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Abstract

Properties of two pulses propagating simultaneously in different dispersion regimes, anoma-
lous and normal, in a Kerr-type planar waveguide are studied. It is found that the presence of
the pulse propagating in normal dispersion regime can cause termination of catastrophic self-
focusing of the pulse propagating in anomalous regime. It is also shown that the coupling between
pulses can lead to spatio-temporal splitting of the pulse propagating in anomalous dispersion
regime, but it does not lead to catastrophic self-focusing of the pulse propagating in normal
dispersion regime. For the limiting case when the dispersive term of the pulse propagating in
normal dispersion regime can be neglected an indication (based on the variational estimation)
to a possibility of a stable self-trapped propagation of both pulses is obtained. This stabilization
is similar to the one which was found earlier in media with saturation-type nonlinearity.
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1 Introduction

The propagation of a dispersive light pulse in a planar waveguide with positive, instantaneous
Kerr-type nonlinearity can be described by the (2+l)-dimensional nonlinear Schrodinger (NSE)
[1]:

Equation (1) is valid only for pulses in the picosecond range; for shorter pulses additional
terms, due to a higher-order dispersion, for example, should be included. The last term in equa-
tion (1) describes Kerr-type nonlinearity, second and third terms are associated, respectively,
with diffraction, which causes spreading of the pulse in space, and first-order group velocity
dispersion, which leads to temporal broadening of the pulse. Parameter a, which can be either
positive (for anomalous dispersion) or negative (for normal dispersion), is the dispersion-to-
diffraction ratio [2]. The spatio-temporal dynamics of the pulse depends, to a high degree, on
the sign of this parameter.

For anomalous dispersion, equation (1) is similar to NSE [3] describing the propagation of
a dispersionless beam in a Kerr-type nonlinear bulk medium if the dispersive term is replaced
by a diffraction term. Therefore, in both cases similar effects are expected. One of them
is catastrophic self-focusing, which takes place when nonlinearity dominates over transverse
diffraction and temporal dispersion. It is highly sensitive to perturbations of the system, so that
even small perturbations can dramatically enhance or stop it [4]. An arresting of catastrophic
self-focusing can be obtained, for example, by taking into account saturation-type nonlinearity
[5], or additional effects like Raman scattering [6], plasma formation [7], multiphoton ionization
[8], higher-order group velocity dispersion terms [9], or nonparaxiality of a beam propagating in
bulk media [10].

Another way to avoid catastrophic self-focusing is to choose parameters of the system in such
a way that the pulse propagates in normal dispersion regime instead of anomalous one. In this
case the terms describing dispersion and diffraction have different signs and two different effects,
spatial self-focusing and temporal self-defocusing, simultaneously influence on the propagation
of the pulse. This causes a breaking of spatio-temporal symmetry and can finally lead to spatio-
temporal splitting of the pulse into several sub-pulses. Such splitting was observed in planar
waveguides [11, 12] and bulk media [13, 14, 15, 11].

Thus, depending on the sign of dispersion, a dispersive pulse propagating in a Kerr-type
planar waveguide reveals different behavior. Catastrophic self-focusing takes place in the case of
anomalous dispersion. For normal dispersion the typical process is spatio-temporal splitting. It
seems interesting to study an interaction between two pulses co-propagating in such a medium,
i.e. a Kerr-type planar waveguide, under the assumption that one of them propagates in normal
dispersion regime and the other is in anomalous regime. To the authors knowledge this problem
has not been studied in the literature and the main purpose of this paper is to consider it.
Note that the importance of the interaction between two pulses in a nonlinear medium has been
pointed out already by Agrawal in [16], where an intriguing effect of an induced focusing of two
beams co-propagating in a self-defocusing medium has been reported.

The interaction between pulses will be assumed to be limited to cross-phase modulation,



a nonlinear effect through which the phase of an optical beam/pulse is affected by another
propagating beam/pulse and which can cause a redistribution of energy within each beam/pul-
se. Another effect, four-wave mixing, will be neglected, so that no energy transfer between both
pulses will be taken into consideration. The analysis presented in this paper is based on the
variational method [17] and numerical simulations using the split-step spectral method [18].

We proceed as follows. In section 2, two coupled NSEs describing the co-propagation of
two dispersive pulses in a nonlinear planar waveguide and basic equations following from the
variational method will be introduced. Next, in section 3, the problem of catastrophic self-
focusing will be considered. First, the influence of the parameters of the pulse propagating in
normal dispersion regime on the threshold of catastrophic self-focusing of the pulse propagating
in anomalous dispersion regime will be studied. It will also be examined if catastrophic self-
focusing of the pulse propagating in normal dispersion regime can occur as a result of the
nonlinear coupling between two pulses. In section 4, which is devoted to the problem of spatio-
temporal splitting, it will be investigated if the influence of the pulse propagating in normal
dispersion regime can enforce spatio-temporal splitting of the pulse with anomalous dispersion.
In the last section, section 5, we will focus on the limiting case when the dispersive term of the
normal pulse can be neglected. In this case the problem of two coupled (2+l)-dim NSE will be
reduced to the system of (l+l)-dim NSE coupled to (2+l)-dim NSE. The main reason to study
this configuration is to investigate a possibility of a stable, self-trapped solution.

Throughout the paper the pulse propagating in anomalous (normal) dispersion regime will
be referred to as the anomalous (normal) pulse.

2 Basic equations

The co-propagation of two optical pulses in a nonlinear planar waveguide can be described by
two coupled nonlinear Schrodinger equations:
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where the last terms represent self-phase modulation and the terms before the last ones describe
cross-phase modulation, a nonlinear effect which causes a coupling between pulses.

It is assumed that the subscript j = 1 (j = 2) denotes the anomalous (normal) pulse, hence
(7i > 0 and (72 < 0. The notations in equation (2) are explained in Appendix A. In this paper
the difference of the group velocities of two pulses, 5, will be neglected. The initial conditions
will be taken in the form of the Gaussian pulses

l-T2 (l + iC^exp^e (1 + iCy)]- (3)

In equation (3) Kj := \^J(T = 0,£ = 0)|2 is the strength of nonlinearity, and CTj (C^-) is the
temporal (spatial) chirp of the j-th pulse, j = 1, 2.



2.1 Variational method

It is known that the set of NSEs (equation (2)) can be obtained from the Lagrangian density
given by
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Following the variational method [17] let us choose a proper multi-parametric trial function
for the solution of equation (2). Since in this paper we consider the Gaussian initial condition
(equation (3)) it is natural to take as the trial function the Gaussian function:
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with twelve parameters: the complex conjugate amplitudes, Aj,A*, the temporal and the spatial
widths, wTj,W£j, and the temporal and the spatial chirps, CTj,C^j, where j = 1,2. From the
initial condition (equation (3)) it follows that Aj(( = 0) = y 7 ^ , wTj(( = 0) = «̂ gj(C = 0) = 1.

The evolution equations for the parameters of the trial function are obtained by varying the
reduced Lagrangian

(L) := f Ld^dr,

into which the trial function (equation (5)) is inserted, with respect to the parameters of the trial
function, Aj,A*j, wTj, w^j, CTj, C^j. We obtain the following 12 coupled ordinary differential
equations:
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where Xj := wTj(0)w^j(0)\A(0)\2 = Kj. From equations (6 a) and (6 b), which are actually the
energy conservation laws for two pulses, Nj := J J \^j\2d,TdS, = TTXJ, it follows that there is no
energy transfer between the pulses.

The set of equations (6 a) - (9 b) is rather complicated and only in the special case when
o"i = 12 = 1 the analytical solution

is available [19]. More general situations should be treated numerically, e.g. using the Runge-
Kutta method [20].

3 Catastrophic self-focusing

This section is devoted to the problem of catastrophic self-focusing, which can occur in the
solution of the set of equation (2). Our analysis will be based on the variational method and
numerical simulations and the comparison of the results of both.

From the point of view of analytical estimations, which can be done using the method of
moments [21, 22] or the variational method [23], catastrophic self-focusing is identified with
a development of a singularity in the solution at a finite distance of propagation. For NSE
(equation (1)) and the Gaussian initial condition (equation (3)) the threshold of catastrophic
self-focusing given by those estimations is

Kcat = cr + 1.

In our numerical simulations catastrophic self-focusing is identified with a discontinuity of the
phase 4>(T, £, £) of the amplitude ^> := l^le1^ in the central point of the coordinate system,
T = 0, £ = 0, and with non-monotonic behavior of the intensity |̂ &|2 in the central point after
catastrophic self-focusing has been reached [24]. The threshold of catastrophic self-focusing
given by the numerical analysis [25, 13, 24]

Kcat ~ cr + 0.85

is lower than the one given by analytical estimations.
In order to study the influence of the parameters of the normal pulse on the threshold of

catastrophic self-focusing of the anomalous pulse, the parameters of the anomalous pulse have
been chosen in such a way that the relations K\ > 1 + o\ (in the variational method), and



«i > 0.85 + a\ (in the numerical simulations) are satisfied, which means that catastrophic self-
focusing will take place when there is no coupling between pulses. Then the parameters of
the normal pulse, i.e. the strength of nonlinearity, K2, and the dispersion-to-diffraction ratio,
o"2, are varied. We found that catastrophic self-focusing of the pulse propagating in anomalous
dispersion regime can be arrested by the influence of the pulse propagating in normal dispersion
regime.

The results, following from the variational method, are shown in figure 1. The shaded area
denotes the range of the parameters of the normal pulse, K2 and 02, for which catastrophic
self-focusing of the anomalous pulse does not occur. It is evident that for small nonlinearity
of the normal pulse, K2, the term describing cross-phase modulation of the anomalous pulse
is negligible as compared with self-phase modulation. Therefore, the process of catastrophic
self-focusing cannot be stopped and it takes place for all values of o<i- When the strength of
nonlinearity K2 increases, the influence of the normal pulse on the anomalous pulse through the
cross-phase modulation term increases and then it is possible, for some values of the dispersion-
to-diffraction ratio, |<7|(K2)| < |o"21 < |O"U(K2)|, to stop catastrophic self-focusing. The lower
threshold, |<7|(K2)|? in the beginning decreases with an increase of the strength of nonlinearity
of the normal pulse, «2- For a sufficiently large nonlinearity, K2 > Kcat, the lower threshold
becomes zero. The upper threshold, |au(K2)|, increases with an increase of nonlinearity. The
existence of the lower threshold can be explained as follows: when |CT2| < \<Ji\ is small, the
dispersive term of the normal pulse is negligible as compared with diffraction. Therefore, the
most important role in the propagation of the normal pulse is played by self-focusing,which not
only does not lead to an arresting of catastrophic self-focusing of the anomalous pulse, but even
additionally enhances it. A similar situation is known, for example, in a configuration of two
beams, which co-propagate in a bulk medium and have the same amplitudes [18]. Namely, the
critical value of nonlinearity necessary for catastrophic self-focusing is three times smaller than
in the case when they propagate as single pulses. On the other hand, while for large 02, we
have a broadening of the normal pulse with a significant spreading of the energy out from the
center of the coordinate system, £ = 0, r = 0, for the anomalous pulse there is a tendency of
the energy to concentrate in the center. Then the overlap of two pulses becomes negligible, so
that the coupling between them through cross-phase modulation is very small and catastrophic
self-focusing of the anomalous pulse cannot be stopped by the influence of the normal pulse.

The results obtained with the aid of the numerical calculations are shown in figure 2. They
confirm predictions of the variational method. Namely, catastrophic self-focusing of the anoma-
lous pulse can be arrested by the pulses propagating in normal dispersion regime when the
strength of nonlinearity is sufficiently large, K2 > Kcat, and of dispersion-to-diffraction ratio
satisfies the relation |<7|(K2)| < |o"21 < |o7(K2)|-

Another question is whether the nonlinear coupling between pulses can cause catastrophic
self-focusing of the pulse propagating in normal dispersion regime. The variational method
and the numerical calculations demonstrate that catastrophic self-focusing of a normal pulse in
planar waveguides does not take place both when it propagates as a single pulse or when it is
accompanied by an anomalous pulse.
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Figure 1: The results of the variational method displaying the dependence of the threshold of
catastrophic self-focusing of the pulse propagating in anomalous dispersion regime, \I/i, on the
parameters of the pulse propagating in normal dispersion regime, ^2- The shaded area denotes
the range of the parameters, the strength of nonlinearity, K2, and the dispersion-to-diffraction
ratio, o~2, for which catastrophic self-focusing occurs. The parameters of the anomalous pulse
have been chosen in such a way that they are above the threshold of catastrophic self-focusing
in a single propagation regime, i.e., for (a) K\ = 2.2, o\ = 1.0, for (b) K\ = 2.3, o\ = 1.0.
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Figure 2: The results of the numerical simulations displaying the dependence of the threshold
of catastrophic self-focusing of the pulse propagating in anomalous dispersion regime, ^ i , on
the parameters of the pulse propagating in normal dispersion regime, ^2, i-e. the strength of
nonlinearity, K2, and the dispersion-to-diffraction ratio o<i- Full circle (empty triangle) points
denote occurrence (lack) of the catastrophic self-focusing. The parameters of the anomalous
pulse have been chosen in such a way that they are above the threshold of catastrophic self-
focusing in a single propagation regime, i.e., K\ = 2.0, o\ = 1.0.

4 Spatio-temporal splitting

In this section the problem of spatio-temporal splitting is discussed in more detail. The origin
of spatio-temporal splitting of a pulse propagating in normal dispersion regime in Kerr-type
planar waveguides [11, 12] or bulk media [13, 14, 15, 11] is the fact that spatial self-focusing and
temporal self-defocusing act simultaneously during the propagation. Therefore, in space, there
is a tendency of the energy to concentrate in the center of the coordinate system, r = 0, £ = 0,
whereas in time the spreading of the energy away from the center takes place. When both effects
are combined, local focusing areas develop away from the center and, as a result, spatio-temporal
splitting of the pulse into several sub-pulses takes place. The number of sub-pulses emerging in
this way depends on the propagation distance and the parameters of the system.

In all cases when spatio-temporal splitting of pulses has been observed the numerical si-
mulations have been used [11, 12, 13, 14, 15]. The variational method is not appropriate to
predict splitting of pulses, since it requires the solution to have a shape which does not change
in propagation. When a Gaussian function is chosen as the initial condition, as we have done
in this paper, it is difficult (if not impossible) to guess a trial function which would satisfy the
initial condition and also could describe spatio-temporal splitting of the pulse. In this connection
it is worthy to recall that the variational method cannot be applied to predict, for example, the
formation of higher-order solitons in planar waveguides or optical fibers [17].

Since the variational method is not applicable to the study of spatio-temporal splitting of two
pulses propagating simultaneously in a nonlinear planar waveguide, the results of this section
are due to numerical simulations. Figures 3 and 4 show the spatio-temporal dependences of



intensities of both pulses, anomalous one (figure 3(a) and 4(a)), and normal one (figure 3(b) and
4(b)), for different longitudinal variables, £. Parameters of the pulses were chosen in such a way
that when they propagate as single pulses the following effects take place: symmetric, spatio-
temporal broadening of the anomalous pulse (see figures 3(c) and 4(c)) and large asymmetrical,
spatio-temporal broadening of the normal pulse without splitting into sub-pulses (see figures
3(d) and 4(d)). Therefore, for the anomalous pulse the conditions o\ = 1 and K\ < I + o\ are
satisfied.

When the pulses propagate simultaneously, i.e. there is a nonlinear coupling between them,
the situation becomes qualitatively different. Namely, spatio-temporal splitting of both pulses
can develop, so that for ( = 2 the anomalous (normal) pulse becomes divided into n = 3
(n > 10) sub-pulses. The effect of splitting of the anomalous pulse, which does not occur when
it propagates as a single pulse, can be explained as follows. When the nonlinear coupling between
pulses through cross-phase modulation is present one pulse can induce a redistribution of energy
of the other pulse. Therefore, if there are some local focusing areas in the distribution of energy
of one pulse, the energy of the other pulse tends to concentrate there. Such a tendency has
already been pointed out by Agrawal, who has observed the occurrence of local focusing areas in
the distribution of energy of two beams which co-propagate in a defocusing nonlinear medium
[16].

5 The limiting case of vanishing dispersion of the normal pulse

In this section we consider the limiting case when the dispersive term of the normal pulse can be
neglected. We will apply the variational method and numerical simulations and compare their
results. We will assume that the initial condition has a shape of the Gaussian function given
by equation (3) and concentrate basically on the question as to whether there exists a stable
self-trapped solution of the above mentioned system of equations.

First we briefly discuss the case when the pulses propagate in a planar waveguide separately,
i.e. when there is no coupling between them. Specifically, we consider (i) the propagation of
a pulse with anomalous dispersion and (ii) the propagation of a dispersionless beam. Case (i)
can be described by the (2+l)-dim NSE, which does not have stable, self-trapped solutions.
Thus, depending on parameters of the system, either spatio-temporal spreading of the pulse or
catastrophic self-focusing take place. Case (ii) is described by the (l+l)-dim NSE which depends
only on one transverse variable £ and being an integrable system possesses the familiar soliton
solution given by sech function [3]. Taking the Gaussian function (equation (3)) which depends
on two transverse variables r and £ from the variational method we obtain that the temporal
width of the pulse is constant while the spatial width oscillates. These oscillations are due to the
fact that the shape of the Gaussian trial function differs from the exact soliton solution given
by sech function [19]. However, numerical simulations lead to a different behavior. Namely,
the temporal width of the pulse appears to oscillate synchronically with the spatial width.
Amplitudes of both oscillations decrease with the longitudinal variable ( and vanish at finite (
when the spatial soliton is formed [26, 27].

Now, let us take into account the nonlinear coupling between pulses. From the variational
method it follows that the evolution of the normal pulse coupled to the anomalous one is essen-
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Figure 3: The spatio-temporal dependence of the intensity of the anomalous pulse (a) co-
propagating with the normal pulse (b) and the spatio-temporal dependence of the intensities of
both pulses, anomalous one (c) and normal one (d) when they propagate separately. For (a) and
(b) CTI = 1,KI = 1.88,0-2 = - 0 . 1 , K2 = 2, for (c) and (d) a = 1,K = 1.88 and a = - 0 . 1 , K = 2,
respectively; the propagation distance £ = 1.0.
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Figure 4: The spatio-temporal dependence of the intensity of the anomalous pulse (a) co-
propagating with the normal pulse (b) and the spatio-temporal dependence of the intensities of
both pulses, anomalous one (c) and normal one (d) when they propagate separately. For (a) and
(b) (7i = l,Ki = 1.88, <72 = — 0.1, «2 = 2, for (c) and (d) a = 1,K = 1.88 and a = — 0.1, K = 2,
respectively; the propagation distance ( = 2.0.
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tially similar to that of the single normal pulse. Namely, the temporal width of the pulse does
not depend on the longitudinal variable, £, as it is seen from equation (8 c) with the neglected
dispersion of the normal pulse o<i = 0, while the spatial width of the pulse undergoes periodic
oscillations (See figure 5(b)). The propagation of the anomalous pulse coupled to the normal
one is, however, qualitatively different as compared with the behavior of a single anomalous
pulse. Namely, both temporal and spatial widths of the pulse undergo periodic oscillations (See
figure 5(a)). Therefore, neither spatio-temporal spreading nor catastrophic self-focusing of the
anomalous pulse can develop and a self-trapped solution arises. Note that a similar self-trapped
solution was found in the case of (2+l)-dim NSE with the saturation of nonlinearity [5].

We also performed numerical simulations for the case of simultaneously propagating pulses.
The results are displayed in figure 6 from which it is evident that the temporal and spatial widths
of both pulses oscillate synchronically, with the amplitude of the temporal oscillations smaller
than the amplitude of the spatial ones. Unfortunately, the numerical calculations are rather
labourous and we were not yet able to calculate evolution for longer longitudinal variables, £,
so that we do not know if the amplitude of oscillations decreases with ( and if no spreading
and catastrophic self-focusing of the anomalous pulse develop. Nevertheless, the currently avail-
able numerical results suggest that a self-trapped solution can exist in the configuration under
discussion. Further calculations should clarify this question.

Note that, a configuration of two simultaneously propagating pulses could also be used in
optical compression techniques for, as it is seen from figure 6(a), for some particular values of
the longitudinal distance ( the temporal width of the anomalous pulse decreases about 5 times
with respect to the initial width.

6 Conclusions

In this paper properties of two pulses propagating simultaneously in different dispersion regimes,
i.e. anomalous and normal, in a Kerr-type planar waveguide are considered. The propagation
is described by two coupled NSE. The interaction between pulses is assumed to be limited to
cross-phase modulation. Four wave mixing is neglected, i.e. no energy transfer between pulses
is taken into account. The accuracy of another assumption used in the analysis, the omitting
of the difference of group velocities of the pulses, is discussed in Appendix B. Our analysis is
based on the variational method and numerical simulations.

First we have studied the influence of the parameters of the pulse propagating in normal
dispersion regime on the threshold of the catastrophic self-focusing of the pulse with anomalous
dispersion. We observed that catastrophic self-focusing of the pulse propagating in anomalous
dispersion regime can be arrested by the pulse propagating in normal dispersion regime when
the strength of nonlinearity is sufficiently large, K2 > Kcat and the dispersion-to-diffraction ratio
satisfies the relation: |<7|(K2)| < |o"21 < |O"I(K2)|- We also investigated whether the nonlinear
coupling between pulses can cause catastrophic self-focusing of the pulse propagating in normal
dispersion regime. Both the variational method and numerical calculations, show that the
answer to this question is negative. Namely, catastrophic self-focusing of a normal pulse in
planar waveguides does not take place both when it propagates as a single pulse or when it is
accompanied by an anomalous pulse to which it is nonlinearly coupled.
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Figure 5: The results obtained using the variational method displaying the dependence of the
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We have also found, using the numerical simulations, that the presence of the pulse propa-
gating in normal dispersion regime can lead to spatio-temporal splitting of the pulse propagating
in anomalous dispersion regime. Recall that splitting of an anomalous pulse into several pulses
does not occur when it propagates as a single pulse.

We also considered the limiting case of vanishing dispersion of the pulse propagating in
normal dispersion regime. The main motivation was to study whether such configuration can
lead to a stable self-trapped propagation of a pulse with anomalous dispersion. The positive
answer has been obtained within the variational method which confirms that neither spatio-
temporal spreading nor catastrophic self-focusing of the anomalous pulse can develop thus giving
rise to a self-trapped solution. Note, that this kind of stabilization is similar to the one which
was earlier found in media with the saturation-type nonlinearity [5]. Though the existing data
supports the existence of a self-trapped solution, conclusive results require labourous simulations
at high values of the longitudinal variable £ and are not yet available (work in progress).

In conclusion, note that the existence of a stable self-trapped solution could be useful for
example in the optical switching devices. Besides, the configuration of two simultaneously
propagating pulses in a planar waveguide could be of use in optical compression techniques.
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Appendix A

The notation in equation (2) is as follows [2]: ( = zj'ZDFI is the longitudinal coordinate normal-
ized to the Fresnel diffraction length of the anomalous pulse, £ = x/w\ is the spatial transverse
coordinate normalized to the initial spatial width of the anomalous pulse, r = (£ — /?} z)/t\ is
the local time normalized to the initial temporal width of the anomalous pulse. The parameters
OJ = ZDFI/ZDSJ, /i = zDFi/zDF2, Q = (l/f9i - l / ^ ) ( ^ D F I / ^ ) , r = Ai/A2 = CJ2/^I denotes
respectively the dispersion-to-diffraction ratio, the ratio of the Fresnel diffraction length of the
anomalous pulse to the Fresnel diffraction length of the normal pulse, the difference of the group
velocities of two pulses, and finally the ratio of the carrier frequency of the anomalous pulse
to the carrier frequency of the normal pulse. ^ j := /3- WjJno(u)j)n2(u)j)^j denotes the nor-
malized amplitude of the j-s pulse, where ^j is the amplitude of the slowly varying envelope
of the electric field. The dispersive terms are denned as follows: m := /3^°\LOJ) = OOJ/C is the
wavenumber, /3- := S/3/8io\UJ=ulj = 1/%/ is the reverse group velocity, and m := S2(3/8LU2\U1=UJJ

is the group velocity dispersion. The parameters ZDFJ '•= P] no(ujj)wf, z^Sj '•= $\IP) \ wji
tj denotes, respectively, the Fresnel diffraction length, the dispersive length, the initial spatial
width and the initial temporal width of the j-s pulse. In the above notation j = 1,2, where the
subscript j = 1 (j = 2) refers to the anomalous (normal) pulse.

15



Appendix B

Since we have assumed that pulses have different wavelengths and different group velocity dis-
persions, it is physically evident that they should also have different group velocities. Therefore,
the assumption that S = 0 is a simplification accepted in this paper and should be viewed as
a first step of the analysis. When S / 0 the pulses propagate with different velocities and
the overlap between them decreases with the longitudinal variable. Therefore, the nonlinear
coupling between them also decreases. In the limiting case of 8 —> oo the coupling between
pulses becomes zero and the problem of simultaneous propagation of two pulses reduces to the
case when they propagate separately. Note that in the variational method the inclusion of the
parameter 8 becomes problematic since for the trial function given by a Gaussian function the
term i\g/r [^^(d^'i/dr) — ^(cM^/^7")] in the Lagrangian (equation (4)) becomes zero and one
should consider another candidate function for the trial function.

However, we believe that the inclusion of the parameter S will not cause qualitative changes
in the results of this paper, such as the possibility of an arresting of catastrophic self-focusing
of the pulse propagating in anomalous dispersion regime by the influence of the pulse propa-
gating in normal dispersion regime. The only difference we expect is a change of the values
of the parameters, o~i,o~u,Kcat, which describe the threshold of catastrophic self-focusing. This
quantitative changes would be proportional to the value of the parameter 8.
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