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Cluster properties of the one-dimensional lattice gas: The microscopic meaning of grand potential
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Using a concrete example, we demonstrate how the combinatorial approach to a general system of particles,
which was introduced in detail in an earlier paper [Fronczak, Phys. Rev. E 86, 041139 (2012)], works and where
this approach provides a genuine extension of results obtained through more traditional methods of statistical
mechanics. We study the cluster properties of a one-dimensional lattice gas with nearest-neighbor interactions.
Three cases (the infinite temperature limit, the range of finite temperatures, and the zero temperature limit) are
discussed separately, yielding interesting results and providing alternative proof of known results. In particular,
the closed-form expression for the grand partition function in the zero temperature limit is obtained, which results
in the nonanalytic behavior of the grand potential, in accordance with the Yang-Lee theory.
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I. INTRODUCTION

In our recent paper [1] (hereafter referred to as paper I),
we started a line of theoretical research on imperfect gases
and interacting fluids. We exploited concepts of enumerative
combinatorics to deal with equilibrium systems in the infinite
volume limit. The approach provides precise mathematical
techniques relevant for studying phase transitions. In partic-
ular, we showed that the perfect gas of clusters model [2]
underlying various cluster/droplet theories of phase transitions
(see, e.g., [3] and references therein) emerges naturally from
our approach. In the model, an imperfect fluid, which is
made up of interacting particles, is considered an ideal gas
of clusters at thermodynamic and chemical equilibrium. There
is no potential energy of interaction between the clusters, and
the clusters do not compete with each other for volume. The
main conclusion drawn from the earlier paper was that the
grand potential (the Landau free energy) of such a clustered
system of interacting particles may be considered as the
exponential generating function for the number of internal
states (thermodynamic probability) of these clusters.

In this paper, we use the combinatorial approach described
in paper I to analyze the properties of a one-dimensional
lattice gas with nearest-neighbor interactions. The aim of this
paper is twofold. First, we show in a specific case how our
approach to interacting fluids works and where our approach
provides a genuine extension of the results obtainable with
more traditional methods. Second, we demonstrate with the
first concrete example that the approach may provide important
insights into the microscopic mechanisms that lead to phase
transitions. Although phase transitions in the traditional sense
are proved not to exist in the one-dimensional lattice gas
investigated in this paper, the behavior at T = 0 K seems
to have direct bearing on the problem. To show this, we
focus on the relation between thermodynamics and the cluster
properties of lattice gas. The general question of this relation
has been raised by various theories of phase transitions, in
which geometric interpretation of the liquid-gas transition was
shown to consist of the sudden formation of the macroscopic
cluster. In the following, using an example of one-dimensional
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lattice gas, we show that our approach is well suited for
handling such problems.

The outline of the paper is as follows. In Sec. II, we
briefly review the results of paper I. Section III is devoted
to a detailed description of the one-dimensional lattice gas
model and its equivalence with the chain of Ising spins in
the external magnetic field. In Sec. IV, methods described in
Sec. II are used to study cluster properties of the lattice gas.
The paper is concluded in Sec. V.

II. MICROSCOPIC MEANING OF GRAND POTENTIAL

A. Combinatorial approach to a general system of particles

In paper I, we considered a general system of interacting
particles. The thermodynamic state of the system was given
by the temperature T and the chemical potential per molecule,
μ. Assuming that the classical treatment is adequate, we used
the grand canonical ensemble to describe the open system in
the infinite volume limit, V → ∞. We showed that the grand
partition function

�(β,z) =
∞∑

N=0

zNZ(β,N ) = 1 +
∞∑

N=1

zNZ(β,N ) (1)

= 1 +
∞∑

N=1

zN

∫ ∞

0
e−βEg(E,N )dE, (2)

where β = (kBT )−1, z = eβμ, Z(β,N ) is the canonical par-
tition function of the system with N particles, Z(β,0) = 1
represents the so-called vacuum state, and g(E,N ) stands for
the density of states, can be written as

�(β,z) = exp[ −β �(β,z)] (3)

= exp

[
−β

∞∑
m=1

zm

m!
φm(β)

]
(4)

= 1 +
∞∑

N=1

zN

N !
BN [{wn(β)}] (5)

= 1 +
∞∑

N=1

zN

N !

N∑
k=1

BN,k[{wn(β)}], (6)
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where the coefficients wn(β) are given by the partial derivatives
of the grand thermodynamic potential, �(β,z),

wn(β) = −βφn(β) = −β
∂n�

∂zn

∣∣∣∣
z=0

, (7)

while BN,k({wn}) = BN,k(w1,w2, . . . ,wN−k+1), and
BN ({wn}) = ∑N

k=1 BN,k({wn}) [with B0({wn}) := 0] represent
the incomplete and complete Bell polynomials, respectively.

The partial Bell polynomials in Eq. (6) are defined as

BN,k[{wn(β)}] = N !
∑ N−k+1∏

n=1

1

cn!

(
wn(β)

n!

)cn

, (8)

where the summation takes place over all non-negative integers
cn � 0, such that the constraints

∑
n cn = k and

∑
n ncn = N

hold. Given a combinatorial meaning of the Bell polynomials,
we showed in paper I that when the coefficients wn(β) are all
non-negative,

∀n�1 wn(β) � 0, (9)

the equality of the two series, given by Eqs. (2) and (6), give
rise to the following formula:∫ ∞

0
f (k,E)g(E,N )e−βEdE = 1

N !
BN,k[{wn(β)}], (10)

where f (k,E) is the probability that the system with energy E

consists of k independent clusters. In addition, we showed that
Eq. (10) describes the probability that a general system of N

interacting particles at temperature T , regardless of its energy,
consists of k clusters. It has been argued that the formula
provides an alternative and strictly microscopic understanding
of the grand thermodynamic potential, as the exponential
generating function for the numbers of internal states, wn(β),
of n clusters,

�(β,z) = − 1

β
ln �(β,z) (11)

= − 1

β

∞∑
n=1

wn(β)

n!
zn. (12)

Finally, in the earlier paper, we noted that comparing
Eqs. (1) and (5) leads to a neat expression for the canonical
partition function:

Z(β,N ) = 1

N !
BN [{wn(β)}] (13)

= 1

N !

N∑
k=1

BN,k[{wn(β)}]. (14)

The expression is valid regardless of whether the conditions
for the perfect gas of clusters model, given by Eq. (9), are
satisfied.

B. Perfect gas of clusters model

The microscopic meaning of the grand potential described
in paper I directly relates to the perfect gas of clusters
model (which is known from the classical theory of simple
fluids [3]). In the model, we deal with a collection of
noninteracting clusters, without knowing how we can build
them as disjoint sets of interacting particles. In the infinite
volume limit V → ∞, the pressure, the density, and the cluster
size distribution (the mean number of clusters of size n) are

given by, respectively,

P = 1

βV

∞∑
n=1

Zn(β,V )zn, (15)

ρ = 1

V

∞∑
n=1

nZn(β,V )zn, (16)

and

Nn(β,V ) = Zn(β,V )zn, (17)

where Zn(β,V ) stands for the partition function that charac-
terizes clusters of size n.

The relation between our results and the classical gas of
clusters model [2] can be seen by first rewriting Eq. (15) in the
following equivalent form:

�(β,z) = −PV = − 1

β

∞∑
n=1

Zn(β,V )zn, (18)

and then comparing Eq. (18) with the expression for the grand
thermodynamic potential, given by Eq. (12), which raises the
microscopic meaning of �(β,z). The comparison shows that
the conditions given by Eq. (9) make our approach to a general
system of interacting particles equivalent to the perfect gas of
clusters model with

lim
V →∞

Zn(β,V ) = wn(β)

n!
. (19)

III. ONE-DIMENSIONAL LATTICE GAS:
SURVEY OF KNOWN RESULTS

Let us consider a one-dimensional periodic lattice that
consists of V sites (in the model, V represents volume)
and a collection of N particles. The particles occupy sites
of the lattice with the restriction that not more than one
particle can occupy a given lattice site and only particles on
the nearest-neighbor sites interact. If we introduce the variable
σi for each lattice site i, such that σi = +1 if the site is
occupied and σi = 0 otherwise, then the total energy for a
given configuration of particles {σi} is

EG({σi}) = −ε

V∑
i=1

σiσi+1, (20)

where −ε is the interaction energy between two neighboring
particles, the periodicity of the lattice is imposed by assuming
that σV +1 = σ1, and

V∑
i=1

σi = N. (21)

To apply the general method described in Sec. II to inves-
tigate one-dimensional lattice gas, the first task is to find the
grand partition function in the infinite volume limit, V → ∞,

�G(β,V,z) = 1 +
V∑

N=1

zNZG(β,V,N ) (22)

= 1 +
V∑

N=1

zN
∑
{σi }∗

e−βEG({σi }) (23)

=
∑
{σi }

exp

[
βε

V∑
i=1

σiσi+1 + βμ

V∑
i=1

σi

]
, (24)
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where ZG(β,V,N ) in Eq. (22) is the canonical partition
function for this gas and the starred configurations {σi}∗ in the
second sum of Eq. (23) are those for which the condition given
by Eq. (21) holds. We exploit the mathematical equivalence
between the grand partition function for lattice gas and the
canonical partition function for the Ising model in the external
magnetic field [4].

The one-dimensional Ising model consists of a chain of
V spins, si = ±1, with the interaction energy in a given
configuration {si} given by

EI ({si}) = −J

V∑
i=1

sisi+1 − H

V∑
i=1

si, (25)

where J is the coupling constant between nearest neighbors,
H is the external magnetic field, and sV +1 = s1. The canonical
partition function for the model can be written as

ZI (β,V,H ) =
∑
{si }

e−βEI ({si }) (26)

=
∑
{si }

exp

[
βJ

V∑
i=1

sisi+1 + βH

V∑
i=1

si

]
. (27)

To show that Eqs. (24) and (27) are in fact equivalent, we
merely have to note that the variable σi can be obtained from
the variables si by writing

σi = si + 1

2
. (28)

By substituting (28) into (24), we get

�G(β,V,z) = eβCGV ZI (β,V,HG), (29)

where

CG = ε

4
+ μ

2
, (30)

and

ZI (β,V,HG) =
∑
{si }

exp

[
βJG

V∑
i=1

sisi+1 + βHG

V∑
i=1

si

]

(31)
is the Ising partition function, given by Eq. (27), with

JG = ε

4
, HG = ε + μ

2
. (32)

Now, putting into Eq. (29) the well-known exact formula
for the partition function of the closed Ising chain of V spins
in the external magnetic field [5,6],

ZI (β,V,HG) = λ+(β,HG)V + λ−(β,HG)V (33)

V →∞� λ+(β,HG)V , (34)

where

λ±(β,HG) = eβJG [cosh(βHG) ±
√

sinh2(βHG) + e−4βJG ],
(35)

the grand partition function for one-dimensional lattice gas
with nearest-neighbor interactions becomes, for V → ∞,

�G(x,V,z) = [x
√

z λ+(x,z)]V , (36)

where

x = eβε/4, z = eβμ, (37)

and

λ±(x,z) = x3√z

2
+ 1

2x
√

z
±

√
x6z

4
+ 1

4x2z
+ 1

x2
− x2

2

(38)

corresponds to Eq. (35) but is written in the new variables x

and z. Finally, inserting Eq. (36) into Eq. (11), we get the free
energy of a one-dimensional lattice gas with nearest-neighbor
interactions in the infinite volume limit,

�G(x,V,z) = −V

β
ln[x

√
z λ+(x,z)]. (39)

In Sec. IV, the results from this section are used to analyze
cluster properties of the lattice gas model.

IV. CLUSTERS IN LATTICE-GAS MODEL

In this section, the combinatorial approach described in
Sec. II is used to study the properties of the one-dimensional
lattice gas model. In what follows, three cases (the infinite
temperature, the range of finite temperatures, and the zero
temperature limit) are discussed separately.

A. Infinite temperature limit

In the infinite temperature limit, we have

lim
T →∞

β = 0. (40)

Therefore, since ε = const, one gets [see Eq. (37)]

lim
T →∞

x = 1, (41)

and the expression for the grand partition function, given by
Eq. (36), is simplified to

�G(x,V,z) = (1 + z)V . (42)

Accordingly, the grand potential becomes

�G(x,V,z) = −V

β
ln(1 + z). (43)

Successive derivatives φn of the grand potential regarding
z and evaluated at z = 0, given by Eq. (7), give the following
closed-form expression for the Bell polynomial coefficients:

wn(β) = V (n − 1)!(−1)n−1. (44)

From the last expression, it is obvious that the parameters
do not satisfy the conditions under which the gas is the
ideal gas of clusters; cf. Eq. (9). By definition, lattice gas
clusters are sets of neighboring particles. There is no energy
of interaction between such clusters; cf. Eq. (20). However,
due to the excluded volume effect, lattice gas clusters in
some sense interact with each other, even if there is no direct
interaction between the particles. The effect originates in the
cluster-counting problem, and consists of the fact that two
clusters of a given size once defined cannot approach close
enough to one another to be counted, under the definition, as a
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single cluster. Consequently, only at small densities can lattice
gas be considered a perfect gas of clusters.

Nevertheless, the case of one-dimensional lattice gas in the
infinite temperature limit allows us to validate our combina-
torial approach directly. By inserting the coefficients {wn(β)},
given by Eq. (44), into the expression for the canonical
partition function, given by Eq. (14), after some algebra, we
get

ZG(β,V,N ) =
N∑

k=1

V k(−1)N−k

N !
BN,k({(n − 1)!}) (45)

=
N∑

k=1

V k(−1)N−k

N !
|s(N,k)| =

(
V

N

)
, (46)

where |s(N,k)| represents the signless (or unsigned) Stirling
number of the first kind,

(
V

N

)
stands for the binomial coefficient,

and several basic combinatorial identities have been used,
including properties of Bell polynomials ([7], pp. 133–137),

BN,k({abnxn}) = akbNBN,k({xn}), (47)

and

BN,k({(n − 1)!}) = |s(N,k)|, (48)

and identities involving Stirling numbers of the first kind
[8], i.e., the relation between signed and unsigned Stirling
numbers,

|s(N,k)| = (−1)N−ks(N,k), (49)

and its generating function,(
V

N

)
=

N∑
k=1

V k

N !
s(N,k). (50)

The result, given by Eq. (46),

ZG(β,V,N ) =
(

V

N

)
, (51)

is exactly the expected one. In the infinite temperature limit,
all accessible microstates are equally probable. Therefore, the
canonical partition function is just the number of microstates
allowed, i.e., the number of ways to choose positions for N

particles from the available V positions.

B. Finite temperatures

In the range of finite temperatures, for

0 < β < ∞, 1 < x < ∞, (52)

and for small particle densities,

lim
V →∞

N

V
� 1, (53)

we can directly test Eq. (10), which describes the probability
that the gas of N particles, regardless of its energy, consists of
k clusters. The expression holds exactly only for the ideal
gas of clusters. In this case, however, although in general
lattice gas does not satisfy the conditions specified by Eq. (9),
given the small particle densities, the coefficients wn(β) are
non-negative for a reasonable range of cluster sizes n. In

addition, Eq. (10) seems to provide good approximation for
cluster statistics.

The coefficients wn(β) of the Bell polynomials in Eq. (10),

w1(β) = V, (54)

w2(β) = V (2x4 − 3), (55)

w3(β) = V (6x8 − 12x4 + 10), (56)

. . .

wn(β) = V (n!x4(n−1) − . . .), (57)

and the polynomials can be easily calculated using
MATHEMATICA (partial Bell polynomials are implemented in
MATHEMATICA 9.0 as BellY). The normalized probability
distribution P (k) for the number of clusters k, that is, the
right-hand side of Eq. (10) divided by Eq. (13),

P (k) = BN,k({wn(β)})
BN ({wn(β)}) , (58)

is shown in Fig. 1 with Monte Carlo simulations of the
one-dimensional conserved-order-parameter Ising model [9],
which is often used to study the properties of lattice gases.

In the figure, we see that for N,V = const, the average
number of clusters, and thus, the average cluster size, strongly
depends on the temperature. At lower temperatures (for higher
values of β), particles try to stay in clusters. Configurations
{σi} with a smaller number of large clusters are more likely to
be observed than configurations with a large number of small
clusters that are typical of higher temperatures.

C. Zero temperature limit

1. Nonanalyticity of the grand partition function

Van Hove’s theorem [10,11] states that the limiting free
energy, given by Eq. (12), characterizing one-dimensional
gases with short-range interactions (such as the one considered
in this study) is an analytic function for all real positive values
of T . This statement excludes phase transitions for T > 0 K.

FIG. 1. Comparison of probability distributions for the number
of clusters k in the one-dimensional lattice gas obtained from
Monte Carlo simulations of N = 40 particles on V = 8000 sites
(scattered points) and theoretical distributions P (k) given by Eq. (58)
(solid lines). Numerical simulations were conducted using the
Metropolis algorithm with the coupling energy between two neigh-
boring particles ε = 4 [cf. Eq. (20)] and for two different values of
the inverse temperature, β = 1 and 2.
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The theorem, however, does not say anything about the
analyticity of the free energy at T = 0 K. In fact, the grand
potential given by Eq. (39) is nonanalytic at T = 0 K,

lim
T →0K

β = ∞, (59)

and

lim
T →0K

x = ∞. (60)

Obviously, this nonanalyticity is of the same mathematical
nature as the one observed in the free energy of the one-
dimensional Ising model at zero temperature, when the
magnetic field H goes to zero.

At low temperatures, T → 0 K, we find that Eq. (35)
becomes [6]

λ±(β,HG) = eβJG{cosh(βHG)

±|sinh(βHG)|[1 + O(e−4βJG )]}
� eβ(JG±|HG|). (61)

Rewriting the last expression in the variables x and z

[cf. Eq. (37)], after some algebra we get

λ±(x,z) = xe±| ln(x2√z)|. (62)

Correspondingly, the resulting grand partition function for
V → ∞, given by Eq. (36), can be written as follows:

�G(x,V,z) = (eln(x2√z)+| ln(x2√z)|)V . (63)

The expression reveals nonanalytic behavior at

lim
T →0K

x4z = 1, (64)

since
lim

x4z→1−
�G(x,V,z) = 1, (65)

while
lim

x4z→1+
�G(x,V,z) = x4V zV . (66)

2. Cluster properties

The nonanalytic behavior of the grand partition function
just described has a very clear and convincing interpretation
in terms of our combinatorial approach. Comparing Eqs. (65)
and (66) with Eq. (1), we get the following expressions for the
canonical partition functions:

lim
x4z→1−

ZG(β,V,N ) = δN,0, (67)

and

lim
x4z→1+

ZG(β,V,N ) = x4NδN,V , (68)

where δi,j is the Kronecker delta.
The last two expressions show that in the case of the zero

temperature limit, the one-dimensional lattice gas with nearest-
neighbor interactions can be observed in only two particle
configurations. The first configuration,

∀1�i�V σi = 0, (69)

is consistent with Eqs. (65) and (67) and describes a system
with no particles (the vacuum state). The second configuration,

∀1�i�V σi = 1, (70)

results from Eqs. (66) and (68), and corresponds to the
spanning cluster of size V .

To proceed with understanding the combinatorial approach
described in Sec. II, we analyze Eqs. (67) and (68) with the
help of the general formula for the canonical partition function,
given by Eq. (14). Using the properties of Bell polynomials,

BN,k(0,0, . . . ,0,xj ,0, . . .) = δN,jk

(jk)!

k!(j !)k
xk

j , (71)

we can show that the case when x4z approaches 1 from the
left-hand side, given by Eq. (67), corresponds to

∀n�1 wn(β) = 0, (72)

while the case when x4z approaches 1 from the right-hand
side, given by Eq. (68), amounts to

∀n�1;n	=V wn(β) = 0, (73)

and
wV (β) = V ! x4V . (74)

Equations (72)–(74) show that the limiting behavior meets the
conditions specified in Eq. (9). This validates our cluster-based
combinatorial approach to a general system of interacting
particles and emphasizes the potential usefulness of our theory
for the theory of phase transitions.

3. Zeros of the grand partition function

In the zero temperature limit, for x → ∞, Eq. (57) can be
approximated by

∀n�1 wn(β) = V n!x4(n−1). (75)

By inserting the last expression into Eq. (14) for the canonical
partition function, we get

ZG(x,V,N ) = 1

N !

N∑
k=1

BN,k({V n!x4(n−1)}) (76)

= 1

N !

N∑
k=1

V k(x4)(N−k)BN,k({n!}) (77)

= 1

N !

N∑
k=1

V k(x4)(N−k)L(N,k), (78)

where Eq. (47) has been used, and where L(N,k) represent
Lah numbers, which are defined as follows:

L(N,k) =
(

N − 1

k − 1

)
N !

k!
= BN,k({n!}). (79)

Lah numbers have an interesting meaning in combinatorics.
They count the number of ways a set of N elements can be
partitioned into k nonempty linearly ordered subsets. The com-
binatorial meaning of L(N,k) allows a direct understanding
of the canonical partition function ZG(x,V,z), as given by
Eq. (78). In short, Eq. (78) states that there are L(N,k) particle
configurations in which N particles can be arranged into k

linear clusters. All such configurations have the same energy,
given by Eq. (20), and, therefore, the same Boltzmann factor,
x4(N−k). Finally, the factor V k is due to cluster arrangement
along the one-dimensional lattice, in which one assumes that
every cluster may start at the same lattice site. Obviously, the
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arrangement factor does not take into account the excluded-
volume effect. For this reason, it is only correct in the zero
temperature limit.

Now, putting the canonical partition function given by
Eq. (78) into the general formula for the grand partition
function, given by Eq. (1), we get

�G(x,z) = 1 +
∞∑

N=1

N∑
k=1

(zx4)N

N !

(
V

x4

)k

L(N,k) (80)

= exp

[
V z

1 − x4z

]
, (81)

where the infinite expansion involving Lah numbers has been
used (see [7], p. 156, or [12], pp. 108-113),

exp

[
tu

1 − t

]
= 1 +

∞∑
N=1

N∑
k=1

tNuk

k!

(
N − 1

k − 1

)
. (82)

The grand partition function �G(x,z) applies to one-
dimensional lattice gas in the thermodynamic limit. In
Eq. (81), volume plays the role of an extensive factor of the
grand potential, given by Eq. (11),

�G(x,z) = − z

β(1 − x4z)
V, (83)

rather than an independent variable. In addition, in the
considered zero temperature limit, x → ∞, the grand potential
per unit volume, which defines pressure [Eq. (18)],

P = − z

β(1 − x4z)
, (84)

reveals a nonanalytic dependence on z at x4z → 1. The
nonanalyticity translates into the root of the grand partition
function, given by Eq. (81), for z = 0.

The significance of the zeros of the grand partition function
was first pointed out by Yang and Lee [13], who showed that
a phase transition in the sense of a nonanalytic dependence of
P on z for physical (real and positive) values of z can occur
only when �G(x,z) = 0. In the one-dimensional lattice gas
with nearest-neighbor interactions analyzed in this study, the
only root of the grand partition function is for z = 0; it does
not occur on the positive z axis. Therefore, one claims that
phase transitions in the traditional sense do not exist in this
gas, although its behavior in the zero temperature limit has
direct bearing on the problem of phase transitions.

4. Supplementary remark

Equation (83) can be derived most easily by inserting
Eq. (75) in Eq. (12) and assuming that x4z < 1:

�G(x,z) = − V

βx4

∞∑
n=1

(x4z)n = − z

β(1 − x4z)
V. (85)

There is a problem with proceeding in this way, however.
Conflicting with our previous results, the expression obtained

is not justified for x4z > 1. There is no such problem if we use
our combinatorial approach (described in Sec. II) because it is
based on a formal power series [7,14].

In mathematics, formal power series are a generalization
of polynomials as formal objects. A formal power series is an
object that just records a sequence of coefficients. One may
think of such a series as a power series in which one ignores
questions of convergence. However, formal power series still
allow us to use much of the analytical machinery of a normal
power series, especially in settings that do not have natural
notions of convergence. We believe that this perspective
makes our combinatorial approach to equilibrium statistical
mechanics peculiarly well suited for handling problems with
convergence, which are often encountered in the theory of
phase transitions.

V. SUMMARY

The aim of this paper was to demonstrate, with a concrete
example, how our general combinatorial approach to interact-
ing fluids works. To this end, a one-dimensional lattice gas
with nearest-neighbor interactions was considered. Exploiting
the mathematical equivalence between the grand partition
function for the gas and the canonical partition function for the
one-dimensional Ising model in the external magnetic field,
cluster properties of the former were explored. Three cases
(the infinite temperature limit, the range of finite temperatures,
and the zero temperature limit) were discussed separately. In
particular, in the range of finite temperature and for small
particle densities, the normalized probability distribution for
the number of clusters was found, and the nonanalytic behavior
of the grand potential in the zero temperature limit, which
has direct bearing on phase transitions, was analyzed. Our
investigation of the zero temperature limit for the gas has
allowed us to remark on the formal power series method
behind our approach, which, we believe, makes the approach
peculiarly well suited for handling problems covered by the
theory of phase transitions.

In this study, our main purpose was to validate the general
results of our earlier paper. Apart from this purpose, however,
we have made interesting additions to the still-developing
theory of one-dimensional lattice gases (see, e.g., [15–18]),
which has proven useful in studying many natural phenomena
in nanophysics, surface science, and biophysics (see, e.g.,
[19–22]).

ACKNOWLEDGMENTS

I am indebted to Piotr Fronczak for the help in performing
Monte Carlo simulations, the results of which are shown in
Fig. 1. The work was supported by internal funds of the Faculty
of Physics at Warsaw University of Technology and by the
Ministry of Science and Higher Education in Poland (national
three-year scholarship for outstanding young scientists).

[1] A. Fronczak, Phys. Rev. E 86, 041139 (2012).
[2] To justify the name of the model (i.e., perfect gas of clusters),

one just needs to write Eq. (15) as a function of the cluster

size distribution, i.e., with the help of Eq. (17), namely, βPV =∑∞
n=1 Nn(β,V ). The last formula clearly shows that in the limit

of infinite volume, the imperfect gas or fluid can be seen as

022131-6

http://dx.doi.org/10.1103/PhysRevE.86.041139


CLUSTER PROPERTIES OF THE ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 87, 022131 (2013)

composed of
∑∞

n=1 Nn(β,V ) noninteracting and independent
clusters.

[3] N. Sator, Phys. Rep. 376, 1 (2003).
[4] T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).
[5] R. J. Baxter, Exactly Solved Models in Statitstical Mechanics

(Academic, London, 1982), Chap. 2.
[6] D. Chowdhury and D. Stauffer, in Principles of Equilibrium

Statistical Mechanics (Willey-VCH, Weinheim, 2000),
pp. 311–321.

[7] L. Comtet, Advanced Combinatorics: The Art of Finite and
Infinite Expansions (Reidel, Dordrecht, 1974).

[8] E. W. Weisstein, Stirling Number of the First Kind. From
MathWorld–A Wolfram Web Resource, http://mathworld.
wolfram.com/StirlingNumberoftheFirstKind.html

[9] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods
in Statistical Physics (Oxford University Press, Oxford, 2006),
Chap. 5.

[10] E. H. Lieb and D. C. Mattis, Mathematical Physics in One
Dimension (Academic, London, 1966), Chap. 1.

[11] R. B. Griffiths, in Phase Transitions and Critical Phenomena,
1st ed., edited by C. Domb and M. S. Green, Vol. 1 (Academic,
London, 1972), Chap. 2.

[12] S. Roman, in The Umbral Calculus (Academic, London, 1984),
pp. 108–113.

[13] C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).
[14] H. S. Wilf, Generating Functionology (Academic, New York,

1990).
[15] D. A. Mirabella and C. M. Aldao, J. Stat. Mech. (2011) P03011.
[16] M. B. Yilmaz and F. M. Zimmermann, Phys. Rev. E 71, 026127

(2005).
[17] X. Campi, H. Krivine, and J. Krivine, Physica A 320, 41 (2002).
[18] J. Vavro, Phys. Rev. E 63, 057104 (2001).
[19] F. M. Zimmermann and X. Pan, Phys. Rev. Lett. 85, 618 (2000).
[20] M. B. Yilmaz, A. Rajagopal, and F. M. Zimmermann, Phys. Rev.

B 69, 125413 (2004).
[21] Y. Maniwa, H. Kataura, K. Matsuda, and Y. Okabe, New J. Phys.

5, 127 (2003).
[22] R. M. Wartell and A. S. Benight, Phys. Rep. 126, 67 (1985).

022131-7

http://dx.doi.org/10.1016/S0370-1573(02)00583-5
http://dx.doi.org/10.1103/PhysRev.87.410
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
http://dx.doi.org/10.1103/PhysRev.87.404
http://dx.doi.org/10.1088/1742-5468/2011/03/P03011
http://dx.doi.org/10.1103/PhysRevE.71.026127
http://dx.doi.org/10.1103/PhysRevE.71.026127
http://dx.doi.org/10.1016/S0378-4371(02)01514-5
http://dx.doi.org/10.1103/PhysRevE.63.057104
http://dx.doi.org/10.1103/PhysRevLett.85.618
http://dx.doi.org/10.1103/PhysRevB.69.125413
http://dx.doi.org/10.1103/PhysRevB.69.125413
http://dx.doi.org/10.1088/1367-2630/5/1/127
http://dx.doi.org/10.1088/1367-2630/5/1/127
http://dx.doi.org/10.1016/0370-1573(85)90060-2



