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Abstract. Using the formalism of the biased random walk in random uncorrelated networks with arbitrary
degree distributions, we develop theoretical approach to the critical packet generation rate in traffic based
on routing strategy with local information. We explain microscopic origins of the transition from the flow
to the jammed phase and discuss how the node neighbourhood topology affects the transport capacity in
uncorrelated and correlated networks.

Transport phenomena in real networked communication
systems, such as the Internet [1] and WWW [2], has turned
recently more and more attention in physical and compu-
tational science. Since the rapid development of society
entails demands for high transport efficiency, scientists
strive to develop methods for understanding and control-
ling traffic congestion on communication systems.

In the basic models frequently used to mimic transport
phenomena in communication networked systems [3–7], all
nodes in a network are equally considered as hosts and
routers for generating and delivering packets. Then, the
traffic dynamics is defined as follows:

– at each time step, there are R packets generated
in the system, with randomly chosen sources and
destinations;

– during the next time steps packets travel around the
network, and look for their destination-nodes. Once
a packet arrives at its target, it is removed from the
system;

– to navigate packets, each node performs a local search
among its neighbors. If the packet’s destination is
found within the search area, it is delivered directly
to the target. Otherwise, the particle is forwarded to
the next node according to the prescribed strategy;

– at each time step every node can distribute/deliver at
most C packets towards their destination (the fixed
value of C reflects the limited router bandwidth);

– the queue length of each node is assumed to be un-
limited and the FIFO (first in first out) discipline is
applied.

In these models, one can distinguish between two kinds of
strategies:

– in the first kind, each node has the global topo-
logical information about the network, which allows
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packets to be forwarded either following the short-
est path [3,4,8,9] or using the concept of between-
ness [6,10,11], which measures the number of total
shortest paths that pass through the given node. This
kind of strategy may be practical for small or medium
size networks, but not for very large networks in real
communication systems such as the Internet, WWW,
peer-to-peer networks [12] or urban transportation sys-
tems [13,14];

– the strategies of the second kind base on local infor-
mation (each node only knows its neighbourhood) and
are favored in very large networks due to heavy com-
munication cost of searching.

One of the most important measurements for transport
performance of a network is the traffic capacity, Rc, i.e.
the critical packet generation rate. At Rc, the network un-
dergoes a phase transition from the free flow state to the
congested state. When the packet generation rate R is be-
low Rc, the number of generated and delivered packets are
balanced and therefore the network is in free flow state.
On the other hand, when R goes beyond Rc, the num-
ber of packets keeps on increasing with time and leads
to congestion, simply because nodes cannot deliver too
many packets at each time step due to limited delivering
capacity.

Although a number of empirical strategies for improv-
ing transport efficiency has been proposed (see the re-
view [15] and references therein, and also [16]), the theo-
retical background of traffic congestion phenomena is not
well developed. With reference to this theoretical line of
research we would like to highlight reference [4], where the
estimation of traffic capacity for the stategies of the first
kind has been provided.

In this paper, we present a theoretical approach to the
critical packet generation rate applied to the strategy of
the second kind proposed by Wang et al. [17]. The strategy
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Fig. 1. The critical packet generation rate Rc calculated for
different values of the parameter α with network size N = 1000
and capacity C = 10 in (a) classical random graphs and (b)
scale-free networks P (k) ∼ k−γ with the characteristic ex-
ponent γ = 3. Relatively large value of average node degree
(〈k〉 = 12 in case (a) and 〈k〉 = 9.3 in case (b)) ensures
connectivity of the networks, i.e. there exists a path between
each pair of nodes. Black squares represent results of numeri-
cal simulations, solid lines correspond to theoretical prediction
of equation (7), while dashed lines have been calculated from
equation (7) with P∞

i replaced by P∞
i� .

is based on the biased random walk. In this strategy the
next position of the packet (node j) is chosen according
to the prescribed preferential transition probability wij

wij =
kα

j
∑ki

m=1 kα
m

, (1)

where the sum in the denominator runs over neighbors
of the node i, which represents the current position of
the packet, and the exponent α is the model free parame-
ter. Note that according to the formula (1) the transition
probability from i to j depends only on the connectivity
of the next-step node j. Note also that for α = 0 we re-
cover the ordinary unbiased random walk studied by Noh
and Rieger [18]. In the model, the so-called path iteration
avoidance is assumed, which means that no link can be
visited twice by the same packet.

The main result of this model is presented in Figure 1.
The black squares (numerical simulations) show that the

optimal performance of the system (the largest traffic ca-
pacity) corresponds to α = −1, which represents the anti-
preferential transition probability wij ∼ 1/kj. An interest-
ing finding arises from the comparison of Figures 1a and 1b
showing results for classical random graphs and networks
with power law node degree distribution, respectively. In
the former case, the function Rc(α) has a smooth shape.
In the later case the character of the relationship changes
sharply. In what follows, we explain the observations with
the help of a simple theoretical approach.

Let us start with the simple observation: the con-
gested phase occurs when the average number of packets
Np(i, t, R) arriving at a certain node i at time t exceed
its processing capacity Ci. Thus the critical value of the
posting rate Rc should be somehow found form the bal-
ance condition

Ci = Np(i, t, Rc), (2)

which, for Ci = const., can be also rewritten as

C = Np(i, t, Rc). (3)

Note that in the free flow state one has C > Np(i, t, R)
whereas in the congested phase there is C < Np(i, t, R).
In the considered model, Np(i, t, R) can be written as

Np(i, R) = P∞
i Np(R), (4)

where the stationary occupation probability, P∞
i , de-

scribes the probability that the particle is located at the
node i in the infinite time limit (for that reason we have
ommited time dependence of Np) and Np is the total num-
ber of packets in the network. It has been shown [19], with
the help of biased random walk formalism, that

P∞
i =

kα+1
i

N〈kα+1〉 , (5)

where N is the network size. Note that for α = 0, which
stands for the unbiased random walk, the stationary dis-
tribution is, up to normalization, equal to the degree of
the the node i, i.e. P∞

i ∼ ki. It means that the more
links a node has, the more often it will be visited by a
random walker. Note also that for α = −1, the station-
ary occupation probability is uniform P∞

i = 1/N . The
same scaling behavior as given by equation (5) was found
in reference [17] for the number of packets moving simul-
taneously on BA networks [20] in the free flow state. It
means that in the free flow, and also in the critical point
which is the limiting case of free flow state, the packets
may be considered as non-interacting particles (i.e. inde-
pendent biased random walkers).

The last observation allows us to calculate the total
number of packets distributed over the whole network Np

in the free flow state as:

Np = R〈Tij〉, (6)

where 〈Tij〉 stands for the mean first-passage time aver-
aged over all pairs of nodes. 〈Tij〉 can be understood as
the mean lifetime of a packet and can be calculated theo-
retically from equation (19) in [19].
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Fig. 2. Stationary occupation probabilities calculated for dif-
ferent node degrees k and different values of parameter α
in classical random graphs (a)−(d) and scale free networks
(e)−(h). Solid lines correspond to theoretical prediction of
equation (5). Black squares, triangles and circles are the re-
sults of numerical simulations of P∞

i (k), P∞
i (k) and P∞

i◦ (k),
respectively.

Now, combining equations (3), (4) and (6) one can find
the critical value of packets generation rate Rc:

Rc =
C

P∞
i 〈Tij〉 . (7)

The last equation shows that the critical value of pack-
ets generation rate is, due to P∞

i , a function of a node
degree ki. It means that in heterogeneous networks nodes
of different degrees become congested for different values
of R. It also means that although the system as a whole
enters the jammed state even if one node is congested, it
still possesses partial capacity for forwarding packets in
this phase.

To find the critical value of Rc, which reflects simula-
tion results presented in Figure 1, from the whole set of
different degree dependent values of Rc one has to choose
the smallest one. Since Rc is inversely proportional to P∞

i ,
choosing minimal value of Rc corresponds to taking nodes
with the highest P∞

i . In Figure 2, P∞
i is presented as

a function of a node degree k for different values of the

parameter α and for two different network topologies.
Solid lines correspond to theoretical prediction of equa-
tion (5) whereas black squares are results of numerical
simulations. In both kinds of networks for α < −1, P∞

i is
maximal for nodes with the smallest degrees and in this
range of the parameter α these nodes become congested
first. For α > −1 the situation changes and congestion
starts in nodes with the highest degrees.

Solid lines shown in Figure 1 represent theoretical esti-
mation of Rc(α) as given by equation (7). The lines have
been calculated taking into account P∞

i (ki = kmin) for
α < −1 and P∞

i (ki = kmax) for α > −1. The mean
lifetime of a packet 〈Tij〉 in equation (7) has been calcu-
lated numerically because its theoretical estimation given
by averaging equation (19) in reference [19] due to applied
approximation (see Eq. (16) in Ref. [19]) gives correctly
only the order of magnitude of 〈Tij〉.

Although the character of theoretical lines in Figure 1
reflects the shape of numerical results and confirms the
numerically found optimal performance of the system for
α = −1, it is still far from perfection. The discrepancies
are caused by the fact that equation (5) describes only
the average occupation of a node with a given degree k.
In reality, P∞

i (k) may differ among the nodes of the same
degree. In general, the differences depend on the topology
of a node neighbourhood. Therefore one can write formally

P∞
i (k) ≡ P∞

i (k) = 〈p∞i,Γ (k)〉, (8)

where p∞i,Γ (k) is a stationary occupation probability for a
node with particular neighbourhood topology Γ and the
average is calculated over all possible such topologies. The
black square symbol in equation (8) has been used to re-
flect the fact that we are talking about results marked by
black squares in Figure 2.

The triangles (circles) in Figure 2 represent stationary
occupation probability calculated for the most (the least)
frequently occupated node among all nodes with the same
degree (the results are averaged over 100 network realiza-
tions to get rid of fluctuations)

P∞
i� (k) = max

Γ
{p∞i (k)},

P∞
i◦ (k) = min

Γ
{p∞i (k)}. (9)

The explained above scenario of congestion means that the
nodes which become congested first are those represented
by triangles rather than by black squares. This observation
allows to understand the difference in shape of Rc(α) be-
tween classical random graphs and networks with power
law node degree distribution (cf. Fig. 1). In the former
case, along with the increase of the parameter α the initial
congestion affects nodes with gradually larger and larger
degrees. In the later case of scale free networks large nega-
tive values of α correspond to congestion of the nodes with
the lowest degrees. Nearby α ≈ −0.9 (not α = −1 as it was
estimated in previous studies [17]) situation changes sud-
denly and the highly connected nodes become responsible
for the congestion (without the intermediate participation
of nodes with middle degrees). The dashed line in Figure 1
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calculated from equation (7) with P∞
i replaced by the dis-

cussed above maximal stationary occupation probability
shows excellent agreement with numerical simulations.

As we have stated before, stationary occupation prob-
ability P∞

i calculated for nodes of the same degree is in
fact the average over all possible topologies of a node
neighbourhood (cf. Eq. (8)). To show the impact of neigh-
bourhood topology on the probability we have calculated
the average degree of the nearest neighbor, knn, for three
groups of nodes: those marked in Figure 2 by squares
(all the nodes), triangles (the most frequently occupated
nodes) and circles (the least frequently occupated nodes).
The results for SF networks and for α = −1 (correspond-
ing to the scenario of unbiased random walk shown in
Fig. 2f) are presented in Figure 3a. Although, in the case
of uncorrelated networks, knn calculated for all nodes does
not depend on k (what is confirmed by horizontal charac-
ter of black squares), Figure 3a shows that the neighbour-
hood of the nodes which are responsible for congestion (i.e.
in case of α = −1 the most frequently occupated nodes
with k = kmin) is composed of weakly connected nodes.
Then one can suggest that increasing their knn (i.e. mak-
ing their neighbourhood disassortatively correlated) may
improve transport capacity of the network.

To check the hypothesis one has to introduce de-
gree correlations to the network. From many methods
for generating correlated networks (e.g. [21,22]) we se-
lect one of the simplest model proposed by Noh [23] and
Newman [24]. The model belongs to a class of the exponen-
tial random graph family [25,26]. In this class, a network
model is defined as a Gibbsian ensemble of networks with
an associated network Hamiltonian

H(G) = −J

2

N∑

i,j=1

aijkikj , (10)

where J is a control parameter and aij , element of the
adjacency matrix, takes the value aij = 1 or 0 if nodes i
and j are connected or not. A positive (negative) correla-
tion is favored by a positive (negative) value of J . The
Monte Carlo dynamics are based on updating network
configurations via the link rewiring process, which pre-
serves the degree of each node. The dynamics lead to the
Gibbsian ensemble in the stationary state.

The assortativity of the network [24] is measured by
the Pearson correlation coefficient of the degrees at either
ends of an edge:

r =
〈kk′〉l − 〈(k + k′)/2〉2l

〈(k2 + k′2)/2〉l − 〈(k + k′)/2〉2l
, (11)

where 〈·〉l denotes the average over all links, whereas k
and k′ represent the degrees of two nodes at either end
of links. The sign of r indicates a positive (assortative)
or negative (disassortative) degree correlation. It vanishes
for uncorrelated networks.

The stationary state value of the assortativity for SF
network is presented in Figure 4. The possible values of r
in correlated SF networks, which can be obtained with the

Fig. 3. The average degree of the nearest neighbor for all
the nodes (squares), the most frequently occupated nodes (tri-
angles) and the least frequently occupated nodes (circles) for
r = 0.00 (a) and r = −0.20 (b). Stationary occupation prob-
abilities calculated for different node degrees k for α = −1 in
SF networks (c).

help of thi model belong to the range −0.27 ≤ r ≤ 0.27.
This differentiates SF networks from networks with the
Poisson degree distribution for which −1 ≤ r ≤ 1 (cf.
Fig. 2b in [23]). It seems that the possible patterns of cor-
relation in scale-free networks are restricted by the power
law degree distribution.
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Fig. 4. Stationary state values of the assortativity as a func-
tion of J in SF network.

Having the tool for generating correlated networks in
hands, one can repeat the calculations of knn for such
networks. In Figure 3b we have shown results for the case
of SF networks with r = −0.20. In such networks knn

for the nodes responsible for congestion has increased
from about 5.9 (in uncorrelated networks) to about 7.3.
Unfortunately, further increasing of negative correlations
will have an undesirable effect on the network capacity:
detaching weakly connected nodes from other weakly con-
nected nodes one have to attach them to the highly con-
nected ones. As a consequence, the transport abilities of
hubs decrease. In Figure 3c we have shown correspond-
ing occupation probabilities for that case. As one can see,
P∞

i for the most frequently occupated nodes with kmin

and kmax equalize (what is emphasized by the horizon-
tal line). Therefore, the case of r = −0.20 is optimal,
because any change of network correlations can only in-
crease the maximal occupation probability (through in-
creasing P∞

i� (kmin) or P∞
i� (kmax)).

Finally, in Figure 5 we have shown the profiles of
the critical packet generation rate Rc calculated for three
different values of the parameter r: in the case of uncor-
related network (r = 0.00), the case of optimally corre-
lated network (r = −0.20), and the case of highly cor-
related network (r = −0.27). The interesting observation
is that although in the most optimal case, knn calculated
for the nodes responsible for congestion has increased just
about one degree (cf. Fig. 3b), in the same time the critical
packet generation rate Rc(α = −1) has increased from 29
to 41, i.e. about 40%.

The observation, that transport capacity of a network
can be enhanced for both assortative mixing and dis-
assortative mixing has been recently reported in refer-
ence [27]. In the metioned paper, authors have studied
routing strategies with the global topological information.
In our case, assorative mixing cannot improve the network
capacity, since it only decrease knn of nodes responsible
for congestion.

Fig. 5. Profiles of the critical packet generation rate Rc cal-
culated for the case of uncorrelated network (r = 0.00) (black
squares), the case of optimally correlated network (r = −0.20)
(open squares), and the case of highly correlated network
(r = −0.27) (open circles).

In summary, using the formalism of the biased ran-
dom walk in random uncorrelated networks with arbitrary
degree distributions, we have developed the theoretical
approach to the critical packet generation rate in traffic
dynamics with the local routing strategy as proposed by
Wang et al. [17]. We have shown that the random walk
approach can be used to give microscopic explanation of
the phase transition from free flow to the jammed phase.
We have also discussed the effect of degree correlations
and node neighbourhood topology on the properties of
transport in complex networks.

The author wishes to thank Dr. Agata Fronczak for her valu-
able comments and suggestions. This work was financially sup-
ported by internal funds of the Faculty of Physics at Warsaw
University of Technology.
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