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Abstract

The Bloch and dipole oscillations of a Bose Einstein condensate (BEC)
in an optical superlattice is investigated. We show that the effective mass
increases in an optical superlattice, which leads to localization of the BEC,
in accordance with recent experimental observations|[17]. In addition, we find
that the secondary optical lattice is a useful additional tool to manipulate the
dynamics of the atoms.

1 Introduction

Interference pattern of intersecting laser beams create a periodic potential for atoms,
which is known as an optical lattice [1]. Ultracold bosons trapped in such periodic
potentials have been widely used recently as a model system for the study of some
fundamental concepts of quantum physics. Josephson effects 2|, squeezed states
[3], Landau-Zener tunneling and Bloch oscillations [4] and superfluid-Mott insulator
transition [5] are some examples. An important promising application under study
is quantum computation in optical lattices [6]. Optical lattices are therefore, of
particular interest from the perspective of both fundamental quantum physics and
its connection to applications. Using superposition of optical lattices with different
periods [7], it is now possible to generate periodic potentials characterized by a richer
spatial modulation, the so-called optical superlattices. The light-shifted potential of
the superlattice is described as

V(z) = Vj cos? (W—Z> + V; cos® (LZ + gb) : (1)
dy do
Here d; and d, are, respectively, the primary and secondary lattice constants, V;
and V5 are the respective amplitudes and ¢ is the phase of the secondary lattice.
When ¢ = 0, all sites of the lattice are perfectly equivalent due to the symmetries
of the system, so that the population and onsite energies are same at each site. An
asymmetry is introduced when ¢ # 0 and hence the onsite energies are not the same
at each site.

Theoretical interest in optical superlattice started only recently. These include work
on fractional filling Mott insulator domains [8], dark [9] and gap [10] solitons, the
Mott-Peierls transition [11], non-mean field effects [12] and phase diagram of BEC
in two color superlattices [13]. In a recent work, the analogue of the optical branch
in solid-state physics was predicted in an optical superlattice [14]. Rousseau et al.



[15] have considered the effect of a secondary lattice on an one dimensional hard
core bosons (strongly correlated regime). A detailed theoretical study of the Bloch
and Bogoliubov spectrum of a BEC in a one-dimensional optical superlattice has
been done [16]. In a very recent experiment [17], it was observed that the center of
mass motion of a BEC is blocked in a quasi-periodic lattice. Considering the fact
that these optical superlattices are now being realized experimentally and interesting
experiments are being done routinely, we were motivated to study the influence of
the secondary lattice on Bloch oscillations and dipole oscillations of atoms.

2 Bloch Oscillations

We consider an elongated cigar shaped BEC confined in a harmonic trap potential
of the form Vo (r, z) = Z(w?r? + w?z*) and a one-dimensional tilted optical super-
lattice of the form V,,(2) = Ep (51 cos*(Z2) 4 s3 cos?(52)) + mgz. We have taken a
particular case of dy = 2d; = 2d. Here s; and s, are the dimensionless amplitudes
h2m?
2md?

E
is the recoil energy (wgr = —E is the corresponding recoil frequency) of the primary

of the primary and the secondary superlattice potentials with s; > so. Er =

lattice. We take w, >> w, so that an elongate cigar shaped BEC is formed. The
harmonic oscillator frequency corresponding to small motion about the minima of

JsThr?
VoI

the Gaussian profile. Since the arrgly is tilted, the atoms undergo coherent Bloch
oscillations driven by the interwell gravitational potential mgz. The BEC is initially
loaded into the primary lattice and the secondary lattice is switched on slowly. The
frequency of each minima of the primary lattice is not perturbed significantly by the
addition of the secondary lattice. Here wy >> w, so that the optical lattice dom-
inates over the harmonic potential along the z-direction and hence the harmonic
potential is neglected. The strong laser intensity will give rise to an array of sev-
eral quasi-two-dimensional pancake shaped condensates. Because of the quantum
tunneling, the overlap between the wave functions of two consecutive layers can be
sufficient to ensure full coherence. We study now the Bloch dynamics of the BEC in
the tilted optical superlattice by solving the discrete nonlinear schroedinger equation
(DNLSE). The dynamics of the BEC is governed by the Gross-Pitaevskii equation
(GPE),

the optical superlattice is w, ~ The peak densities in each well match

¢ h?

i = =5 =20+ {Vao(r,2) + Vg 2) + gl } €, (2)

Amh*a

where gy = , with a the two body scattering length and m the atomic mass.

In the tight binding approximation the condensate order parameter can be written

C(T> t) = mz \Ilj(t)gzﬁ(r - Tj)v (3)



where Ny is the total number of atoms and ¢(r — ;) = ¢; is the condensate wave-
functlon localized in the trap j with [ dr¢;¢ 41 =~ 0, and [ dr ]¢]] =1; U,(¢) is the

j™" amplitude. V;(t) = /p;(t) exp(if;(t)) where p; = N , with N; and 6; being the
number of particles and phases in the trap j respectwely Subst1tut1ng the Ansatz
(3) in (2), we find that the GPE reduces to the DNLSE,

8\11 1 ;

“or T 2 {(1=a(=1Y") ¥+ (1= a(=1)) Uy} + (5 + A7) ¥, (4)
Here ¢, = + fd [F‘Q (V%) + (Vio(r) + Vop(2)) 5] } A= gONT fdr\@ ’
?7%. One can show using J; = — [dr [%vcﬁj Vi + (Vho(r) + Vop(2)) ¢j+1]

that there are distinctly two Josephson coupling parameters, J; o = Jy = @ where
Jo ~ % [(”—2 — 2) } exp <—%> and Ay ~ %52 exp (—M> [16]. We have
rescaled time as t — —t In Eq. (4), ¢; = wpj, where wg = ”}g‘l is the frequency of

Bloch oscillation and /\1 is the Wavelength of the laser creating the primary lattice.
In order to understand the Bloch and dipole oscillations, we solve the DNLSE using
a variational approach adopted from [18]. The Hamiltonian function corresponding
to the DNLSE Eq. (4) reads

H= 3 [FH0- ) 5+ v

, A
- D) (L ) sl Sl o

where Zj ]\I/j]2 = 1. To analyze the Bloch dynamics, we study the dynamical
evolution of a site dependent Gaussian wavepacket, which we parameterize as

_ UG-8 .. P SR T

50 = VRew |- v -9+ G-t i-g] . ©
where £(t) and ~(t) are, respectively, the center and width of the condensate, p(t) and
d(t) are their associated momenta, and K (v, £) a normalization factor. Here (—1)3%
is the phase of the wave packet at the j** site. Clearly, depending upon whether j
is odd or even, the phase is i%. As explained in ref.(15), as the condensate moves
from one well to the next, it acquires additional phase, which depends on the height
of the barrier. As the height of the barrier alternates, the phase also alternates.

The dynamics of the wave packet can be obtained by the variational principle from

the Lagrangian, L = Z iW;Wr— H, with the equations of motion for the variational

parameters ¢;(t) = &,7,p, 0, ¢ given by jt qu = g—qLi. The phase is used to enforce a

constraint. The Lagrangian is derived as

L= 20 - [ |+ temocospr asinosinpt (-0 - V0. (@



where 1 = 51 + 2 and V(1,€) = K [, dj e; exp (20587,

The variational equations of motion are derived as:

. ov

b= _a—fa (8&)
£= [cos ¢ sinp — asin ¢ cos p| exp(—n), (8b)

i 4 2A 40V
0 = [cos ¢ cos p + asin ¢ sin p| exp(— l——éQ] + - ——, 8c
[cos ¢ cos p ¢ sin p] p(n)74 Ny (8¢)
4 = 7d [cos ¢ cos p + asin ¢ sin p] exp(—n), (8d)
tan ¢ = atanp. (8e)

Since cos? ¢ + sin® ¢ = 1, together with equation (8a-8e), we get the following con-
straints on cos ¢ and sin ¢:

cos ¢ = Sy , (9a)
Vcos? p+ a2sin’ p

cos ¢ = asmp : (9b)
\/C082 p+a?sin?p

Corresponding to the variational equations (8a-8e) and constraints (9a-9b) the ef-
fective Hamiltonian is written as

A
2y/my

We first study the Bloch oscillations. For the tilted periodic potential the on-site
energies are written as €; = jwp.

H = —cospy/ 1+ a?tan?pexp(—n) + V (7, ). (10)

Using equations (8a-8e), we find V = {wp and p = —wp. We solve the variational
equations of motion numerically for the following initial values £(0) = 0, p(0) =
0,0(0) = 0, v(0) = 10 and the parameters A = 20, wg = 2. The result for the
center of mass £(t) is depicted in figure 1 for two different values of the secondary
lattice strength, @ = 0.1 and o = 0.4. Clearly on increasing the strength of the
secondary lattice from a = 0.1 to a = 0.4, the amplitude of the center of mass
motion reduces. The secondary lattice serves to break the discrete translational
invariance of the system, thus favouring localization of the wave function. Optical
superlattices with higher periodicities will block the center of mass more strongly.
The observed damping (with respect to time) in fig.1 is due to interactions. In
the absence of interactions, the center of the BEC for py = 0 goes roughly as
£(t) ~ —(1 —a?)(1 — coswpt), while in the presence of interactions, the oscillations

roughly decreases as £(t) ~ —(1 — a?) <1 — exp <—%) Cos wBt). Here, 7 is some
s

final value of 7. Clearly when there is no interaction, there is no damping of the

Bloch oscillations in time but there is a reduction in the amplitude by a factor

(1 — a?) due to the presence of the secondary lattice. In order to understand the
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Figure 1: Oscillations of the center of mass &(¢) is depicted for two different values
of the secondary lattice strength, a = 0.1 and o« = 0.4. The other parameters are
£(0) =0, p(0) =0, 6(0) =0, v(0) = 10, A = 20, wp = 2. On increasing the strength
of the secondary lattice, the amplitude of the center of mass motion reduces.

origin of this blocking of the center of mass motion, we derive the effective mass
(m*)~! = 2 »g
= op? )

. (1+a*tan?p)exp(n)

m* = : (11)
cosp (1 —a?tantp) (1 — a?)

A diverging effective mass m* — oo as t — oo due to interactions leads to a self-
trapping of the wave packet [17]. In the expression for the effective mass (eqn.11),
in the absence of interaction, the factor exp(n) is constant since 7 tends to a final
value v and (¢) =~ Jy (initial value). This can be seen from equations 8c and 8d.
The effective mass is now enhanced due to the presence of the secondary lattice.
Since A = 0, the effective mass stays constant in time and the Bloch oscillations
show reduced oscillations compared to the case for a single frequency optical lattice
but does not show damping in time. On the other hand when A # 0, and ¢ — oo,
v — v and §(t) =~ éf/}, so that m* — oo. This causes not only a reduction in
amplitude but also damping in time. It is interesting to note that, we now have
an additional handle to tune the effective mass. A plot between m* and « (for
p = 0) in fig.2 shows that as the strength of the secondary lattice increases, the
effective mass also increases. Therefore the origin of the reduction of the amplitude
of Bloch oscillations of a BEC in an optical superlattice is due to an increase of the
effective mass. Dynamics of localized excitations, such as solitons depends on the
effective mass, hence the secondary lattice emerges as a useful additional handle to
manipulate localized excitations.
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Figure 2: A plot between m* and a shows that as the strength of the secondary
lattice increases, the effective mass also increases. Therefore the origin of the lo-
calization of a BEC in an optical superlattice is due to an increase in the effective
mass.

3 Dipole Oscillations

We study now the dipole oscillations. Instead of the gravitational potential, we

consider a sufficiently large (w, ~ w,) magnetic harmonic potential superimposed
mw?d?
Jo

on the optical lattice, £; = Q5% where Q = The variational equations of

motion give V(v,£) = Q (% + 52) and p = —20Q&. In the regime of negligible mean
field interaction (A = 0) and small momenta p, the equation for the center of mass
is £(t) = (1 —a?)p. Consequently, the center of mass obeys the equation of an
undamped harmonic oscillator, & = w3¢, where the frequency of dipole oscillation,
w3l =20 (1 — a?) = w? () is reduced in the presence of the secondary lattice since

m*

m* > m. We consider the initial conditions £(0) = 0 and p(0) = py. The center

(17012)1/2

of mass in the A = 0 regime and small momenta is £(t) ~ “— 74— Sinwgt. In the
low momenta limit, the amplitude of the center of mass decreases with increasing

2
81(%—2)
experiment of ref.[16], w, &~ 27 x 10 Hz and \; ~ 830 x 107 nm. This corresponds
to a very low value of 2 ~ 0.0001 (in dimensionless units).

1 1/4
strength of the secondary lattice approximately as |1 — < 2 ) ] . In the

We solve the variational equations of motion numerically for the following initial
values: £(0) =0, p(0) = 0.1, §(0) = 0, v(0) = 40 and the parameters: A =5, Q =
.0002. The result for the dipole oscillation is depicted in figure 3 for two different
values of the secondary lattice strength o = 0.1 and o = 0.7. For A = 5, we are
still in the regime of negligible mean field interaction and we do not expect any
damping. On increasing the strength of the secondary lattice, the amplitude of the
center of mass {(t) is reduced in accordance with the experiments of [17]. This
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Figure 3: A plot of the dipole oscillations for « = 0.1 and a = 0.7. The other
parameters are £(0) = 0, p(0) = 0.1, 6(0) = 0, v(0) = 40, A = 5, Q = .0002. We
notice that increasing the strength of the secondary lattice, the dipole oscillations
are blocked, in accordance with the experimental observations of [17|. Since, we
are in the negligible mean field interaction regime, the dipole oscillations are not
damped.

reduction in the amplitude of the dipole oscillation on increasing the strength of the
secondary lattice is due to an increase in the effective mass, as mentioned earlier
in this paper. The initial value of the effective mass can be positive (cospy > 0)
or negative (cospy < 0). Let us suppose that cospy > 0 and initial values: v(0) =
Y, 0(0) = 09 = 0 and £(0) = & = 0. The initial value of the Hamiltonian is
Hy = M+”/0 — cospoy/ 1 + a?tan? pyexp (—%73) + QT%%. Since the Hamiltonian is

conserved, we have Hy, = ﬁ — cospoy/ 1 + a? tan? py exp <—%’y2 — ”’2852) + QTWQ.
The parabolic external potential helps to keep Hy > 0, therefore,

A Q2
— — H, . 12
2\/7_T’Y+ 1 0>0 (12)

The trajectories in the v — § plane are given by

A 99
87210g( I )+4
52— —

cos po \/I—I—a2 tan2 pg

i (13)

Fig. 4 shows a plot of the center of mass for a« = 0.1 , £(0) = 0, pg = 0.1, §y =
0.1, 70 = 10, A = 47,57, w = 0.0002. We notice that for such high values of A, the

7
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Figure 4: Center of mass motion for a« = 0.1 , £(0) = 0, po = 0.1, §p = 0.1, 7 =
10, A = 47,57, w = 0.0002. We notice that for such high values of A, the dipole
oscillations are completely blocked. Both interactions and secondary lattice induced
disorder cooperate to block the center of mass motion.

dipole oscillations are completely blocked. Both interactions and secondary lattice
induced disorder cooperate to block the center of mass motion. For the higher value
of A, the center of mass stops at an earlier time, which again is in accordance with
experiments [17]. From equation (13), we notice that 0 — oo as ¢t — oco. Therefore,
for large time,

: 1 2 07
¢ ~ (1 — a?)sinpg exp (—272 - Pym‘éx ) —0 (14)

max

and

max

3/2 2 52
. (1 + o?tan®p) / exp <2721 Tingas )

m =

cosp (1 — a?tan? p) (1 — a?) o (15)
The center of the BEC wavepacket stops and the effective mass goes to infinity and
there is an energy transfer from the kinetic energy to the internal modes, since ¢ is
the momentum associated with the width . This is the self trapped regime. We
also find that the final value of center of mass {; is not the same as {y. For a fixed
A, an increase in the secondary lattice potential will block the center of mass at an
earlier time.



4 Conclusions

In conclusion, we have studied the Bloch and dipole oscillations of a Bose Einstein
condensate trapped in an optical superlattice. In particular, we have shown that due
to the addition of the secondary lattice, the center of mass motion is blocked which
leads to a blockage of the center of mass motion. This effect is due to an increase
in the effective mass in the presence of the secondary lattice. The frequency of the
dipole oscillations is also found to be reduced due to the secondary lattice. These
results are in accordance with recent experiments [17]. The secondary lattice is
found to be a promising tool to investigate and manipulate localized excitations.
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