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We consider two coupled nonlinear Schriidinger equations, the (l+l) and the 
(2+1)-dimensional and concentrate basically on the question as to whether there 
exists a stable, self-trapped solution. The positive answer is obtained within the 
variational and the numerical method. Namely, it is observed that neither spreading 
nor catastrophic self-focusing can develop and an oscillating, self-trapped solution 
arises. Numerical results show, in contradiction to the variational ones, that am- 
plitudes of those oscillations decrease with propagation distance and for sufficiently 
large distances they vanish to zero. 

In this paper we consider two coupled nonlinear Schrijdinger equations (NSE), the 
(2+1)- and the (l+l)-dimensional, 

where < is the longitudinal coordinate, I- and 6 are two transverse coordinates, the tem- 
poral and the spatial. Eqs. (la,b) can model, e.g. simultaneous propagation of two 
optical pulses in a Kerr-type planar waveguide with the assumption that the temporal 
duration of the first pulse, whose evolution is described by (la), is in the picosecond range 
and its dispersion is anomalous, while the duration of the second pulse is large, thus its 
dispersion is small and has been neglected in (lb) [l] . Th e interaction between pulses has 
been assumed to be limited to cross-phase modulation, a nonlinear effect through which 
the phase of one pulse is affected by another pulse and which can cause a redistribution 
of energy within both pulses. Another effect, four-wave mixing, has been neglected, so 
that no energy transfer between the pulses is taken into consideration. Throughout the 
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paper the pulse whose duration is assumed to be short (long) is referred to as the short 
(long) pulse. 

In this paper we study solutions of Eqs. (la,b) with the aid of the variational method 
and numerical simulations (using the Split-Step spectral method) and compare both 
results. As the ansatz in the variational method we take the Gaussian function: 

which depends on 12 parameters, namely the temporal (spatial) width, wrj (wcj), the 
temporal (spatial) chirp, CTj (Ccj), the amplitude, “j and the phase, &, of the j-th 
pulse, j = 1,2. As the initial condition we take the Gaussian function given by (2) with 
the following parameters: wTj(0) = w~j(O) = 1, C,j(O) = Ccj(O) = 0, 4j(O) = 0, where 
j = 1,2. The amplitudes ~j (0), j = 1,2 are varied in the analysis. 

The variational ordinary differential equations (ODE) for the 12 parameters of the 
ansatz (2) have been derived already in [l, 21. Here we rewrite only those ODE’s which 
describe evolution of the temporal and spatial widths of the pulses: 

d2w7.1 1 1 Zi 

dC2 =“$1-5=- 

d2wc1 _ 1 1 Zi 
dC2 --~- 

~n~;y~f:,=,,s~ CC> 7, J&R = fij (0) is a constant of motion and represents the 

Let us consider first solutions of the (2+1)- and the (l+l)-dimensional NSE in the 
absence of coupling between them. Concerning the (2+1)-dimensional NSE (Eq. (la) 
without the last term) it is known that stable, soliton-like solutions do not exist. Thus, 
depending on parameters of the system (in our case energy of the short pulse, pi), either 
spatiotemporal spreading (for ~1 < high) or catastrophic self-focusing occurring simulta- 
neously in space and time (for ~1 > ~th) develops; 6th is the threshold of catastrophic 
self-focusing, which is usually computed with the aid of the method of moments [4,5], 
the variational method [6], and also numerical simulations [7]. From the point of view 
of analytical estimations catastrophic self-focusing is identified with development of a 
singularity in the solution at a finite distance of propagation, (in the variational method 
it is equivalent to vanishing of both widths of a pulse). In numerical simulations catas- 
trophic self-focusing can be identified with a discontinuity of the phase d(r, <, C) of the 
amplitude P := ]!P]e ‘4 in the central point of the transverse plane, 7 = 0, < = 0, and 
with non-monotonic behaviour of the intensity (!P] 2 in the central point after catastrophic 
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self-focusing has been reached [8]. The threshold of catastrophic self-focusing given by 
the numerical analysis, KthN M 1.885, [2] is lower than the one given by the analytical 
eStimatiOnS, &hV = 2 [6]. 

The (l+l)-dim NSE (Eq. (lb) without the last term) depends only on one transverse 
variable I, and being an integrable system possesses a family of sech-shaped soliton 
solution [9]. From the variational method with the ansatz and the initial condition given 
by Gaussian function, which depends on two transverse variables, r and $, it follows 
that the temporal width of the pulse is constant while the spatial one oscillates. These 
oscillations are due to the fact that the shape of the Gaussian trial function differs 
from the exact soliton solution [lo]. However, numerical simulations lead to a different, 
behaviour; namely, the temporal width of the pulse appears to oscillate synchronically 
with the spatial width. Amplitudes of both oscillations decrease with the longitudinal 
variable < and vanish at finite < when the spatial soliton is formed [II]. 

Now, let us take into account the nonlinear coupling between Eqs. (la) and (lb), i.e.: 
the (2$-l)- and the (l+l)-dimensional NSE and concentrate basically on the question 
as to whether there exists a stable, self-trapped solution. An analysis of simult,aneous 
propagation of two optical pulses in a Kerr-type planar waveguide modelled by equations 
similar to (la,b) has been already presented in [l, 2,3], where it was assumed that dis- 
persion of the long pulse is, in general, not negligible and belongs to the normal regime. 
In [3] the problem of spatio-temporal compression of the short pulse was invest,igated, 
while in [2] the aspect of catastrophic self-focusing, spatio-temporal splitting, and in the 
limit,ing case of vanishing dispersion of the long pulse, the possibility of formation of a 
self-trapped solution were studied. In the last paper it was shown, using the variational 
method, that the presence of coupling between the pulses can cause, among anothers, 
(i) an arresting of catastrophic self-focusing of the short pulse. or (ii) catastrophic self- 
focusing of the long pulse, which occurs when its spatial width vanishes to zero while its 
temporal width remains larger then zero on the whole propagation distance, <. Regard- 
ing the case of vanishing dispersion of the long pulse, it was demonstrated, based on the 
variational results. that (iii) catastrophic self-focusing of both pulses does not develop 
until the parameters of the system are such that catastrophic self-focusing of the short, 
pulse does not occur when it propagates as a single pulse, i.e., the condition ~1 < 2.0 
is satisfied. This statement concerns also the cases when the energy of the long pulse is 
very large, e.g. ~2 = 20, and when energy of the short pulse is just below the threshold 
of catastrophic self-focusing, e.g. r;l = 1.999. From the variational method it follows also 
that the evolution of the long pulse coupled to the short one is essentially similar to that 
of the single long pulse; namely, the temporal width does not depend on the longitudinal 
variable <, as it is seen from Eq. (3~) while the spatial width undergoes periodic oscil- 
lations (see Fig. 5 b in [2] and also Figs. 1 b,d in this paper). The propagation of the 
short pulse coupled to the long one is, however, qualitatively different as compared to the 
behaviour of a single short pulse, namely, both temporal and spatial widths of the pulse 
undergo periodic oscillations (see Fig. 5a in [2] and Figs. 1 a,c in this paper). It was 
then concluded that (iv) neither spatio-temporal spreading nor catastrophic self-focllsing 
of the short pulse can develop and a self-trapped solution arises. 
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Fig. 1: The results obtained using the variational method displaying the dependence of the 
temporal, w,, (the dotted lines) and spatial, WC, (the continuous lines) widths of the short 
pulse, (a) or (c), co-propagating with the long pulse, (b) or (d). For (a) and (b) IE~ = 1.0, 
ICZ = 1.5, for (c) and (d) ICI = 1.0, n2 = 2.0. 
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Fig. 2: The results obtained using the numerical simulations displaying the dependence of the 
temporal wwr (the dotted lines) and spatial WE (the continuous lines) widths of the short pulse, 
(a) or (c), co-propagating with the long pulse, (b) or (d). For (a) and (b) ~1 = 1.0, ~2 = 1.5, 
for (c) and (d) ~1 = 1.0, IE~ = 2.0. 
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Fig. 3: The transverse spatial (a) and the temporal (b) cross-section of the short pulse propa- 
gating simultaneously with the long pulse for the propagation distance 6 = 10. The transverse 
spatial and the temporal cross-section of the long pulse are shown, respectively, in Figs. (c) 
and (d). The parameters of the system correspond to Figs. 2 c, d, i.e. IE~ = 1 and ~2 = 2.0. 
Square points on figures denote results of numerical simulations while curves represent the given 
asech(@) function with the following parameters: a = 19.75, p = 6.2 (a), Q = 19.75, ,B = 5.3 
(b), cr = 11.75, /S’ = 7.2 (c), and finally cr = 11.75, p = 4.0 (d). 
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The results of numerical simulations presented in [2] confirmed the statement given by 
item (i) which has been obtained with the aid of the variational method. However, since 
numerical simulations of the NSE with higher than one number of transverse variables 
are rather laborous and require large CPU times, thus no definite conclusions regarding 
the cases (ii), (iii) were obtained in [a]. Concerning (iv), the available numerical results 
suggested that self-trapped solution could arise in the configuration under discussion, i.e. 
described by Eqs. (la, b), for properly chosen parameters of the system. 

In this paper we continue those investigations hoping to shed more light on the above 
mentioned problems. First of all, based on our numerical simulations, we observed that 
catastrophic self-focusing of the long pulse, which takes place when its spatial width van- 
ishes to zero while its temporal width remains larger than zero on the whole propagation 
distance, can be induced by the short pulse. We can conclude then, that the variational 
predictions concerning the problem represented by item (ii) were indeed correct. As an 
example of the parameters of the system, for which catastrophic self-focusing occurs si- 
multaneously for both coupled pulses, let us take energy of the long pulse sufficiently 
large and energy of the short pulse below the threshold of catastrophic self-focusing, e.g. 
K1 = 1.88 < Kthv = 1.885 and KQ = 1.5. Similar situation occurs, e.g. in the case of 
two coupled (2+1)-dimensional NSE, namely it is possible to find such parameters of 
the system for which catastrophic self focusing cannot develop when the pulses propa- 
gate separately, but it occurs when they propagate simultaneously [12]. Note that this 
example explore, at the same time, the variational predictions given by (iii). 

Let us return finally to the main problem of this paper, namely the possibility of 
formation of a soliton-like solution of two coupled NSEs, the (2+1)- and the (l+l)- 
dimensional. For this, let us examine first Fig. 2, where the evolution of the temporal 
and the spatial widths of both pulses has been displayed for two different paramet,ers of 
the system: ~1 = 1.0, ~2 = 1.5 and ~1 = 1.0, ~2 = 2.0. From Fig. 1, presenting the 
results of the variational method, and from Fig. 2. where the results of the numerical 
simulations are displayed, it is evident that for both parameters of the system considered 
here synchronous oscillations of the widths of the pulses occur. The amplitudes of the 
temporal oscillations are larger than the amplitudes of the spatial ones, the period of 
the oscillations seems to increase with increasing energy of the long pulse, ~2. Moreover, 
as follows from the numerical results, the amplitudes of those oscillations decrease with 
the propagation distance 5‘. This process is much faster for the case considered in Figs. 
2c, d than for the example illustrated in Figs. 2a, b. In the first case, for sufficiently 
large propagation distance, c > 15, the amplitudes of the oscillations of the widths of 
both pulses vanish practically to zero. For the second case oscillations are still significant 
for < = 20 (the available numerical results do not allow us to determine whether they 
can vanish for a sufficiently large propagation distance; let us recall that for the (l+l)- 
dimensional NSE similar oscillations disappear for the propagation distance < z 100. 

Let us examine also the spatial and the temporal cross-sections of the pulses, which 
are displayed in Fig. 3. It is evident that all of them, excluding the temporal widtfh of 
the long pulse, can be well approximated by the sech functions. 

To sum up: we have shown that self-trapped solutions of two coupled NSEs. the 
(2+1)- and the (1+1)-d’ lmensional, can exist. They arise when the parameters of the 
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system are properly chosen (energy of the pulse whose evolution is described by the 
(2+1)-dimensional NSE is below the threshold of catastrophic self-focusing, energy of the 
pulse whose evolution is described by the (2+1)-dimensional NSE is above the threshold 
of soliton generation). The evolution of two coupled pulses is similar to the evolution of 
the pulse modelled by both the (2+1)-dimensional NSE with saturation-type nonlinearity 
(analogous oscillations) [ 131 or by the (l+l)-dimensional NSE (analogous oscillations and 
the cross-sections of the pulses). We can conclude then that the (l+l)-dimensional NSE 
acts to stabilize the (2+1)-dimensional NSE, therefore neither spatictemporal spreading 
nor catastrophic self-focusing occur, while in the case of the single (2+1)-dimensional 
NSE one of this effects would certainly develop. From the physical point of view this 
stabilization can be interpreted in the following way: a pulse, whose dynamics is described 
by the (l+l)-dimensional NSE creates a waveguide in the medium and the other pulse 
is trapped in this waveguide. 

Still, it remains an open question whether the discussed above self-trapped solutions 
are stable against small perturbations. We hope to give an answer to this question in 
the nearest future. 
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