Onsager
relations �3� hold in the studied networks, i.e., the effect of a
normalized fluctuation occurring in one node Fi �13� on the
flow which is induced in another node Jj �8� is the same as
the effect of Fj on Ji, regardless of the nodes’ degrees hi and
hj. Note also that Eq. �17� can be written as follows:

Jj = Jj
�j� + �

i�j

Jj
�i�, �19�

revealing the multicomponent nature of the analyzed flows.
The partial flows introduced in the last expression can be
easily identified from the initial equation �17�. They respec-
tively stand for flows Jj

�i�=LjiFi generated on the node j by
other nodes i� j, and for the flow Jj

�j�=LjjFj induced on the
node by itself. A simple comparison of the flows shows that
in the studied case of sparse and uncorrelated networks �5�
the following relation holds:

∀i�jJj
�j� � Jj

�i�, �20�

which stems from the analogous relation between Onsager
coefficients, i.e., ∀i�j Ljj�Lij. The above relation causes
that the partial flows Jj

�i�, giving rise to cross effects, are
much smaller than the local flow Jj

�j�. In fact, the only net-
works for which the total effect of the cross flows is consid-
erable are scale-free networks, in which highly connected
nodes appear.

Therefore to numerically verify the obtained results we
have analyzed the behavior of scale-free networks �i.e., net-
works characterized by a power law distribution of the de-
sired nodes’ degrees P�h��h−�, which 2.4���4� after a
sudden rewiring of all links attached to the node with the
highest degree kmax to other nodes. A schematic illustration
of the network response to this externally applied distur-
bance is shown in Fig. 1. The cross effects manifest them-
selves in a number of additional links which appear in the
network during its return to equilibrium. In order to quantify
the effects and check the correctness of our calculations we
have measured the amplitude of the response function �see
Fig. 1� obtained from Monte Carlo simulations and compare
it with both numerical solutions of the set of initial rate Eqs.
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�15� and the exact solution �18� of the set of simplified Eqs.
�17� �see the subset in Fig. 1�. The results are presented in
Fig. 2. One can see that for ��3 our analytical calculations
fit numerical results very well. The visible discrepancy be-
tween the numerical results and their theoretical predictions
for �
3 is due to the fact that the applied formalism does
not take into account degree correlations which spontane-
ously develop in scale-free networks with �
3 �see the
comment after Eq. �28� in Ref. �9��.

In summary, in this paper we present the Onsager formal-
ism applied to random networks with arbitrary degree distri-
bution. Using the well-known methods of nonequilibrium
thermodynamics we identify thermodynamic forces and their
conjugated flows induced in networks as a result of single
node degree perturbation. The forces and the flows can be
understood as a response of the system to events, such as
random removal of nodes or intentional attacks on them. We
show that cross effects �such as thermodiffusion, or thermo-

electric phenomena�, in which one force may not only give
rise to its own corresponding flow, but to many other flows,
can be observed also in complex networks.

Finally, since the science of complex networks is a genu-
inely multidisciplinary domain, the approach if applied to
social, economic, or even biological networks may open new
horizons for the sciences, as it would provide them with a
completely new understanding of how rumors, information,
marketing, or crises can spread through these systems caus-
ing small, medium, or large responses. Moreover, if one can
identify social �economic� equivalents of thermodynamic
forces and flows, a social �economic� analog of thermody-
namic cross effects, underlying complexity of the socioeco-
nomic systems, will be within the grasp. We hope that the
approach introduced in the paper will serve as a practical
starting point for exploring a variety of nonequilibrium
network-driven phenomena.
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