
Bridging local self-similarity and global scale-invariance in fractal complex networks

Agata Fronczak, Piotr Fronczak, Mateusz Samsel, Kordian Makulski, Micha l  Lepek, Maciej J. Mrowinski
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland

(Dated: June 11, 2023)

We show that fractality in complex networks arises from the geometric self-similarity of their built-
in hierarchical community-like structure, which is mathematically described by the scale-invariant
equation for the masses of the boxes with which we cover the network when determining its box di-
mension. This approach - grounded in both scaling theory of phase transitions and renormalization
group theory - leads to the consistent scaling theory of fractal complex networks, which reveals a
collection of scaling exponents and different relationships between them. The exponents can be di-
vided into two groups: microscopic (hitherto unknown) and macroscopic, characterizing respectively
the local structure of fractal complex networks and their global properties. Interestingly, exponents
from both groups are related to each other and only a few of them (three out of seven) are inde-
pendent, thus bridging the gap between local self-similarity and global scale-invariance of fractal
networks. We successfully verify our findings in real networks situated in various fields (information
– the World Wide Web, biological – the human brain, and social – scientific collaboration networks)
and in several fractal network models.

I. REVISING PARADIGMS OF FRACTAL
COMPLEX NETWORKS

It will soon be two decades since it was first shown
that some real networks (such as the World Wide Web
[WWW] and different biological networks) have fractal
properties [1, 2]. This means that, when covered with
non-overlapping boxes, with the maximum distance be-
tween any two nodes in each box less than lB , they ex-
hibit power-law scaling [1–5]:

NB(lB)/N ≃ l−dB

B , (1)

where NB(lB) is the number of boxes of a given diameter,
and dB is the fractal (or box) dimension of the network
of size N . Such fractal networks are also said to be self-
similar, because their power-law degree distributions,

P (k) ∼ k−γ , (2)

remain invariant under a renormalization scheme [6, 7],
according to which a new network emerges from the orig-
inal one when nodes belonging to the same box in the
original network are replaced by one supernode in the
renormalized network. In this case, the supernode is
connected to another supernode if in the original net-
work there is at least one link between the nodes of the
corresponding boxes.

Here, at least two critical remarks can be made. The
first remark is that an analogous invariance of the degree
distribution with respect to the box-covering renormal-
ization scheme is also observed in networks that do not
satisfy Eq. (1) (in this respect, well-known examples are
the internet and Barabási-Albert (BA) networks [2, 8, 9]).
The second remark is that it is not entirely clear, what
structural characteristics of fractal networks exhibits ge-
ometric self-similarity and remain invariant [10] under
the described renormalization. Clearly, the power-law
node degree distribution cannot be considered such a
characteristic because it is intrinsically invariant under

the rescaling of the degree [11]. Its invariance under
box-covering renormalization may only suggest the ex-
istence of some (presumably) degree-dependent network
measure, whose self-similarity under the renormalization
procedure could result in the observed invariance of the
degree distribution. One argument supporting this state-
ment is that random networks, where the degree distribu-
tion is not a power law, can also exhibit fractal properties
(in this regard, the best example is the giant component
of classical random graphs near the percolation transi-
tion).

If the above remarks, indicating an incomplete under-
standing of fractality in complex networks, are reason-
able, pertinent questions would be: What are the real
origins and potential consequences of fractality in com-
plex networks? What determines networks’ fractal di-
mension? Indeed, several studies have been published
throughout the years that focus on the exploration of
the origins of fractality [12–18]. However, these efforts
did not lead to consensus. Thus, there is a lack of re-
alistic (and not just deterministic [19, 20], or reflecting
the renormalization procedure [2, 21, 22]) fractal network
models that would allow testing the role of fractality in
the context of geometry-involving issues [23], such as nav-
igability, localization of information sources, prediction of
hidden network connections, etc. These are of particular
importance when faced with the confirmed fractal prop-
erties of different information, biological, and even social
networks (see e.g.[24, 25]). The goal of this article is to
initiate far-reaching changes in this state of affairs.

In what follows, we will first argue that the cor-
rect scale-dependent network measure, which is self-
similar (i.e. geometrically invariant) under the box-
covering renormalization procedure, is the mass of the
box: m(L, k), which depends on the diameter L of the
box and (what is of particular importance in complex
networks) on the degree k of the best connected node
(hub) inside this box. We will show that one of the con-
sequences of this result is the previously discovered scal-



2

ing relation between the degree k′ of the supernode in
the renormalized network and the degree k of the hub of
the corresponding box in the network before renormal-
ization with lB−boxes: k′ = l−dk

B k, where dk is only one
of four scaling exponents that characterize microscopic
structure of the fractal complex network and determine
its box dimension. We will also show that if the fractal
complex network has a power-law node degree distribu-
tion (which is traditionally referred to as the scale-free
property), then the mass box distribution also follows
the power-law, and it is invariant under the box renor-
malization procedure. Furthermore, the characteristic
exponents of both distributions are related to the mi-
croscopic scaling exponents describing the masses of the
boxes, thus bridging the gap between local self-similarity
and global scale invariance in fractal complex networks.
Lastly, we successfully verify our findings in real networks
situated in various fields (information – the World Wide
Web, biological – the human brain, and social – scientific
collaboration networks) and in several fractal network
models.

II. LOCAL SELF-SIMILARITY AND GLOBAL
SCALE-INVARIANCE IN FRACTAL NETWORKS

A. Geometric self-similarity

In classical fractals [26], which reproduce themselves
at different space scales, self-similarity manifests itself in
the scale-invariant equation [10], which describes how the
mass m(L) of the system changes with its linear size L:

m(bL) = µ(b)m(L), (3)

where b > 0. In theoretical physics, this type of equation
is, for example, encountered in the theory of critical phe-
nomena [11, 27]. Mathematically, this equation defines
a homogeneous function. Its solution is simply a power
law:

m(L) = ALdf , (4)

which, in the case of fractals, determines their fractal
dimension, df = lnµ/ ln b, and leads to the well-known
scaling relation [28]:

m(bL) = bdfm(L), (5)

which is simply the general form of Eq. (1), with df = dB ,

b = l−1
B , m(L) = N , and m(bL) = NB(lB). In what

follows, building on this observation, we will assume that
Eq. (5) is a special case of a more general equation in
which the masses of the system and its parts, which are
further identified with the network size and the masses
of different L-boxes extracted from this network, do not
only depend on the diameter of the examined set of nodes
but also on the degree of the best-connected node in this
set.

Before proceeding, it is useful to recall the meaning
of Eq. (5). In fact, this equation can be interpreted
in two ways. More directly, it states that if one con-
siders a smaller part of the system, let’s say of size bL
(with b < 1), then m(bL), as compared to m(L), is de-
creased by a factor µ(b) = bdf . However, this equation
seems to characterize the masses of the system on two
different scales that is, at two stages of some self-similar
renormalization procedure applied to that system. Ac-
cordingly, taking into account these two stages, the ratio
m(bL)/m(L) does not depend on L but only on the ratio
b of the two scales. At this point, to make the equa-
tion more operationalizable, m(bL) could be replaced by
m′(L′), thus indicating that we are dealing with the sys-
tem after renormalization. Thus, in what follows, when
generalising the concept of geometric scale-invariance to
the case of fractal networks, we will rather use the nota-
tion with the apostrophe.

To begin with, we rewrite Eq. (5) in the form:

m′(L′, k′) = l−dB

B m(L, k), (6)

where dB is the box dimension of fractal networks, and
m′(L′, k′) stands for the mass of the super-box that is,
the box of diameter L′ and the super-hub of degree k′

that results from lB-renormalization of the box of mass
m(L, k). Eq. (6) therefore poses:

L′ = L/lB , (7)

which is a direct consequence of the assumed renormal-
ization procedure, and

k′ = k/l dk

B , (8)

which is the long-confirmed scaling relation observed in
fractal complex networks, but with respect to Eq. (6),
it becomes an inevitable result of dimensional analysis.
Since Eq. (6) defines a generalized homogeneous function
[27] of the form:

m(L, k) = BLαkβ , (9)

after its substitution to (6), we obtain the following scal-
ing relation:

dB = α + βdk. (10)

The obtained relation, Eq. (10), is one of the most im-
portant results of this article. According to this relation,
the box dimension of fractal networks is only determined
by the scaling exponents characterizing the microscopic
structure of the network, which, however (as with clas-
sical fractals), reproduces itself at the meso- and macro-
scales (see Fig. 1). In particular, the exponent α de-
scribes how the mass of the box, Eq. (9), varies with its
diameter, cf. Eq. (5):

m(bL, k) = bαm(L, k), (11)
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FIG. 1. Schematic illustration of the idea of geometric self-similarity in complex networks on the example of
the fractal model of nested BA networks (for the definition of the model, see Supplementary Material). a: Fractal
complex network subdivided into parts—boxes of a given diameter—each of which is (at least approximately)
a reduced-size copy of a whole network. In the top picture shown, the largest box (the red one) extracted from the original
network is treated as a new network (shown below) and divided into new smaller boxes (some of them are marked with different
colours). The macroscopic characteristics of this new network (represented by green squares in the accompanying graphs) are
similar to those of the original network (indicated by navy circles in these graphs). b: The renormalization procedure
applied to the same network as in part a. The top original network is divided into boxes of a fixed diameter (some of
them are marked with different colours). In the new network after renormalization (shown below), these boxes are replaced by
nodes. Again, the macroscopic characteristics of this new network (represented by red triangles in the accompanying graphs)
are similar to those of the original network. c, d, e: Macroscopic characteristics of the studied networks corresponding
to the number of boxes NB(lB) needed to cover the network as a function of the maximum diameter lB in the box, the node
degree distribution—P (k), and the mass box distribution—P (m), respectively. To construct these graphs, a nested BA network
of size N ≃ 5 · 104 was created (this data are marked with navy circles). To analyze the self-similarity of the network parts,
the original network was covered with boxes of diameter lB = 40, and the largest box of size M ≃ 1.4 · 103 was extracted as a
new network (this data are marked with green squares). To create a renormalized network of size N ′ ≃ 6.1 · 103, the original
one was covered with boxes of size lB = 6, i.e. N ′ = NB(6) (these data are marked with red triangles).

where b > 0. In a similar vein, the second addend in (10),
which is further called the mass exponent (in analogy to
the degree exponent, dk),

dm = βdk, (12)

characterizes, how the local network density changes as
a result of renormalization:

m′(L, k′) = l−dm

B m(L, k). (13)
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B. Scale-free property

At this point, we would like to emphasize the lack, in
our considerations so far, of scale-free node degree dis-
tributions, whose invariance due to the renormalization
procedure is considered an attribute of fractal networks
[1–3]. Interestingly, this lack clearly shows the otherwise
obvious fact that fractal networks may not have the scale-
free property. Nevertheless, when they reveal the prop-
erty, then both the node degree distribution, P (k) ∼ k−γ ,
and the box mass distribution, P (m) ∼ m−δ, are invari-
ant under the box-covering renormalization procedure,
with the invariance of P (k) being rather a consequence
of the previously discussed self-similarity of boxes (6)-
(10) and scale-free property of P (m), and not the other
way around.

In particular, it can be shown that the well-known scal-
ing relation between the three indices [1],

γ = 1 +
dB
dk

, (14)

results from the previously unknown relation for the char-
acteristic exponent of the box mass distribution,

P (m) ∼ m−δ, (15)

namely:

δ = 1 +
dB
dm

, (16)

where dm is the mass exponent given by Eq. (12). To
prove this, below we present the reasoning leading to
Eq. (14), pointing out its inaccuracies and correcting
them accordingly.

Thus, to obtain Eq. (14), one starts with the following
equation [1]:

n(k)dk = n′(k′)dk′, (17)

where n(k) (respectively, n′(k′)) is the number of nodes
with k (respectively, k′) links in the network before (af-
ter) renormalization. Then, substitutions are made in
this equation: n(k) = NP (k) and n′(k′) = N ′P ′(k′),

where N and N ′ = NB(lB) = Nl−dB

B (1) stand for the
number of nodes in the network before and after renor-
malization, respectively. These substitutions lead to the
following density balance equation:

P (k)dk = l−dB

B P ′(k′)dk′, (18)

from which Eq. (14) is derived under the assumptions
that P (k) ∼ k−γ and P ′(k′) ∼ k′−γ , and that Eq. (8)
is met between k and k′. Here, the question arises as
to whether Eq. (18) applies to all nodes in the studied
networks, as described by the node degree distributions
P (k) and P ′(k′), or perhaps only to hubs in the boxes, as
suggested by Eq. (8). However, if these equations were
applicable only to hubs in the boxes, then Eq. (17), which

is the starting point of the presented reasoning, should
rather be written as:

n(m)dm = n′(m′)dm′, (19)

where n(m) and n′(m′) represent the number of L−boxes
of mass m and m′, respectively, in the original network
and in the network after lB−renormalization, with m
and m′ depending on each other according to Eq. (13).
Interestingly, making the appropriate substitutions in
this equation (i.e. n(m) = NB(L)P (m) and n′(m′) =
N ′

B(L)P ′(m′), where NB(L) = NL−dB and N ′
B(L) =

NB(lB)L−dB ), one obtains the density balance equation
analogous to Eq. (18):

P (m)dm = l−dB

B P ′(m′)dm′. (20)

Lastly, assuming the invariant character of the box mass
distribution that is, P (m) ∼ m−δ and P ′(m′) ∼ m′−δ

one obtains the scaling relation (16), from which Eq. (14)
naturally follows, when β = (γ − 1)/(δ − 1) (22), which
is one more scaling relation characterizing the structure
of fractal complex networks.

III. FROM MICROSCOPIC TO MACROSCOPIC
SCALING EXPONENTS IN REAL AND
MODEL-BASED FRACTAL NETWORKS

All scaling exponents discussed in this article, which
describe fractal complex networks, can be divided into
two groups. The first group refers to the macroscopic
characteristics of the network (dB , γ, and δ), and the
second group includes the exponents that characterize
the network structure at the microscopic level (dk, dm,
α and β). Interestingly, exponents from both groups are
related to each other and, as in the scaling theory of criti-
cal phenomena, only a few of them, three to be exact, are
independent. The choice of the three fundamental expo-
nents depends on the focus of the study. Here, to validate
our results in real and model-based fractal networks, we
take the easier to measure macroscopic exponents as in-
dependent. This choice results in the following set of test
relations, cf. Eqs.(14) and (16):

dk =
dB

γ − 1
, dm =

dB
δ − 1

, (21)

and, cf. Eqs. (10) and (12):

α =
δ − 2

δ − 1
dB , β =

γ − 1

δ − 1
, (22)

of which only the relation for dk (21) has been verified
in real [1] and model [2] networks, and the results of the
validation of relations (22) are summarized below.

The real networks analyzed in this paper come from
various fields and represent information, social, and bi-
ological networks. We analyzed: 1) a sample of the
WWW with nodes corresponding to web pages and links
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FIG. 2. Scale-invariant and self-similar scaling in the WWW. a: A log-log plot of NB versus lB revealing the fractal
nature of the studied network according to Eq. (1). b: Invariance of the node degree distribution P (k) under the renormalization
for different box sizes lB . c: Invariance of the mass box distribution P (m). d: Scaling of the masses of boxes according to
Eq. (9). (See the description given in the main text.)

standing for hyperlinks [29]; 2) a coauthorship network
(DBLP), where nodes are scientists and edges are placed
between two scientists if they have co-authored a pa-
per [30, 31]; 3) a functional brain network (BRAIN),
which reflects the correlation between the activity of dif-
ferent areas in the human brain [32, 33]. In addition to
real networks, we have also analyzed several fractal net-
work models, including our own network model, which
is based on nested BA networks [34], the Song-Havlin-
Makse (SHM) model [2] and (u, v)-flowers [19]. Detailed
information on all these networks (real and synthetic)
can be found in Supplementary Material.

Table I presents the theoretical and empirical values
of the scaling exponents of all analyzed networks. The
theoretical values, which are given in brackets, are of two
types. For the deterministic model-based networks—the
SHM model and (u, v)-flowers—their values can be calcu-
lated using the appropriate formulas, the details of which

are provided in Supplementary Material. For real net-
works and for the numerical model of nested BA, the the-
oretical values of α and β were calculated from Eqs. (22)
using the empirical values of the macroscopic exponents.

Correspondingly, the empirical values of the scaling ex-
ponents were calculated from Fig. 2 and Figs. S2-S6 in
Supplementary Material according to the following proto-
col (the same for each network): First, we determined the
box dimension dB of these networks resulting from tiling
the network with boxes of different sizes lB . To this end,
we used the algorithm developed by Song et al. [35]. We
showed that the value of dB after renormalization (even
multiple times) remains the same as before renormaliza-
tion (see, e.g. Fig. 1 and 2(a)). We then examined the
invariance of distributions P (k) and P (m) under the net-
works’ renormalization procedure with boxes of different
sizes. It should be noted that in all networks we studied,
both distributions are scale-invariant, with well-defined
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TABLE I. Empirical and theoretical values of the scaling exponents for various fractal networks. In the table,
N is the number of nodes in the analyzed network, ⟨k⟩ is the average node degree, and d corresponds to the diameter of the
network.

network N ⟨k⟩ d dB γ δ α β

WWW 325728 4.6 46 4.8 2.4 2.2 0.68 (0.63) 1.22 (1.22)
DBLP 2523 2.5 62 2.0 3.2 3.4 1.23 (1.17) 0.86 (0.92)
Brain 2920 4.7 77 2.2 2.8 2.3 0.57 (0.51) 1.39 (1.38)

Nested BA 50000 2 475 1.92 3.2 3.8 1.24 (1.23) 0.84 (0.79)
SHM model 78126 2 4373 1.46 3.32 3.32 0.82 0.96

s=2, a=3, n=2s+1=5 (tree)
(
lnn
ln a

≃ 1.46
) (

1 + lnn
ln s

≃ 3.32
) (

1 + lnn
ln s

≃ 3.32
) (

ln(n/s)
ln s

≃ 0.83
)

(1)

(u, v)-flowers 43692 3 416 2.0 3.0 3.0 0.99 0.98

u=2, v=2, w=u+v=4
(
lnw
lnu

= 2
) (

1 + lnw
ln 2

= 3
) (

1 + lnw
ln 2

= 3
) (

ln(w/2)
lnu

= 1
)

(1)

characteristic exponents γ and δ (see e.g. Fig. 2b-c).
Lastly, having determined the macroscopic scaling expo-
nents: dB , γ, and δ, we were able to calculate the theoret-
ical values of the local exponents—α and β, Eqs. (22)—
which we used to obtain the adequately rescaled masses
of boxes to determine their empirical values (see e.g.
Fig. 2d). In particular, to obtain the empirical value of
α, the masses of all the internally connected boxes, ob-
tained during tiling the network with different lB-boxes,
were divided by the hub’s degree raised to the power of
the theoretically obtained β. Such rescaled masses m/kβ

were then plotted against the actual diameters of the
boxes, L < lB , which had been specified individually for
each box. A similar procedure was applied to determine
the empirical value of β.

IV. PERSPECTIVES

The origins and consequences of fractality are one of
the three main research directions in the geometry of
complex networks [23], next to the hyperbolic geome-
try of hidden network spaces [36, 37] and the geometry
induced by dynamic processes in networks [38–40]. Al-
though these three geometries, due to the various defini-
tions of distance in each of them, are defined differently,
there is no doubt that they must be closely related to
each other. While these relationships have yet to be ex-
plored, evidence of their existence can be found in our
results.

For example, when examining deterministic models of
fractal networks (SHM model and (u, v)-flowers, see Sup-
plementary Material), we noticed that while macroscopic
scaling exponents are very stable in the sense that they
do not depend on the box-covering method [35, 41], this
may not be the case for microscopic exponents. In par-
ticular, in the mentioned models, gathering nodes ac-
cording to their kinship—which is the most optimal, be-
cause it corresponds to the smallest number of boxes—
gives the values of microscopic exponents closest to their
theoretical predictions. Since the degree of kinship can
be thought of as a distance in some metric space—the
space of kinship—this observation is important. In fact,

the fractality of these models may be considered a fea-
ture they inherit from their kinship spaces. Here, natural
questions arise, such as whether the fractality of real com-
plex networks may result from the properties of hidden
metric spaces. Similar studies on community structure
confirm the existence of such a relationship [42–44]. The
mention of the community structure is not entirely acci-
dental here, because, as the example of the DBLP net-
work shows—in which the removal of weak ties reveals
its fractal properties (see also [25, 31])—the fat-tailed
community size distribution [45, 46] may result from the
scale-invariant distributions of box masses observed in
(not necessarily tree-like) fractal skeletons [13, 14] of
these networks.

The second thread that we would like to emphasize
concerns the geometry induced by diffusion-like dynamic
processes in networks [38–40]. In classical fractals, this
kind of geometry is closely related to the cluster-growing
method of calculating their fractal dimensions, which is
actually a way of measuring the distance [26]. In com-
plex networks, due to the misunderstanding of the idea
of geometric self-similarity, establishing an analogous re-
lationship has not yet been possible [1]. It seems that the
scaling theory of fractal complex networks presented in
this paper has the potential to break this impasse. This
is even more likely since in its general findings, with box
masses depending not only on the diameter of the boxes
but also on the degree of the best-connected node inside
the box, the theory refers to the well-established hetero-
geneous (degree-based) mean-field theory commonly used
to study dynamical processes on complex networks [47].

V. METHODS

The datasets used and the complete Python code for
all calculations can be obtained from [48].

VI. ACKNOWLEDGEMENTS

Research was funded by POB Cybersecurity and Data
Science (AF, MS, KM, MjM) and POSTDOC PW pro-



7

grammes (PF, M L) of Warsaw University of Technol- ogy within the Excellence Initiative: Research University
(IDUB).

[1] C. Song, S. Havlin, and H. A. Makse, Self-similarity of
complex networks, Nature 433, 392 (2005).

[2] C. Song, S. Havlin, and H. A. Makse, Origins of fractality
in the growth of complex networks, Nat. Phys. 2, 275
(2006).

[3] H. D. Rozenfeld, L. K. Gallos, C. Song, , and H. A.
Makse, Fractal and transfractal scale-free networks, in
Encyclopedia of Complexity and Systems Science, edited
by R. A. Meyers (Springer, New York, 2009).

[4] E. Rosenberg, Fractal Dimensions of Networks (Springer,
2020).

[5] T. Wen and K. H. Cheong, The fractal dimension of com-
plex networks: a review, Inf. Fusion 73, 87 (2021).

[6] F. Radicchi, J. J. Ramasco, A. Barrat, and S. Fortu-
nato, Complex networks renormalization: flows and fixed
points, Phys. Rev. Lett. 101, 148701 (2008).

[7] H. Rozenfeld, C. Song, and H. A. Makse, Small-world to
fractal transition in complex networks: a renormalization
group approach, Phys. Rev. Lett. 104, 025701 (2010).

[8] J. S. Kim, K.-I. Goh, K. B., and D. Kim, Fractality and
self-similarity in scale-free networks, New J. Phys. 9, 177
(2007).

[9] J. S. Kim, K. B., D. Kim, and K.-I. Goh, Self-similarity
in fractal and non-fractal networks, J. Korean Phys. Soc.
52, 350 (2008).

[10] B. Dubrulle, F. Graner, and D. Sornette, Scale Invariance
and Beyond (Springer Berlin, Heidelberg, 1997).

[11] D. Sornette, Critical Phenomena in Natural Sciences,
2nd ed. (Springer Berlin, Heidelberg, 2006).

[12] S.-H. Yook, F. Radicchi, and H. Meyer-Ortmanns, Self-
similar scale-free networks and disassortativity, Phys.
Rev. E 72, 045105 (2005).

[13] K.-I. Goh, G. Salvi, K. B., and D. Kim, Skeleton and
fractal scaling in complex networks, Phys. Rev. Lett. 96,
018701 (2006).

[14] J. S. Kim, K.-I. Goh, G. Salvi, E. Oh, K. B., and D. Kim,
Fractality in complex networks: Critical and supercritical
skeletons, Phys. Rev. E 75, 016110 (2007).

[15] M. Kitsak, S. Havlin, G. Paul, M. Riccaboni, F. Pammoli,
and H. E. Stanley, Betweenness centrality of fractal and
nonfractal scale-free model netwroks and tests on real
networks, Phys. Rev. E 75, 056115 (2007).

[16] L. K. Gallos, C. Song, and H. A. Makse, Scaling of degree
correlations in scale-free networks, Phys. Rev. Lett. 100,
248701 (2008).

[17] Z.-W. Wei and B.-H. Wang, Emergence of fractal scaling
in complex networks, Phys. Rev. E 94, 032309 (2016).

[18] Y. Fujiki, S. Mizutaka, and K. Yakubo, Fractality and
degree correlations in scale-free networks, Eur. Phys. J.
B 90, 1 (2017).

[19] H. D. Rozenfelf, S. Havlin, and D. ben Avraham, Fractal
and transfractal recursive scale-free nets, New J. Phys.
9, 175 (2007).

[20] K. Yakubo and Y. Fujiki, A general model of hierarchi-
cal fractal scale-free networks, PLoS ONE 17, e0264589
(2022).

[21] L. Kuang, B. Zheng, D. Li, Y. Li, and Y. Sun, A frac-
tal and scale-free model of complex networks with hub
attraction behaviors, Sci. China Inf. Sci. 58, 1 (2015).

[22] E. Zakar-Polyák, M. Nagy, and R. Molontay, Investigat-
ing the origins of fractality based on two novel fractal
network models, in Complex Networks XIII, edited by
D. Pacheco and et. al. (Springer International Publish-
ing, Cham, 2022) pp. 43–54.
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[45] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Uncov-
ering the overlapping community structure of complex
networks in nature and society, Nature 435, 814 (2005).

[46] S. Fortunato, Community detection in graphs, Phys. Rep.
486, 75 (2010).
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