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Abstract

A two component vector generalization of the Schéfer-Wayne short pulse
equation which describes propagation of ultra-short pulses in optical fibers
with Kerr nonlinearity beyond the slowly varying envelope approximation and
takes into account the effects of anisotropy and polarization is presented. As
a special case, the integrable two-component short pulse equations are con-
structed which represent the counterpart of the Manakov system in the case
of ultra-short pulses.

1 Introduction

The nonlinear propagation of optical pulses in Kerr media is usually described by
the nonlinear Schrédinger equation whose derivation is based on the slowly varying
envelope approximation [1|. However, the applicability of this approximation to the
ultra-short pulses whose temporal extent is less than a few cycles of the correspond-
ing electromagnetic wave is doubtful (see e.g. [2]). On the other hand, there is
an increasing number of experiments and applications which involve the ultra-short
femto-second and atto-second pulses [3], hence an increasing demand for a suitable
theoretical description of such pulses.

The problem of mathematical description of the propagation ultra-short pulses has
been studied recently from different points of view varying from the consideration of
the full Maxwell-Bloch system to the studies of the nonlinear Schrodinger equation
with higher derivative corrections and the modifications of the slowly varying enve-
lope approximation (see e.g. [4, 5, 6, 7]). In a recent very interesting paper Schéfer
and Wayne [8] have derived an equation which describes ultra-short infrared pulses
in silica optical fibers. In properly normalized units the equation takes the form [11]

Uy = U+ %(ug)tt, (1)
where u(z,t) represents the magnitude of the electric field. Following [11] we will
refer to Eq. (1) as the short pulse equation (SPE). In a sense, the SPE repre-
sents an opposite extreme to the slowly varying envelope approximation: in [9] it
is demonstrated that as the pulse duration shortens, the description using the non-
linear Schrédinger equation becomes less accurate, while the SPE provides increas-
ingly better approximation to the corresponding solution of the Maxwell equations.
Sakovich & Sakovich [11] and Brunelli [12] have shown using different methods that



this equation is integrable. Moreover, Sakovich & Sakovich [13] were able to con-
struct a first analytical solution of (1), which possibly represents ultra-short pulses.

However, the single-component SPE neglects the fact that all single mode opti-
cal fibers actually support two orthogonally polarized modes. It is only in perfectly
isotropic fibers that the polarization modes are completely degenerate and the treat-
ment in terms of the single-component equations is justified. In reality, manufactur-
ing imperfections, externally applied stress, or bending lift the degeneracy between
the modes. Thus the fibers are supporting two orthogonally polarized modes with
different propagation constants, i.e the fibers are birefringent. The birefringence
and its interplay with nonlinearity may have strong influence on the propagation of
optical pulses along the fiber. Moreover, the dynamics of polarization in specially
fabricated anisotropic fibers and microstructured or photonic crystal fibers [14] is
also interesting from the point of view of applications, e.g. to polarimetric sensors
[15] or in soliton computing [16].

The standard description of optical pulses in birefringent fibers in the slowly vary-
ing envelope approximation is achieved by means of the pair of coupled nonlinear
Schrodinger equations [17], also known as the vector nonlinear Schrodinger equation
[18, 19]. A particular integrable case of this system is known as the Manakov system
[19]. The vector nonlinear Schrodinger equation plays important role in many other
different, contexts in nonlinear optics, see e.g. [20, 21].

In this paper we generalise SPE by taking into account the effects of anisotropy and
polarization. This leads to a system of coupled SPEs which plays the same role
in the dynamics of ultra-short pulses as the vector non-linear Schrodinger equation
does in the case of broader pulses described by slowly varying envelope. We also
show that in a particular case this system gives rise to an integrable two-component
system which can be viewed as an ultra-short pulse analogue of the well-known
Manakov system [19] integrable by the inverse scattering method.

2 Vector short-pulse equation

We consider a propagation of two orthogonally polarized modes in an anisotropic
fiber along the direction z

E= El-ei = E181 -+ E2e2, (2)

where e;-e; = 1 = e5-€e5,e;-e; = (. The starting point is Maxwell’s wave equation

(c=1)
E.. — Ey=Py. (3)

Here P is the polarization of the medium in response to the electric field. The
polarization has both linear and nonlinear contributions: p=plnypnl,

Assuming the medium is homogeneous and anisotropic and neglecting the spatial



dispersion, the most general linear contribution to polarization is

+oo
n 1
Pz t) = [ drd = 1) Ey(z7) (4)
which accounts for the retarded response of the medium if the causality is enforced
by the condition ngl-)(t) = 0 if t < 0. For the linear susceptibility we assume that
the frequency range of the pulse under consideration and the pulse frequencies are
much higher than the resonance frequencies. In this case the Fourier transformation
of ngl-)(t — T) is given by

~(1 _

Xz(j)(w> R —XW g (5)
Substituting this expression to (3) we obtain in the linear approximation the equa-
tion

(Ei)zz — (Bi)w = XijEj‘ (6)

Note that this equation can be derived also without the assumption (5) by following
the arguments similar to those in [9]. It arises then as the equation whose solutions
approximate the solutions of the initial-boundary value problem for (3) for times of
the order O(2) (c.f. Proposition 2.4 in [9]).

Next, we turn to the nonlinear contribution to polarizability, P™. We restrict our
attention to the centrosymmetric materials, so that there is no quadratic nonlinearity
(c.f. [22]) and the lowest order nonlinearity is cubic:

PM(z,t) = / dridrydTs XE?,)CZ (t —7i,t — 1o, t —13)E;(2,71)Ex(2, ) El(2,713).  (7)

We shall take into account only the instantaneous nonlinear response

Xigha(t = Tyt = ot = 73) = X 6(8 = )3t — 72)0(t — 7). (8)
Though the effects of delay in nonlinear response of the medium can be a part of
the ultra-short pulse dynamics [6], the instantaneous contribution is expected to
dominate in the case of very short, small amplitude pulses [8].

In this approximation Eq. (3) reduces to
(Ei)zz — (Bi)u = Xz‘jEj + Xijkl (B ExEr)u. (9)

The solutions of the linear part of this equation split into forward- and backward-
propagating wave packets and the nonlinear term may generate interaction between
them. However, in the case of very short pulses this interaction can be neglected.
In order to incorporate the effects of the nonlinear and dispersive terms in (9) we
make a multiple scale Ansatz 23]

Ei(z,t) = eUi(O)(C, 21, 29, ...) + eri(l)(C, 21,29, ...) (10)

with ;
¢ = Z, 2y = €2, (11)
€




At z = 0 this Ansatz reduces to
E(0,t) = eUy(t/e) + EUL(t/e) + ...,

which represents a short pulse at small e.

We insert (10) into (9) and find that the chosen form of the multiple scale Ansatz
cancels the terms of the order O(£) and that there are no terms O(e’). Hence, in
the leading nontrivial order O(e) we obtain

~20.,0:U" = xi; U + xi51adec (UL UL UD). (12)

This system describes the unidirectional propagation of ultra-short pulses with two
orthogonal polarization components in a general anisotropic fiber whose material is
characterized by the linear and third-order nonlinear susceptibility coefficients x;;
and X jp-

Let us consider now the birefringent optical fibers characterized by anisotropic linear
susceptibility and isotropic nonlinear susceptibility. Then the nonlinear polarization
consistent with the underlying spatial symmetries has the form [24]

P =4(E} + E3)E; (13)
which implies

Y = X1111 = X2222 = X1122 T X1212 + X1221 = X2112 + X2121 + X2211- (14)

Assuming that the linear susceptibility is homogeneous along the z direction, we
transform (12) to the eigenbasis of x;;. Denoting the modes along the eigendirections
of the linear susceptibility as A and B and the corresponding eigenvalues of %Xij as
a and b, we obtain the following system of coupled SPE-s

Ao =ad s 10+ B A

Buc = bB + (B + A*B)c. (15)

Note that if the linear susceptibility is isotropic, i.e a = b, the resulting equation is
invariant with respect to the global rotations in the (A, B) plane.

3 The integrable interaction of ultra-short pulses

In the previous section we have obtained a two-component generalization of the
short-pulse equation of Schifer and Wayne [8]. The single-component SPE has
been proved to be integrable by Sakovich & Sakovich [11] and Brunelli [12|. The
proof by Sakovich & Sakovich is based on the explicit construction of the zero-
curvature representation of SPE. In this section we construct an integrable system
of two coupled SPEs by generalizing the results of Sakovich & Sakovich to the
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multicomponent case. For the sake of simplicity, in this section we denote the
rescaled variables (21, () as (z,t).

We consider a linear system

U, = TV, (16)
0, A (17)
with
(A
v () "
and

Z:(A?ﬂ+ﬁ ﬁm”_%U), (19)
;

Uy +4U  —3U% - L
where U is assumed to be a square matrix and A is an arbitrary nonzero constant.
The compatibility of (16) and (17), ¥,, = U,,, takes the form of the zero-curvature

condition
T.—Z,+[T,Z] =0. (20)

Now, by direct calculation we obtain

—A(U?), AU, — (U3 + LU,
T, - 7, = f(> 1 ' §2M 27t (21)
AU — g(UB)ttt —5U; §(U )t
and A A(772 A2 1
=V + 35U =W —sU — \U
[T’Z]: ( /\26 12( )t 6)\2 2)\t ) ) (22)
TWHU =AU V= 5(U%);
where
V.= Ut(UB)t — (Ug)tUt, (23)
1 1 1
vv:gw%—§Wm—§mW.
Therefore, if V=0 = W the zero-curvature condition (20) is equivalent to
Lo

which is a matrix generalization of SPE. The existence of the zero-curvature rep-
resentation shows that this matrix generalization of SPE is integrable provided the
conditions V' = 0, W = 0 are fulfilled identically. These conditions restrict the
choice of admissible matrix variables U.



Let us consider the case of 2 X 2 matrices
A B
- ( An ) |

If follows from (23) that the sufficient condition of V=0 = W to be fulfilled can
be taken in the form

vv, - U,U = 0.
In terms of the components of U we obtain
BC; — B,C ABy — A\B+ BD, — B,D
( CA— CA+DC, — D,C CB, - BC, ) =0 &)

This condition is fulfilled if, for example,

: : A 0

(i) B=C=0, ie U_<0 D)’ (26)
Substituting (26) to (24) we obtain just a set of two uncoupled SPE-s for functions
A and D.

The condition (25) can be also satisfied by taking

(ii) B=C, A=D, sothat Uz(é i) (27)

Substituting (27) to (24) yields a new system of two coupled SPE-s
1
As = At (A% 4 3B%A),
1
B.. =B+ 6(33 +3A%B)y. (28)

As it follows from the consideration in the previous section this equation describes
an integrable interaction of two ultra-short pulses. It can be viewed as a short-
pulse analogue of the Manakov equation [19]. The value of the cross-modulation
coefficient 3 = 3 corresponding to the integrable system (28) is different from 5 =1
for birefringent fibers made of nonlinearly isotropic material. Note, however, that
the value § = 3 can in principle be realized in the materials with the point symmetry
432, 43m or m3m [24]. However, in the non-centrosymmetric materials 432, 43m
the effects of quadratic nonlinearities would dominate those of cubic nonlinearity
considered here.

Another possibility to satisfy (25) is to take

(ii) B=—-C,A=D, sothat U= ( _AB i ) : (29)
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In this case the matrix system (24) yields
1
Ay=A+ 6(A?’ —3B%A)y,
1
th — B - 6(83 - 31428)1‘,25' (30)

The corresponding Kerr coefficients are compatible in principle with the symmetries
of 1, 2/m and mmm materials [25].

The last possibility to satisfy (25) is to take

(v) A=D, C=0, sothat U=[ 2 B (31)
0 A
Substituting (31) to (24) yields
1
A=A+ E(Ag)tta
1
B,,= B+ 5(A%B)u. (32)

This system describes a propagation of small perturbation B on the background of
the solution A. A nonlinear Schrodinger equation analogue of this system has been
studied also in the context of the so-called induced phase modulation [26].

4 Conclusions

We have extended the multiple scale analysis of the ultra-short pulse propagation in
a one-dimensional non-resonant Kerr medium [8| by taking into account the polar-
ization and anisotropy. This leads to a two-component vector generalization of SPE
which describes propagation of two orthogonally polarized modes of an ultra-short
pulse when the slowly varying approximation is not valid anymore.

The potential applicability of the vector SPE extends beyond the nonlinear fiber
optics of ultra-short pulses. It can be used in all those situations where the coupled
nonlinear Schrédinger equation has been proved to be useful, when the ultra-short
pulses are used instead of the usual broader pulses described by the slowly varying
envelope.

Using the zero-curvature representation of Sakovich & Sakovich [8] we have analyzed
the integrability of the system of coupled short pulse equations by viewing it as a ma-
trix generalization of the single component short pulse equation. This allowed us to
construct the short pulse analogues of the integrable coupled nonlinear Schrédinger
equations, also known as the Manakov system [19]. We have briefly outlined the
possible applicability of these equations to the propagation of ultra-short pulses in
the fibers made of natural or artificial anisotropic materials with specific point sym-
metry. The numerical and analytical study of the dynamics of ultra-short pulses as
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described by the vector short pulse equation is in progress and will be presented in
subsequent publications.
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