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Abstract

Spatio-temporal compression of a pulse in anomalous dispersion regime which co-
propagates in a Kerr-type planar waveguide with a pulse in normal dispersion regime
is studied. It is found that the presence of the pulse propagating in normal dispersion
regime can lead to a termination of catastrophic self-focusing of a pulse propagating in
anomalous dispersion regime and to a large compression of the latter pulse. It is shown
that to optimize a compressor, i.e. to choose parameters of the system to ensure the
largest possible compression factor, one should have a sufficiently large strength of non-
linearity of the pulse propagating in anomalous dispersion regime and either sufficiently
small or sufficiently large dispersion-to-diffraction ratio of the pulse propagating in nor-
mal dispersion regime. The length of the waveguide in which pulses propagate should be,
as well, suitably chosen. It is also argued that the configuration of a compressor with
two simultaneously propagating pulses may have advantages over the configuration with
a single pulse.
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The method of spatio-temporal pulse compression takes an advantage of
simultaneous spatio-temporal self-focusing of pulses propagating in anoma-
lous or normal dispersion regime in Kerr-type bulk media or planar waveg-
uides [1. 2. 3]. In the case of anomalous dispersion large compression factor,
that is short pulses with high intensity of the optical field, can be obtained
[4], However, too high optical fields can damage the propagation medium.
Therefore the process of self-focusing is ought to be suppressed at the cor-
responding high intensities. This can be achieved by the saturation-type
nonlinearity which replaces the simplest Kerr nonlinearity [5], Besides, it
was shown recently [6] that catastrophic self-focusing of a pulse propagating
in anomalous dispersion regime in a Kerr-type planar waveguide can be pre-
vented by a presence of a, second pulse which propagates in normal dispersion
regime. In [6] catastrophic self-focusing and spatio-temporal splitting in the
above configuration were considered. In this paper we will focus on com-
pression of a pulse propagating in anomalous dispersion regime in the same
configuration.

To describe the propagation of the pulses we use two coupled nonlinear
Schrodinger equations:
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where (" is the longitudinal coordinate, £ — x(w\ is the spatial transverse
coordinate, r ~ (t — p[ z)/ti is the local time, the parameters <T.J, JU, r
denote respectively the dispersion-to-diffraction ratio, the ratio of the Fresnel
diffraction length of the anomalous pulse to the Fresnel diffraction length of
the normal pulse, and the ratio of the carrier frequency of the anomalous pulse
to the carrier frequency of the normal pulse. In this notation j = 1, 2, where
the subscript j = 1 (j = 2) refers to the pulse propagating in anomalous
(normal) dispersion regime, which means that aY > 0 and <r2 < 0.

In this paper, the difference of the group velocities of the pulses and the
four wave mixing terms are neglected, i.e. no energy exchange between pulses
is considered. The following analysis is based on the va.riati.onal method [7]
and numerical simulations using the split-step spectral method [8]. Through-
out the paper the pulse propagating in anomalous (normal) dispersion regime
will be referred to as the anomalous (normal) pulse.

As the initial condition and the trial function in the variational method
we take the Gaussian function

2vjrj(C) exp (2)



where yKjiC) is &n amplitude, ?iJrj(C) {w$j(0) is the temporal (spatial) width
and CTj(C) (Cy(0) ^S the temporal (spatial) chirp of the j-th pulse, j = 1, 2.
Initial conditions aredefined in such a way that uvi (0) = 'u>r2(0) = tt-'̂ i .(0) =
wf2(0) = 1, CVi(O) = C T 2 (0 ) = Cei(0) = Q2(0) - 0. Parameters Kl(0),
«:2(0); are the strengths of nonlinearity.

The variational method yields the following equations describing the evo-
lution of temporal and spatial widths of the pulses [6]:

a\

The variational analysis a.nd numerical simulations of equations (la) and
(lb) were already presented in [6] where it was shown that catastrophic self-
focusing of the pulse propagating in anomalous dispersion regime can be
prevented by the pulse propagating in normal dispersion regime if the strength
of nonlinearity of the latter pulse is sufficiently large, i.e.

(4a)

and the dispersiou-to-diffraction ratio satisfies the relation

< I(721 < |<7u2(«2)|- (46)

Note that values of the parameters Ktk2,&i2 a n ( i awi given by the variational
method arc different from those obtained hi numerical simulations. In this
paper we will concentrate on the case when the above mentioned conditions
are satisfied (equations (4a)and (4b)) and study possibilities of compression
of the pulse propagating in anomalous dispersion regime.

Let us first consider the evolution of the temporal and the spatial widths
of the pulses. For this purpose, let us compare (see figure l(a) and (b))
the numerical solution of differential equations (3a) - (3d) and the results
of direct numerical simulations of NSEs (equation (1)). From figure l(a) it
is evident that the widths of the anomalous pulse initially decrease reaching
minimal values at a certain value of the longitudinal coordinate, (v2 (Cna),
remain constant in the interval

]), (5)



and then increase. Here the subscripts v2 and (rc-2) denote, respectively,
values obtained from the variational method (the numerical simulations) for
the case of two pulses, anomalous and normal, propagating simultaneously.
Note that A(n2 > ^Cv2 and AQ2 > A-Cni, where AQL is the correspond-
ing interval obtained from the numerical simulations for a single pulse with
anomalous dispersion propagating in a Kerr-type planar waveguide (see [9]).

In figure l(b) the evolution of the temporal and spatial width of the
normal pulse is displayed. It is seen that the discrepancy between the results
of the numerical and the variational method is more significant than in the
case of the anomalous pulse. Namely, the numerical simulations indicate that
an initial narrowing of the spatial and the temporal width of the pulse and
spatio-temporal splitting occur, while the vaxiational estimation overlooks
these effects. Note that a similar discrepancy also occurs in the case of a
single pulse propagating in normal dispersion regime in a nonlinear planar
waveguide [9],

The next step in our study is to consider details of the compression of
the anomalous pulse. Compression is characterized by the maximal compres-
sion factor, crnax, which is defined as the ratio of the initial temporal width
of the pulse to the minimal temporal width which can be achieved during
the propagation of the pulse [1]. Since the minimal temporal width of the
anomalous pulse is reached when the condition given by equation (5) is sat-
isfied, then for the optimization of a compressor, i.e. to achieve the largest
possible compression, the length of the planar waveguide in which the pulses
propagate should also satisfy this condition. Therefore, the longer is the
interval A(n2. the easier is to calibrate the compressor. From this point of
view the compressor with two simultaneously propagating pulses seems to be
more beneficial than the compressor with a single pulse, since AQn2 > A(^i
(see the discussion above).

In figure 2 the dependence of the maximal compression factor of the
anomalous pulse, cmax, on the dispersion-to-diffraetion ratio of the normal
pulse, (72, obtained with the aid of the variational method is displayed. Three
different values of the strength of nonlinearity of the anomalous pulse are
considered: KI = 1.9 < ncaiv, «i = 2.0 = ncatv, and K,\ = 2.1 > K,catv, where
Kcatv is the threshold of catastrophic self-focusing given by the variational
method for a single pulse propagating in anomalous dispersion regime [10].
It is seen that for the first two cases represented, respectively, by full and
broken curve in figure 2, the parameter cnMX increases with the decreasing of
CT2, and reaches a maximal value for <r2 —> 0. Another situation takes place for
the strength of nonlinearity exceeding the critical value, x̂ > Kcatv = 2.0, (see
chain curve in figure 2). Namely, we sec two maxima in the dependence of the
parameter cmax on a2' one at CT2 —> &L2 and the second one at CT2 —> <7u2. Here
v~i2>&u2 are the thresholds of catastrophic self-focusing (see equation (5)).
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Figure 1: Comparison of the results obtained from the variational method
and the numerical simulations regarding the evolution of the temporal and
the spatial width of the anomalous (a) and the normal pulse (b) in the case
of their simultaneous propagation O\ = 1, K\ = 2, <r2 = —1, K-2 = 2.
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Figure 2: The maximal compression factor of the anomalous pulse, cmax,
versus the dispersion-to-diffraction ratio of the normal pulse, c^, obtained
with the aid of the variational method. Three different values of the strength
of nonlinearity of the anomalous pulse are considered: K-\ — 1.88 < K-criiv
(full curve), K\ = 2.0 = Kcritv (broken curve), and K\ = 2.1 = Kcritv (chain
curve), where Kcritv is the threshold of catastrophic self-focusing given by the
variational method for the case of a single pulse propagating in anomalous
dispersion regime, c^ = o"2 = 1> K2 = 1-0.

From figure 2 it also follows that the maximum compression factor increases
with the strength of nonlinearity, i.e. the relation

-•"* ^calv) (6)

is satisfied.
The results of numerical simulations displayed in figure 3 manifest qual-

itative similarity to the described above variational estimations. Namely,
for small values of the strength of nonlinearity of the anomalous pulse,
Ki < Kcatn, (see full circle points in figure 3) there is only one maximum
in the dependence of the parameter c,rw;i. on c?i, whereas for higher values of
nonlinearity, K± > K,catn, (see empty square points in figure 3) two maxima
arise: for <T2 —> <Jn &nd for a2 -^ &u2- Moreover, the relation (6) obtained by
the variational method is also satisfied, one should only replace Kcatn by the
corresponding quantity obtained by numerical simulations, KcaLn = 1.89 [9],
Therefore, in order to increase compression one should choose the parame-
ters of the system in such a way that % > n-cat and that either oi —> OQ or

Concluding, in this paper the details concerning spatio-temporal com-
pression of a pulse in anomalous dispersion regime, which propagates in a
nonlinear planar waveguide simultaneously with a pulse in normal disper-
sion regime were studied. The influence of the dispersion-to-diffraction ratio

6



7.0

6.0

5.0

3.0 -

2.0
0.0

K_l=1.88
1-2.0

—B-"

0.2 0.4 0.6 0.8

a 2
1.0 1.2 1.4

Figure 3: The maximal compression factor of the anomalous pulse,
versus the dispersion-to-diffraction ratio of the normal pulse, Oi-> obtained
from the numerical simulations. Two different values of the strength of non-
linearity of the anomalous pulse are considered: K\ — 1.88 < KCTiiv (full
circles), and K,\ = 2.0 > Kcritv (empty boxes), where Kcrav = 1.89 is the
threshold of catastrophic self-focusing given by the numerical simulations
for the case of a single pulse propagating in anomalous dispersion regime.
(J-\ = (Ji = 1. «2 = 1-0.

of the pulse propagating in normal dispersion regime and of the strength
of ti on linearity of the pulse propagating in anomalous dispersion regime on
the maximal compression factor of the latter pulse were considered. It was
shown by the variational estimations and confirmed by numerical simulations
that in order to optimize a compressor, i.e. to achieve the largest possible
compression one should have a sufficiently large strength of nonlinearity of
the pulse propagating in anomalous dispersion regime and either sufficiently
small or sufficiently large dispcrsion-to-diffraction ratio of the pulse propa-
gating in normal dispersion regime. The length of the waveguide in which
pulses propagate should be, as well, suitably chosen. It was also found that
the configuration of the compressor with two simultaneously propagating
pulses seems to be more beneficial than the configuration with a, single pulse.
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