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In this paper possibilities of a stabilization of large amplitude fluctuations in an intracavity-
doubled solid-state laser are studied. The modification of the cross-saturation coefficient by the
effect of spatial hole-burning is taken into account. The stabilization of the laser radiation by
an increase of the number of modes, as proposed in [James et al., 1990b; Magni et al., 1993],
is analyzed. It is found that when the cross-saturation coefficient is modulated by the spatial
hole-burning the stabilization is not always possible. We propose a new way of obtaining a
stable steady-state configuration based on an increase of the strength of nonlinearity, which
leads to a strong cancellation of modes, so that during the evolution all modes, but for a single
one, are canceled. Such a steady-state solution is found to be stable with respect to small
perturbations.

1. Introduction

Solid-state lasers containing frequency-doubling
crystals are efficient and compact sources of coher-
ent visible optical radiation. Unfortunately, when
they operate in multimode regime, one observes
irregular fluctuations of the output intensity. This
behavior, referred to as the green problem, has been
reported for the first time by Baer [1986]. He found
that these instabilities arise from a coupling be-
tween longitudinal modes of the laser due to sum-
frequency generation. In particular, when such a
laser operates in a single longitudinal mode, its out-
put is stable [Kennedy & Barry, 1974]. In the case
of two oscillating longitudinal modes, the output
intensity is stable only for small values of nonlin-
earity, otherwise both modes tend to pulse on and
off out of phase [Baer, 1986]. When the number
of lasing modes is larger than two, the laser can
exhibit, depending on the parameters describing it,

various types of behavior such as: antiphase dy-
namics [James et al., 1990b; Wiesenfeld et al., 1990;
James et al., 1990a; Roy et al., 1993; Bracikowski
& Roy, 1991; Mandel & Wang, 1994; Wang et al.,
1995; Otsuka et al., 1997], clustering [Baer, 1986],
grouping [Otsuka et al., 1997], and chaotic dy-
namics [James et al., 1990a; Roy et al., 1993;
Bracikowski & Roy, 1991; Liu et al., 1997].

One of the motivations of the large number of
papers devoted to intracavity-doubled solid-state
lasers, and published during the last decade has
been the need to find a configuration and the range
of parameters describing the lasers, which could
guarantee a stability of their outputs. Several ways
to reach this goal have been found, for example,
an introduction of a quarter-wave plate into the
laser cavity, a proper alignment of the angle be-
tween birefringent axes of the active medium and
the nonlinear crystal [James et al., 1990a; James
et al., 1990b; Roy et al., 1993], a placing of a tilted
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mirror inside the cavity [Ustyugov et al., 1997], or
an utilization of the effect of sum-frequency-mixing
[Falter et al., 1997; Danailov & Apai, 1994]. More-
over, it has been predicted analytically [James et al.,
1990b] and confirmed experimentally [Magni et al.,
1993] that when the number of oscillating longitudi-
nal modes is set to be sufficiently large (for example,
by increasing the length of the laser cavity) the out-
put of the laser becomes stable. Besides, the green
problem can also be avoided in the case of a single
mode operation of the laser, which can be obtained,
for example, by use of an intracavity etalon [Baer,
1986] or a birefringent filter [Nagai et al., 1992; Fan,
1991].

The main goal of this paper is to continue the
investigations of the green problem. The fact that
the cross-saturation coefficient is modulated by the
spatial hole-burning effect is taken into account.
Firstly, the stabilization of the laser radiation by
an increase of the number of longitudinal modes,
as proposed in [James et al., 1990b; Magni et al.,
1993] is analyzed. The results presented in [James
et al., 1990b; Magni et al., 1993], where the cross-
saturation coefficient was assummed to be constant
for all modes, are compared with the numerical
data. It is shown that the theoretically obtained
[Wang & Mandel, 1993] linear dependence of the
minimal number of modes necessary for stabiliza-
tion of the laser output on the strength of non-
linearity agrees with the numerical solutions only
in the case of sufficiently small nonlinearity. For
larger values of nonlinearity, due to the cancella-
tion of modes during the evolution, the minimal
number of modes obtained by the numerical simula-
tions is larger than the number which follows from

the theoretical predictions. For very large nonlin-
earity this cancellation is so strong that only a few
modes survive (even when there are initially 250
oscillating modes in the laser cavity). Therefore,
a large number of simultaneously oscillating modes
necessary for stabilization of the laser output can-
not be achieved. A similar situation takes place
when the cross-saturation coefficient is modulated
by the effect of spatial hole-burning, therefore the
stabilization of the laser output by an increase of the
number of longitudinal modes is not always possi-
ble, as a result of the strong competition between
modes and a cancellation of some of them during
the evolution. However, the problem of the stabi-
lization of the laser output can be solved in another
way, namely, by an increase of the strength of non-
linearity, which leads to very strong competition
between the modes, so that during the evolution,
all, but for a single one, are canceled. As a con-
sequence, a steady-state solution, which is stable
against small perturbations, arises. This is the sta-
bilization mechanism proposed in the present paper.
It is valid in the case of constant cross-saturation
coefficient, as well as in the case when the spatial
hole-burning is taken into account.

2. Basic Equations

The analysis presented in this paper is based on the
Baer-type rate equations [Baer, 1986] extended by
Roy, Bracikowski and James to the case when the
effect of spatial hole-burning is taken into account
[Roy et al., 1993; Bracikowski & Roy, 1991].1 These
equations have the following form:
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1Although Roy et al. have written down an explicit form for the cross-saturation coefficient, they were using in their analysis
the approximation that the cross-saturation coefficient is constant for all modes.
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Fig. 1. Schematic diagram of an intracavity-doubled solid-
state laser. L denotes the length of the cavity, l is the length
of the gain medium, z0 is the distance of the gain medium
from the cavity mirror.

kp =
πp

L
, p, q = 1, . . . , N ,

where N is the number of longitudinal modes; τc
and τf are, respectively, the cavity round trip time
and the fluorescence lifetime; I(p, t) and G(p, t)
are, respectively, the intensity and gain of the
pth longitudinal mode; αp is the cavity loss pa-
rameter for the pth mode; γp is the small sig-
nal gain; β(p, p) and β(p, q) describe, respectively,
self-saturation of the p-mode and cross-saturation
between two modes, p and q; β0 = 0.06 is the scal-
ing parameter; l is the length of the gain medium;
L is the length of the laser cavity, z0 is the distance
of the gain medium from the first cavity mirror (as
shown in Fig. 1); kp = 2π/λp is the wavevector of
the longitudinal cavity mode p with the wavelengths

λp = 2L/p. Note that even though in Eq. (2)
three parameters: L, l, and z0 are present, the
modified cross-saturation coefficient depends only
on two rescaling parameters, l/L and z0/L. The
parameter ε is a nonlinear coefficient which de-
scribes the conversion efficiency of the fundamen-
tal intensity into the doubled intensity. The terms
εI(p, t)2 and εI(p, t)I(q, t) in Eq. (1a) account for
the loss in the intensity of the fundamental fre-
quency through second harmonic generation and
through sum-frequency generation, respectively.

The set of equations [(1a) and (1b)] has a rather
complicated structure and it is not possible to solve
it analytically. Therefore, the results presented in
this paper has been obtained with the aid of the
numerical method of Runge–Kutta.

3. Simplified Model No
Spatial-Hole Burning Effect

In this section the approximation that the cross-
saturation coefficient is constant for all modes:
β(p, q) = β(p̄, q̄) = 2/3, is used. It is assumed that
losses and small signal gains are the same for all
modes, i.e. αp = αq = α, Gap = Gaq = Ga, where
p, q = 1, . . . , N . Other parameters describing the
system have been chosen as follows: τc1 = 10[ns],
τf = 0.24[ms], α = 0.015, γ = 0.12, β0 = 0.06. The
number of longitudinal modes, N = 1, . . . , 250, and
the strength of nonlinearity, ε = 10−7 ÷ 10−3, are
not fixed and they are varied in the analysis.

(a) (b)

Fig. 2. The evolution of the total intensity, Itot =
�
n=N

n=0
I(n, t), of the laser for different values of the initial number of

longitudinal modes: (a) N = 3, (b) N = 70, (c) N = 80, (d) N = 5, (e) N = 100, (f) N = 250 and different values of
nonlinearity: (a–c) ε = 0.0001, (d–f) ε = 0.00012; the case of the cross-saturation coefficient constant for all modes.
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(c) (d)

(e) (f)

Fig. 2. (Continued )

As the first step let us consider the dependence
of the laser output on the number of longitudinal
modes initially excited in the laser cavity. From
the numerical simulations it follows that for very
small nonlinearity, ε ≈ 0, the laser output is stable,
even for a large number of longitudinal modes. In
the case of larger nonlinearity, ε = 1.0× 10−4, as it
can be seen from Fig. 2(a), the behavior of the laser
output is complicated and already for three simul-
taneously oscillating longitudinal modes the total
intensity exhibits irregular oscillations. When the
number of modes increases, amplitudes of those os-
cillations slowly increase (see Fig. 2(b) representing
the results for 70 modes). Finally, when the number
of modes is larger than the critical value, the total

stabilization of the laser output occurs, as shown in
Fig. 2(c).

However, for slightly higher than previously
considered value of nonlinearity, ε = 1.2 × 10−4,
we have not observed the stabilization of the laser
output, even for very large number of longitudinal
modes, N = 200 (compare the total intensity of
the laser output for N = 25, N = 100, and N =
200 modes, shown, respectively, in Figs. 2(d)–2(f)).
This happens because of cancelation of modes, as a
result of a competition between them, which takes
place during the evolution.

The dependence of the minimal number of
modes necessary for stabilization of the laser out-
put on the strength of nonlinearity is presented in
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Fig. 3. The dependence of the minimal number of modes,
Nmin necessary to obtain a stabilization of the laser output as
a function of the nonlinear coefficient, ε; the comparison be-
tween the theoretical predictions (the straight line) and the
results of the numerical simulations; the case of the cross-
saturation coefficient constant for all modes.

Fig. 3. As it can be seen, for small nonlinearity,
ε < 0.8 × 10−4, there is a rather good agreement
between theoretically [Wang & Mandel, 1993] and
numerically obtained results. However, when non-
linearity increases, 0.8 × 10−4 < ε < 1.0 × 10−4,
the minimal number of modes obtained in numerical
simulations is larger than the number predicted the-
oretically. This discrepancy is the result of the com-
petition between modes, which leads to cancellation

of some during the evolution. When ε > 1.2× 10−4

the cancellation is so large that after some time only
few modes survive, thus a sufficiently large number
of modes necessary for stabilization of the laser can-
not be realized.

In conclusion, depending on the relation be-
tween nonlinearity and the number of longitudinal
modes, the dynamics of a multimode, intracavity-
doubled, solid-state laser can be divided into four
regions as illustrated in Fig. 5. In particular, when
nonlinearity is small and the number of modes is
larger than a critical value the output of the laser
is stable. Examples of such a behavior, which
is labeled as Region I, are shown in Fig. 4(a).
With increasing nonlinearity the complexity of the
behavior of the laser increases and irregular fluctu-
ations of the output intensity appear. This behav-
ior, depicted in Fig. 4(b), corresponds to Region II.
For even larger values of the strength of nonlinear-
ity the cancellation of modes starts to take place.
When nonlinearity exceeds the critical value εcrit1
the evolution of the output intensity leads to the
cancellation of a large number of modes, so that
only a few of them survive. As a result, a sta-
bilization of the laser output cannot be obtained.
This behavior, illustrated in Fig. 4(c), is classified
as Region III. When nonlinearity is larger than the
critical value εcrit2 there is such a large mutual
cancellation of modes that after some time only
one of them survives. Therefore, the steady-state

(a) (b)

Fig. 4. The evolution of the total intensity, Itot =
�
n=N

n=0
I(n, t), of the laser, for different values of nonlinearity:

(a) ε = 0.0001, (b) ε = 0.00012, (c) ε = 0.000125, (c) ε = 0.00013 and a constant value of the number of longitudinal
modes, N = 100; the case of the cross-saturation constant for all modes.
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(c) (d)

Fig. 4. (Continued )

Fig. 5. Different regions of the laser behavior, depending
on the number of longitudinal modes, N , and the nonlinear
coefficient, ε.

solution, shown in Fig. 4(d), which is stable against
small perturbations, arises.

This mechanism of stabilization, achieved by
forcing the laser to operate in the one-mode regime,
is similar to other approaches presented in the
literature, where the stabilization is obtained by in-
serting into the laser cavity an additional element
like an etalon [Baer, 1986] or a birefringent crystal
[Nagai et al., 1992; Fan, 1991]. However, the method
proposed here seems to be a better solution, since
no additional element is involved.

4. Inclusion of the Effect
of Spatial Hole-Burning

In this section the analysis presented in the previous
section is extended to take into account the effect of
spatial hole-burning. The present analysis is based
on the Baer-type rate equations, Eq. (1), modified
by Bracikowski, Roy and James [Roy et al., 1993;
Bracikowski & Roy, 1991], who have written down
an explicit form for the cross-saturation coefficient,
Eq. (2), but were not investigating the influence of
the spatial hole-burning on the laser dynamics. As
far as the authors know, the analysis presented in
this section is the first study of this issue.

Same as in the previous section, two ways of the
laser stabilization are analyzed: by increasing the
number of longitudinal modes and by increasing the
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. The evolution of the total intensity, Itot =
�
n=N

n=0
I(n, t), of the laser for different values of the initial number of

longitudinal modes: (a) N = 25, (b) N = 100, (c) N = 200 and a constant value of nonlinearity, ε = 0.0001; and also for
different values of nonlinearity: (a) ε = 1.010−6 , (b) ε = 1.010−5, (c) ε = 1.010−4 and a constant number of longitudinal
modes, N = 20; the case of the cross-saturation coefficient modulated by the effect of spatial hole-burning.
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strength of nonlinearity. Parameters describing the
laser cavity are chosen to be as follows: L = 1.2[m],
l = 6[mm], z0 = 12[mm].

Our results show that when the spatial hole-
burning effect is taken into account (i) the compe-
tition between the modes is much stronger than in
the case of the cross-saturation coefficient constant
for all modes (ii). Therefore, the minimal number
of modes which are necessary to obtain the stabi-
lization of the laser output is in the case (i) larger
than in the case (ii). For example, for the strength
of nonlinearity ε = 0.0001 only 80 modes are nec-
essary in the case (ii), as shown in Fig. 2(c), while
in the case (i) even 200 initially oscillating modes
are not sufficient for the stabilization of the laser
output, as shown in Fig. 6(c).

Therefore, an alternative approach of the sta-
bilization of the laser output based on an increase
of the strength of nonlinearity, which has been pro-
posed in the previous section, can be examined. In-
deed, from the results of the numerical simulations,
displayed in Fig. 6(f) it follows that the stabilization
of the laser output can be obtained when the non-
linearity is larger than a critical value. This occurs
because of an extensive cancellation of modes, due
to which the laser operates in a single longitudinal
mode.

5. Conclusions

In this paper the properties of the dynamics of mul-
timode intracavity-doubled solid-state lasers have
been studied. The influence of spatial hole-burning
on the cross-saturation coefficient was taken into ac-
count. The system was described by the rate equa-
tions of Baer-type, which were solved numerically
with the aid of the Runge–Kutta method.

Firstly, the case of the cross-saturation coeffi-
cient constant for all modes was considered. The
minimal number of modes necessary for the stabi-
lization of the laser output was defined and its de-
pendence on the strength of nonlinearity was stud-
ied. It was shown that for small nonlinearity this
dependence is linear and agrees with the theoretical
predictions. However, for larger values of nonlinear-
ity the minimal number of modes was found to be
larger than the number obtained in theoretical con-
siderations. As a result of this discrepancy the effect
of the competition between the modes and cancel-
lation of some during the evolution was given. It
was also observed that with increasing nonlinearity

the competition between modes increases, so that
for some values of nonlinearity the initially large
number of oscillating modes is reduced to only a
few. For much higher values of nonlinearity this
competition is so strong that only a few modes sur-
vive. Therefore, a large number of simultaneously
oscillating modes cannot be realized and the stabi-
lization cannot be obtained in this way. However,
we propose another method based on the increase of
the strength of nonlinearity. This stabilization oc-
curs for such a high value of nonlinearity, for which
all modes, besides a single one, are canceled during
the evolution. In this case a steady-state solution,
stable against small perturbations, arises.

A similar analysis was accomplished for the
cross-saturation coefficient modulated by the effect
of spatial hole-burning. We have shown that in this
case the stabilization of the laser output by increase
of the number of longitudinal modes is hardly possi-
ble. Therefore, an alternative approach of the sta-
bilization based on an increase of the strength of
nonlinearity have been examined and shown to be
an appropriate solution.

The method of stabilization of a laser output,
as proposed in our paper, is similar to other ap-
proaches presented in the literature where the stable
output of the laser is achieved by forcing the laser
to operate in a single-mode regime, for example, by
inserting into the cavity an etalon or a birefringent
crystal. However, the method proposed here offers
a better solution, since no insertion of an additional
element into the laser cavity is needed.
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