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Abstract. We study a model of network with clustering and desired node degree. The original purpose of
the model was to describe optimal structures of scientific collaboration in the European Union. The model
belongs to the family of exponential random graphs. We show by numerical simulations and analytical
considerations how a very simple Hamiltonian can lead to surprisingly complicated and eventful phase
diagram.

PACS. 89.75.-k Complex systems – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

During the last years, there has been noticed a signifi-
cant interest in the field of complex networks and a lot of
interdisciplinary initiatives have been taken aiming at in-
vestigations of these systems [1–4]. In parallel with empir-
ical studies of real world networks [5,6], theoretical mod-
els [7–9] and abstractive mathematical tools [10,11] have
been developed in order to understand complex mecha-
nisms hidden behind the network functionality.

Among many studied network models like random
graphs [12], or growing networks [7] there exists a class
of models, called exponential random graphs, which has
attracted an attention of the physics community just re-
cently. The class was first studied in the 1980s by Holland
and Leinhardt [13], and later has been developed exten-
sively by Strauss and others [14–17]. The idea diffused
from social statistics communities to physical society in
recent years, when a number of physicists have made the-
oretical studies of specific models belonging to this family
[9,18–21].

Exponential random graph model is defined to be not
a single network but a set of possible networks (ensemble).
The probability of a particular graph G in this ensemble
is proportional to e−H(G), where

H(G) =
∑

i

θimi(G), (1)

and H(G) is called graph Hamiltonian, mi is a collection
of graph observables that reflect relevant constraints on
studied graph properties and θi is the set of fields conju-
gate to mi.

A variety of graph Hamiltonians has been studied so
far including simple random graphs [9], a network with
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reciprocity [9], the so-called two-star model [21], Strauss’s
model of a network with clustering [22], and others. The-
oretical analysis of exponential random graph models has
been developed by a number of authors. In most of cases
linear models can be solved exactly in the limit of large
system size. For nonlinear Hamiltonians mean-field theory
and perturbation theory [19,20,9] have been applied in or-
der to find phase transitions in the network structures.

In this paper we would like to show how a very sim-
ple Hamiltonian can lead to surprisingly complicated and
eventful phase diagram where wealth of structural phase
transitions can not be forecast at first glance. Due to com-
plexity of observed structures our methodology is mostly
concentrated on Monte Carlo simulations. A simple math-
ematical apparatus is also expounded in order to reveal
details of the observed phenomena. The mentioned cal-
culations, although not so powerful, allow to understand
when and why a particular transition occurs.

2 Motivation and model description

The model is defined on network that is composed of N
nodes and L links, where each node acts as a single sci-
entist or a single scientific group and a link between two
nodes means that there exists scientific collaboration be-
tween them.

The original purpose of the model was to describe op-
timal structures of scientific collaboration in the Sixth
Framework Programme for Research and Technological
Development (FP6), which is the European Union action
aiming to stimulate and support scientific activities con-
ducted at national and international level. One of main
purposes of the European Commission financing scientific
projects in FP6 was to strengthen co-operation between
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project partners [23]. In their proposal, applicants had to
show that one of the aims of the planned project is inten-
sification of co-operation between participants. They also
had to argue that without such an interaction a goal of the
project will be not achieved. The most popular observable
which allows to measure effects of the co-operation in so-
cial network is clustering coefficient introduced by Watts
and Strogatz in 1998 [24]. The clustering coefficient ci of
a single node i is the proportion of the number of links
between the nodes within its neighborhood e divided by
the number of links that could possibly exist in the neigh-
borhood

ci =
2e

ki(ki − 1)
, (2)

where ki represent degree of the considered node. If ki < 2
then ci = 0. The global clustering coefficient C is just an
average of ci over all nodes.

The other obvious purpose of the funded project is to
achieve the highest possible productivity. In our model
productivity of each scientist i (or local scientific group)
depends on the number of collaborators ki. The more
collaborators work with a given scientist, the more pa-
pers/ideas the scientist can produce. On the other hand,
however, a large number of collaborators means the neces-
sity of parallel concentration on different scientific threads
which leads to the decrease of productivity. In conse-
quence, productivity pi of a single project participant can
be modelled by a logistic-like equation

pi = kie
−ki/h, (3)

where h is an optimal (desired) number of collaborators
(note that the highest productivity occurs for ki = h).
Although one could expect that in reality h should be
described by a kind of the Lotka distribution [25], here we
concentrate on the simplest case where h is the same for
all elements of the system. Productivity P of the whole
network is just an average over all N nodes normalized to
unity

P =
e

Nh

∑

i

pi. (4)

Hamiltonian of the described model can be written as
follows:

H(G) = −θP (G) − αC(G). (5)

Monte Carlo procedure is defined by the following algo-
rithm: we choose randomly two nodes and try to remove
(add) existing (non existing) link between them. If the
change leads to the decrease of the initial system energy
E0, i.e. ∆E = Em/p − E0 < 0, where Em/p is the system
energy after link removal/addition, we accept such a re-
placement. Otherwise, when ∆E ≥ 0, we accept it with
the probability e−∆E , i.e. we apply the typical Metropolis
algorithm.

3 Analytical considerations

In order to show a large variety of structural transitions
observed in networks described by the Hamiltonian (5),

in our Monte Carlo simulations we have decided to fix
one parameter α = 109, and check behavior of the system
as a function of the second parameter θ. At the moment
please note, that since one may think of parameters α and
θ as external fields coupled to corresponding observables,
our choice of the large value of α makes the considered
system less susceptible to random effects. Further in the
paper, the assumption of very large α allows us to estimate
the critical value of θ from the simple condition ∆E = 0.
The condition means that the stability of the initial stable
structure is no longer preserved and a new network con-
figuration can emerge (in other words we accept changes
in the network structure only if ∆E drops below zero).

Figure 1 shows possible scenarios of structural transi-
tions in our model. Arrows represent directions of changes
of the control parameter θ given α = 109. As one can
see the number of possible transition paths is impressive.
Later we show that the path chosen by the system de-
pends mainly on the network size N . Moreover, beside
simple paths like ABCA or ABEFGHA there may exist
much more complicated paths like ABEFGHIDFGHA,
i.e. we have to change parameter θ from +∞ to −∞ and
backward from −∞ to +∞ two or more times to return
to the same structure we started!

To find critical value of the parameter θ at which a
particular structural transition occurs one has to analyze
a change in energy ∆E induced by a link addition or re-
moval taking into consideration a currently existing net-
work structure. As an example let us analyze transition
A− B. The structure A corresponds to a regular random
graph, where a node degree distribution is given by the
delta function P (k) = δ(k − h). In this structure produc-
tivity is maximal P = 1, whereas the number of trian-
gles contributing to the clustering coefficient is negligible
small C � 0 (assuming that graph is sparse i.e. h � N
that is sociologically justified). The transition takes place
when for a particular value of the parameter θ energet-
ically favorable is to add a link which creates the first
triangle (i.e. a decrease of productivity is sufficiently re-
warded with an increase of clustering). The described sit-
uation is schematically presented in Figure 2a. Energies
corresponding to both structures depicted in the figure
are respectively given by

E0 = −θ · 1 − α · 0,

Ep = −θ
[
(N − 2)he−1 + 2(h + 1)e−

h+1
h

]
e

Nh

−α
[

4
Nh(h+1) + 2

Nh(h−1)

]
.

(6)

First, inserting the values of energy into the condition
∆E = Ep−E0 = 0, and next expanding exponential func-
tions in Taylor series up to the second order one gets the
critical value of the control parameter for the considered
transition A − B

θA−B
h2�1≈ 2(3h − 1)α

h − 1
. (7)

As one can see the transition does not depend on the sys-
tem size N and for large h it also does not depend on
h.
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Fig. 1. (Color online) Diagram representing possible transitions between network configurations as a function of parameter
θ. Gray arrows means that the configuration D is composed of two other configurations (C and E), and the two parts of the
system follow different paths. The figure shows networks with different sizes N just to emphasize particular character of a given
configuration.

Much more complicated system behavior is observed
when the control parameter θ crosses zero and becomes
negative (see Fig. 1). Productivity contribution to en-
ergy changes sign and all nodes having at the moment
degree k = h turn out to be in unstable configuration (see
schematic explanation given in Figure 3). For such nodes
when decrease in clustering is sufficiently rewarded by de-
crease in undesirable productivity the stable configuration
B will be destroyed: some nodes will decrease their degrees
whereas others will increase them (cf. Fig. 2b). As one can
see in Figure 1 the considered network may follow one of
three paths resulting in one of three configurations C, D,
or E.

Unfortunately, due to probabilistic character of the
Monte Carlo procedure it is hard to calculate analytically
which direction of changes will be taken by the system of
a given size N . To check what is really happening during
the transition we perform numerical simulations, results
of which are summarized in Figure 4. The figure shows a
fraction of isolated nodes as a function of N . As one can
see for small system sizes degrees of all nodes drop to zero
and the system transforms into the empty graph (config-
uration E in Figure 1). Above some critical value of N a
part of nodes condensate together and a fully connected
subgraph accompanied by isolated nodes appears (config-
uration D in Figure 1). Finally in the thermodynamical

limit all nodes condensate and the complete graph emerges
(configuration C in Fig. 1).

Now, let us analyze the transition C−A, i.e. transition
from the complete graph to the regular random graph.
Because one can not add a link to the complete graph
the only situation to analyze is removal of a link. The
described situation is schematically presented in Figure 2c.
A simple calculation gives

E0 = −θN(N − 1)e−
N−1

h
e

Nh − α,

Em = −θ
[
(N − 2)(N − 1)e−

N−1
h + 2(N − 2)e−

N−2
h

]
e

Nh

−α
[
1 − 2

N(N−1)

]
,

(8)
which leads to

θC−A ≈ eN/hh2α

N2
(9)

in the limit of large N . As one can see this transition de-
pends on the system size N , and in the thermodynamical
limit N → ∞ the critical value θC−A tends to infinity.

Now, let us discuss the behavior of the system if the ini-
tial configuration is E (i.e. the empty network). The first
transition E−F occurs when the parameter θ equals zero.
Since the productivity does not influence energy of the sys-
tem at this point, links can appear randomly (they do not
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Fig. 2. (Color online) Schematic situations occurring during
particular transitions used for considerations performed in the
text. a) transition A − B; b) transition B − D; c) transition
C − A; d) transition E − F ; e) transition H − A.

increase energy so they are acceptable in the Monte Carlo
procedure). First triangles appear in the network and the
clustering coefficient increases. Such a dynamics leads to
the configuration in which the fully connected subgraph is
surrounded by a number of peripheral nodes with degree
k = 2 (configuration F in Fig. 1). Because of complicated
situations in intermediate time steps a rigorous analytical
explanation of the transition E − F is beyond our abili-
ties. Nevertheless, below we analyze a simplified situation,
which allows one to understand why the transition occurs.

Thus, let us consider a fully connected subgraph with
an additional node Q having b links (see Fig. 2d). Just
like before, one can analyze what happens with the clus-
tering coefficient if we add (remove) one link. Figure 5
shows the solution of this problem when the size of the
fully connected subgraph is NF = 20. For a given b clus-
tering coefficient of the considered structure is marked by
the thick line. Thin lines show a new clustering coefficient
after addition (circles) or removal (triangles) of one link.

k

k
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Fig. 3. (Color online) Productivity contribution to energy for
θ > 0 (upper figure) and for θ < 0 (lower figure) as a function
of node degree k. The later situation shows that to decrease
energy some nodes will reduce their degree (destroying existing
clusters) and others will increase it (connecting two clusters
together).
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Fig. 4. (Color online) Normalized number of nodes with de-
gree k = 0 as a function of system size N . Three thin curves
represent a transition B − D, while a thick one represents a
transition I − D. The thick curve shows that for the same
value of the parameter h the number of isolated nodes is lower
after transition I − D than after transition B − D.
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Fig. 5. (Color online) Clustering coefficient C for the system
depicted in Figure 2d. Arrows show evolution of the system
(addition or removal of successive links).

At the beginning, let us assume that we have b < 10. To
increase clustering coefficient we have to remove one link
which leads to the configuration with b− 1 links attached
to the peripheral node Q. Further, it is easy to see that the
process will follow towards removing next links belonging
to Q until the node will have only two links. The node
degree can not drop below kQ = 2, because for kQ < 2
local clustering coefficient cQ suddenly drops from 1 to
0 which drastically decreases global clustering coefficient
of the whole structure. On the other hand, if we assume
that b > 10, then energetically favorable is to add another
b+ 1 link to the node Q. Again, one can see that the node
Q will try to connect to all other nodes, i.e. the node Q
becomes a member of the fully connected subgraph.

Starting from the configuration F if one further in-
creases θ the productivity P starts to matter. It means
that above some critical value of this parameter an addi-
tion of the third link to one out of peripheral nodes with
degree k = 2 can compensate energy increase coming from
decrease of the clustering coefficient. The same reasoning
explains successive network reorganizations when adding
next links (up to k = h) to peripheral nodes is energeti-
cally favorable.

At the moment, let us note that nodes belonging to the
fully connected subgraph in the configuration F have dif-
ferent degrees. Their degrees are composed of NF −1 inter-
nal links and links coming from peripheral nodes with de-
gree k = 2 (the peripheral links are randomly distributed
among the nodes creating the fully connected subgraph).
It means that in a finite system there always exists a node
(or a group of nodes) with the largest degree. It is easy to
check that addition of a new link to such a node leads to
the minimal decrease of the clustering coefficient. It means
that above a certain value of θ new links are added to this
node making its degree rapidly growing. Figure 6 shows in
a schematic way the node degree distribution below and
at the critical value of θ for the transition.
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Fig. 6. Schematic node degree distribution before and after
transition F −G. The node with the highest degree is exagger-
ated to show its dynamics during the transition.

As we have described above, if one further increases
the control parameter θ the peripheral nodes suddenly in-
crease their degrees from k = 3 to k = 4. It generates a
similar mechanism as described in the previous paragraph,
i.e. consecutive node with the largest degree (expect the
one which has already increased its degree to N) stepwise
increases its connectivity. The network configuration aris-
ing along the transition corresponds to the configuration
G presented in Figure 1.

Another crucial point in the system evolution is the
transition G − H , where the fully connected subgraph is
destroyed in the similar manner as the complete graph
in the transition C − A. After the transition G − H our
network consists of several hubs and a large number of
loosely connected peripheral nodes.

The configuration H is presented twice in Figure 1 in
order to show two possibilities of the system evolution: it
can be stable when θ → ∞, or hubs can be destroyed,
and the transition H −A takes place. To analyze stability
of the configuration H is enough to consider a simplified
structure presented in Figure 2e (note that the simplified
star-like structure neglects effects of clustering which may
occur in the original configuration H). In such a structure,
the change of a local productivity resulting from addition
(∆Plocal = Pp − P0) or removal (∆Plocal = Pm − P0) of
a single link between the hub with a large degree w and
one of peripheral nodes with degree h (as we have already
stated the maximal connectivity of the peripheral nodes
along the transition path F − G − H is k = h), where

P0 =
[
he−1 + we−

w
h

]
e

Nh ,

Pm =
[
(h − 1)e−

h−1
h + (w − 1)e−

w−1
h

]
e

Nh ,

Pp =
[
(h + 1)e−

h+1
h + (w + 1)e−

w+1
h

]
e

Nh ,

(10)

is presented in Figure 7. A given process (link addition
or removal) occurs only if the change of productivity is
positive. It means that if w is small the only possibility is
to add a new links. When h < w < wc (c.f. Fig. 7) links can
only be removed. It means that degree of the hub should
decrease from w to h, and the transition H − A takes
place. On the other hand, when w > wc, both processes
(addition and removal of links) are no longer possible. It
means that the system remains in the stable configuration
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Fig. 7. Change of productivity in the star-like structure de-
picted in Figure 2e as a function of degree of the central highly
connected node w, for h = 10.

H . Unfortunately, because the analysis neglects clustering
it does not allow us to calculate the precise critical value
of θH−A.

Finally, let us analyze the transition H − I (Fig. 1),
which occurs when starting from the stable configuration
H one decreases the control parameter θ. On the basis of
our previous considerations one can predict that the con-
figuration I emerges when the contribution of clustering
coefficient to the system energy crosses a critical value. In
a similar way like during the transition A−B nodes with
low degrees have tendency to form triangles. On the other
hand, however, because hubs are stable (we have shown
it in the previous paragraph) instead of many separated
clusters like in the configuration B the system evolves to-
wards the stable configuration I.

If the parameter θ is sufficiently negative the configu-
ration I is destroyed just like the configuration B, and the
mechanism of this transition is the same: which configu-
ration (C, D, or E) appears depends on the system size N
(c.f. thick dotted curve in Fig. 4). The only difference is
that for a given N the number of isolated nodes is lower
in comparison with the transition B − D.

As we have stated before, in fact, our system in the
phase D consists of two configurations C and E. It means
that at least to some value of the parameter θ the part of
the system that is equivalent to configuration E follows
a path D − F − G − H , and the second part, equivalent
to the configuration C, follows the path C − A. At some
point, up to now separated parts of the network combine
together. In figure 1, in order to make the whole picture
as clear as possible, we marked paths accessible for these
two components of the configuration D by gray arrows.

Let us also notice that a path our system follows can be
really complicated. For example, let us consider a network
in the configuration A. After transitions A − B − D the
number of isolated nodes is high, which allows to create
hubs with very high degrees w > wc as a result of the
transition F − G. It means that the configuration H is

stable, and the system follows the path H − I − D. Now,
the number of isolated nodes is much lower (see Fig. 4).
Their number is often too small to once more time create
hubs with degrees w > wc during the transition F − G.
Thus, after a series of transitions D − F − G − H the
system returns to the initial state A. It means, that the
return to the same state is possible after a complicated
path A−B −D − F −G−H − I −D − F −G−H −A,
in which the chain of transitions D − F −G−H − I may
be repeated several times.

Finally, we have to stress that a part of phase transi-
tions we observed are visible only in finite size systems, i.e.
if the system is large enough a particular phase transition
can change its character and can lead to development of
different structure. Although usually physicists use term
phase transition in the context of systems in thermody-
namical limit, our delinquency can be justified because
the model we study has been proposed to social systems
where the number of elements is always limited.

4 Discussion

We presented a simple model that is characterized by a
surprisingly complicated and eventful phase diagram with
plenty of metastable states. Nevertheless, since the model
was sociologically motivated, let us discuss the observed
network configurations in the context of scientific collab-
oration.

First, the configuration B seems to be the easiest to
interpret. If each node represents scientific group then we
see here separated projects consisting of several scientific
groups where every group collaborates with each other.
The realism of the situation can be questionable since real
projects can be composed of different number of partici-
pants, but let us remind that in the model we have as-
sumed that the optimal number of collaborators h is fixed
for all groups. To make the model more realistic we should
draw the parameter from the Lotka-like distribution [25],
but it would certainly complicate obtained results and at
the moment we were much more interested in the descrip-
tion of the observed structural phase transitions.

The second configuration which seems to reflect real-
world observations is the configuration I. Figure 8 shows
the real (although simplified) case of EU projects being
currently in progress. Let us explain that complex sys-
tems research in Europe is funded through two Euro-
pean Commission actions: NEST (New and Emerging Sci-
ence and Technology, and FET-IST (Future and Emerg-
ing Technology Information Society Technology) [23]. It is
mainly being done through small projects called STREPS
(Strategic Targeted Research Projects). Apart from them
the European Commission is currently funding two Co-
ordination Actions to support complex systems science:
ONCE-CS (funded by IST-FET) and GIACS (funded by
NEST). In Figure 8 they are presented as main nodes
which serve as knowledge transfer units between partic-
ular projects. Part of projects funded mainly by NEST
collaborate with GIACS, and projects funded mainly by
IST-FET are supported by ONCE-CS. Of course there
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Fig. 8. (Color online) Schematic view on network of EU
projects. Two highly connected coordination actions are sur-
rounded by a plenty of small research projects.

are projects which take support from both coordination
actions because aims of both CA’s are slightly different.
Let us stress that the above picture is very simplified. The
main simplification is that CA’s are represented by single
nodes in Figure 8, which is evidently not true - coordina-
tion actions are projects consisting of many participants
as well as STREPs.

A careful reader can ask what could be the interpreta-
tion of negative value of the control parameter θ. In fact,
it corresponds to the situation where groups composed
of small number of participants are undesirable. The so-
ciological explanation (although not connected with sci-
entific collaboration) can be expressed as follows: or you
commune with one global social group or you will be sep-
arated, which can be recognized as the fascist ideology.

Finally, let us discuss the situation when the parameter
α is varied while θ is fixed. In the case, most of configu-
rations described above are not observed. For example,
for θ > 0 one can observe only one phase transition (with
hysteresis), namely the transition between configuration A
and B. For θ < 0 the situation is even more trivial: con-
figuration C occurs for all positive α, while for negative α
a random graph without triangles appears. Moreover, be-
cause the explanation of negative clustering coefficient is
much more difficult than negative productivity, the anal-
ysis of fixed α and varied θ seems to be easier and much
more reasonable.

5 Conclusions

In this paper we have presented a model of social col-
laboration. Although the model is expressed by a sim-
ple Hamiltonian the richness of observed structural phase
transitions is impressive. Most of them we can only ana-
lyze qualitatively and further studies have to be performed

to clarify reasons for which a given structure appears. We
uncover many aspects of the studied model but in fact
much more questions arise during our investigations.

Although simplifications of the model do not allow to
render in detail the real-world space of scientific projects,
we have shown that some configurations formed in the
system remind existing structures of European projects.
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