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Abstract

In this paper possibilities of a stabilization of large amplitude fluctuations in an
intracavity-doubled solid-state laser are studied. The modification of the cross-sa-
turation coefficient by the effect of spatial hole-burning is taken into account. The
stabilization of the laser radiation by an increase of the number of modes, as proposed
in [James et al., 1990b, Magni et al., 1993], is analyzed. It is found that when the cross-
saturation coefficient is modulated by the spatial hole-burning the stabilization is not
always possible. We propose a new way of obtaining a stable steady-state configuration
based on an increase of the strength of nonlinearity, which leads to a strong cancellation
of modes, so that during the evolution all of the modes, but a single one, are canceled.

Such a steady-state solution is found to be stable with respect to small perturbations.

Short title: Elimination of Chaos in Multimode, Intracavity-doubled...



1 Introduction

Solid-state lasers containing frequency-doubling crystals are efficient and compact sources of
coherent visible optical radiation. Unfortunately, when they operate in multimode regime,
one observes irregular fluctuations of the output intensity. This behavior, referred to as
the green problem, has been reported for the first time by Baer [Baer, 1986]. He found
that these instabilities arise from a coupling between longitudinal modes of the laser due to
sum-frequency generation. In particular, when such a laser operates in a single longitudinal
mode, its output is stable [Kennedy & Barry, 1974]. In the case of two oscillating longitudinal
modes, the output intensity is stable only for small values of nonlinearity, otherwise both
modes tend to pulse on and off out of phase [Baer, 1986]. When the number of lasing modes
is larger than two, the laser can exhibit, depending on the parameters describing it, various
types of behaviour such as: antiphase dynamics [James et al., 1990b, Wiesenfeld et al.,1990,
James et al., 1990a, Roy et al., Bracikowski & Roy, 1991, Mandel & Wang, 1994, Wang et
al., 1995, Otsuka et al., 1997], clustering [Baer, 1986], grouping [Otsuka et al., 1997], and
chaotic dynamics [James et al., 1990a, Roy et al., Bracikowski & Roy, 1991, Liu et al., 1997].

One of the motivations of the large number of papers devoted to intracavity-doubled solid
state lasers and published during the last decade has been the need to find a configuration
and the range of parameters describing the lasers, which could guarantee a stability of their
outputs. Several ways to reach this goal have been found, for example, an introduction of a
quarter-wave plate into the laser cavity, a proper alignment of the angle between birefringent
axes of the active medium and the nonlinear crystal [James et al., 1990a, James et al.,
1990b, Roy et al.], a placing of a tilted mirror inside the cavity [Ustyugov et al., 1997], or
an utilization of the effect of sum-frequency-mixing [Falter et al., 1997, Danailov & Apai
1994]. Moreover, it has been predicted analytically [James et al., 1990b] and confirmed
experimentally [Magni et al., 1993] that when the number of oscillating longitudinal modes
is set to be sufficiently large (for example, by increasing the length of the laser cavity) the
output of the laser becomes stable. Besides, the green problem can also be avoided in the
case of a single mode operation of the laser, which can be obtained, for example, by use of

an intracavity etalon [Baer, 1986] or a birefringent filter [Nagai et al., 1992, Fan, 1991]



The main goal of this paper is to continue the investigations of the green problem. The
fact that the cross-saturation coefficient is modulated by the spatial hole-burning effect is
taken into account. Firstly, the stabilization of the laser radiation by an increase of the
number of longitudinal modes, as proposed in [James et al., 1990b, Magni et al., 1993] is
analyzed. The results presented in [James et al., 1990b, Magni et al., 1993], where the cross-
saturation coefficient was assummed to be constant for all modes, are compared with the
numerical data. It is shown that the theoretically obtained [Wang & Mandel, 1993] linear
dependence of the minimal number of modes necassary for stabilization the laser output on
the strength of nonlinearity agrees with the numerical solutions only in the case of sufficiently
small nonlinearity. For larger values of nonlinearity, due to the cancellation of modes during
the evolution, the minimal number of modes obtained by the numerical simulations is larger
than the number which follows from the theoretical predictions. For very large nonlinearity
this cancellation is so strong that only a few modes survive (even when there are initially 250
oscillating modes in the laser cavity). Therefore, a large number of simultaneously oscillating
modes necessary for stabilization of the laser output cannot be achieved. A similar situation
takes place when the cross-saturation coeflicient is modulated by the effect of spatial hole-
burning, therefore the stabilization of the laser output by an increase of the number of
longitudinal modes is not always possible, as a result of a strong competition between modes
and a cancellation of some of them during the evolution. However, the problem of the
stabilization of the laser output can be solved in another way, namely, by an increase of the
strength of nonlinearity, which leads to very strong competition between the modes, so that
during the evolution all of them, but a single one, are canceled. As a consequence, a steady-
state solution, which is stable against small perturbations, arises. This is the stabilization
mechanism proposed in the present paper. It is valid in the case of constant cross-saturation

coefficient, as well as in the case when the spatial hole-burning is taken into account.

2 Basic Equations

The analysis presented in this paper is based on the Baer-type rate equations [Baer, 1986]

extended by Roy, Bracikowski and James to the case when the effect of spatial hole-burning



is taken into account [Roy et al., Bracikowski & Roy, 1991] !. These equations have the

following form:
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where N is the number of longitudinal modes; 7. and 74 are, respectivelly, the cavity round
trip time and the fluorescence lifetime; I(p,t) and G(p,t) are, respectively, the intensity and
gain of the p-th longitudinal mode; ¢, is the cavity loss parameter for the p-th mode; ~, is
the small signal gain; B(p, p) and B(p, ¢) describe, respectivelly, self-saturation of the p-mode
and cross-saturation between two modes, p and ¢; By = 0.06 is the scaling parameter; [ is the
length of the gain medium; L is the length of the laser cavity, zg is the distance of the gain
medium from the first cavity mirror, (as shown in Fig. 1); &k, = i—: is the wavevector of the
longitudinal cavity mode p with the wavelengths A, = %. Note that even through in Eq. (2)

three parameters: L, [, and zg are present, the modified cross-saturation coefficient depends

L

only on two rescaling parameters, ;

and %. The parameter € is a nonlinear coefficient which
describes the conversion efliciency of the fundamental intensity into the doubled intensity.
The terms el(p,t)? and el(p,t)I(g,t) in Eq. (1 a) account for the loss in the intensity of
the fundamental frequency through second harmonic generation and through sum-frequency
generation, respectivelly.

The set of equations (1 a,b) has a rather complicated structure and it is not possible to

solve it analytically. Therefore, the results presented in this paper has been obtained with

the aid of the numerical method of Runge-Kutta.

! Although Roy et al. have written down an explicit form for the cross-saturation coefficient, they were

using in their analysis the approximation that the cross-saturation coefficient is constant for all modes.



3 Simplified Model - No Spatial-Hole Buring Effect

In this section the approximation that the cross-saturation coefficient is constant for all
modes: B(p,q) = B(p,q) = %, is used. It is assumed that losses and small signal gains
are the same for all modes, i.e. o, = a = @, Gyp = Gy = G,, where p,g = 1,...,N.
Other parameters describing the system have been chosen as follows: 7., = 10[ns], 74 =
0.24 [ms],a = 0.015,y = 0.12, By = 0.06. The number of longitudinal modes, N = 1, ..., 250,
and the strength of nonlinearity, e = 1077 + 1072, are not fixed and they are varied in the
analysis.

As the first step let us consider the dependence of the laser output on the number of
longitudinal modes initially excided in the laser cavity. From the numerical simulations
it follows that for very small nonlinearity, ¢ &~ 0, the laser output is stable, even for a
large number of longitudinal modes. In the case of larger nonlinearity, € = 1.0 x 1074, as
it can be seen from Fig. 2a, the behavior of the laser output is complicated and already
for three simultaneously oscillating longitudinal modes the total intensity exhibits irregular
oscillations. When the number of modes increases, amplitudes of those oscillations slowly
increase (see Fig. 2b representing the results for 70 modes). Finally, when the number of
modes is larger than the critical value, the total stabilization of the laser output occurs, as
shown in Fig. 2c.

However, for slightly higher than previously considered value of nonlinearity, e = 1.2 x
10~*, we have not observed the stabilization of the laser output, even for very large number
of longitudinal modes, N = 200 (compare the total intensity of the laser output for N = 25,
N =100, and N = 200 modes, shown, respectivelly, on Figs. 2d, 2e, and 2f). This happens
because of cancelation of modes, as a result of a competition between them, which takes
place during the evolution.

The dependence of the minimal number of modes neceessary for stabilization of the laser
output on the strength of nonlinearity is presented in Fig. 3. As it can be seen, for small
nonlinearity, € < 0.8 x 107*, there is a rather good agreement between theoretically [Wang
& Mandel, 1993] and numerically obtained results. However, when nonlinearity increases,

0.8 x107* < € < 1.0 x 107, the minimal number of modes obtained in numerial simulations



is larger than the number predicted theoretically. This discrepancy is the result of the
competition between modes, which leads to cancellation of some of them during the evolution.
When € > 1.2 x 10~ the cancellation is so big that after some time only few modes survive,
thus a sufficiently large number of modes necessary for stabilization of the laser cannot be
realised.

Concluding, depending on the relation between nonlinearity and the number of longi-
tudinal modes, the dynamics of a multimode, intracavity-doubled, solid-state laser can be
divided into four regions as illustrated in Fig. 5. In particular, when nonlinearity is small
and the number of modes is larger than a critical value the output of the laser is stable.
Examples of such a behavior, which is labeled as Region I, are shown in Fig. 4a. With
increasing nonlinearity the complexity of the behaviour of the laser increases and irregular
fluctuations of the output intensity appear. This behavior, depicted in Fig. 4b, corresponds
to Region II. For even larger values of the strength of nonlinarity the cancellation of modes
starts to take place. When nonlinearity exceedes the critical value €..;; the evolution of
the output intensity leads to a cancellation of a large number of modes, so that only a few
of them survive. As s result, a stabilization of the laser output cannot be obtained. This
behavior, illustrated in Fig. 4c, is classified as Region III. When nonlinearity is larger than
the critical value €..;;2 there is such a large mutual cancellation of modes that after some
time only one of them survives. Therefore, the steady-state solution, shown in Fig. 4d,
which is stable against small perturbations, arises.

This mechanism of stabilization, achieved by forcing the laser to operate in the one-mode
regime, is similar to other approaches presented in the literature, where the stabilization is
obtained by inserting into the laser cavity an additional element like an etalon [Baer 1986]
or a birefringent crystal [Nagai et al., 1992, Fan, 1991]. However, the method proposed here

seems to be a better solution, since no additional element is involved.

4 Inclusion of the Effect of Spatial Hole-Burning

In this section the analysis presented in the previous section is extended to take into account

the effect of spatial hole-burning. The present analysis is based on the Baer-type rate



equations, Eq. (1), modified by Bracikowski, Roy and James [Roy et al., Bracikowski &
Roy, 1991], who have written down an explicit form for the cross-saturation coeflicient, Eq.
(2), but were not investigating the influence of the spatial hole-burning on the laser dynamics.
As far as the autors know, the analysis presented in this section is the first study of this
issue.

Similarly to the previous section, two ways of the laser stabilization are analyzed: by
increasing the number of longitudinal modes and by increasing the strength of nonlinearity.
Parameters describing the laser cavity are chosen to be as follows: L = 1.2 [m], I = 6 [mm],
2o = 12 [mml].

Our results show that when the spatial hole-burning effect is taken into account (i) the
competition between the modes is much stronger than in the case of the cross-saturation
coefficient constant for all modes (ii). Therefore, the minimal number of modes which are
necessary to obtain the stabilization of the laser output is in the case (i) larger than in
the case (ii). For example, for the strength of nonlinearity ¢ = 0.0001 only 80 modes are
necessary in the case (ii), as shown on Fig. 2c, while in the case (i) even 200 initially
oscillating modes are not sufficient for the stabilization of the laser output, as shown on Fig.
bc.

Therefore, an alternative approach of the stabilization of the laser output based on an
increasing of the strength of nonlinearity, which has been proposed in the previous section,
can be examined. Indeed, from the results of the numerical simulations, displayed in Fig. 6f
it follows that the stabilization of the laser output can be obtained when the nonlinearity is
larger than a critical value. This occurs because of an extensive cancellation of modes, due

to which the laser operates in a single longitudinal mode.

5 Conclusions

In this paper the properties of the dynamics of multimode intracavity-doubled solid-state
lasers have been studied. The infulence of spatial hole-burning on the cross-saturation
coeflicient was taken into account. The system was described by the rate equations of

Baer-type, which were solved numerically with the aid of the Runge-Kutta method.



Firstly, the case of the cross-saturation coefficient constant for all modes was considered.
The minimal number of modes necassary for the stabilization of the laser output was defined
and its dependence on the strength of nonlinearity was studied. It was shown that for small
nonlinearity this dependence is linear and agrees with the theoretical predictions. However,
for larger values of nonlinearity the minimal number of modes was found to be larger than
the number obtained in theoretical considerations. As a reason of this discrepancy the
effect of the competition between the modes and cancellation of some of them during the
evolution was given. It was also observed that with increasing of nonlinearity the competition
between modes increases, so that for some values of nonlinearity the initially large number
of oscillating modes is reduced to only a few of them. For much higher values of nonlinearity
this competition is so strong that only a few modes survive. Therefore, a large number of
simultaneously oscillating modes cannot be realised and the stabilization cannot be obtained
in this way. However, we propose another method based on the increase of the strength of
nonlinearity. This stabilization occurs for such a high value of nonlinearity, for which all
modes, besides a single one, are canceled during the evolution. In this case a steady-state
solution, stable against small perturbations, arises.

A similar analysis was accomplished for the cross-saturation coefficient modulated by the
effect of spatial hole-burning. We have shown that in this case the stabilization of the laser
output by increase of the number of longitudinal modes is hardly possible. Therefore, an
alternative approach of the stabilization based on an increasing of the strength of nonlinearity
have been examined and shown to be an appropriate solution.

The method of a stabilization of a laser output, as proposed in our paper, is similar to
other approaches presented in the literature where the stable output of the laser is achieved
by forcing the laser to operate in a single-mode regime, for example, by inserting into the
cavity an etalon or a birefringent crystal. However, the method proposed here offers a better

solution, since no insertion of an additional element into the laser cavity is needed.
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Figure 1: Schematic diagram of an intracavity-doubled solid-state laser. L denotes the length
of the cavity, [ is the length of the gain medium, zj is the distance of the gain medium from

the cavity mirror.

Figure 2: The evolution of the total intensity, I,; = Y= I(n,t), of the laser for different
values of the initial number of longitudinal modes: a) N =3, b) N = 70, ¢) N = 80, d)
N =5,¢) N =100, f) N = 250 and different values of nonlinearity: a), b), ¢) ¢ = 0.0001,

d), e), f) e = 0.00012; the case of the cross-saturation coeflicient constant for all modes.

Figure 3: The dependence of the minimal number of modes, N,,;, necessary to obtain a
stabilization of the laser output as a function of the nonlinear coeflicient, ¢; the comparison
between the theoretical predictions (the straight line) and the results of the numerical

simulations; the case of the cross-saturation coeflicient constant for all modes.

Figure 4: The evolution of the total intensity, I;,; = ZZZJJV I(n,t), of the laser, for different
values of nonlinearity: a) e = 0.0001, b) e = 0.00012, c) e = 0.000125, c) ¢ = 0.00013 and a
constant value of the number of longitudinal modes, N = 100; the case of the cross-saturation

constant for all modes.

Figure 5: Different regions of the laser behavior, depending on the number of longitudinal

modes, NV, and the nonlinear coeflicient, e.

Figure 6: The evolution of the total intensity, I,,; = Y."= I(n,t), of the laser for different
values of the initial number of longitudinal modes: a) N = 25, b) N = 100, ¢) N = 200
and a constant value of nonlinearity, e = 0.0001; and also for different values of nonlinearity:
a) € = 1.0107%, b) € = 1.0107%, ¢) =1.010~* and a constant number of longitudinal modes,
N = 20; the case of the cross-saturation coefficient modulated by the effect of spatial hole-

burning.
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