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Abstract. Properties of a novel con!guration of an optical (spatio-temporal)
pulse compressor, that is based on a Kerr-type planar waveguide into which two
pulses are simultaneously launched, are studied. It is assumed that the pulse
which is the subject of the compression propagates in the anomalous dispersion
regime, while the auxiliary pulse is in normal dispersion. The best parameters
of the proposed compressor are obtained when duration of the auxiliary pulse is
so large that this dispersion can be neglected, while energy of the second pulse is
above the threshold of !rst-order soliton generation. It is observed that in such
a con!guration the compression occurs simultaneously with the generation of a
soliton-like solution. It is argued that the proposed con!guration with two
simultaneously propagating pulses has advantages over the con!guration with a
single pulse, namely the maximal compression factor and the optimal length of
the compressor is, respectively, more than 3 times larger and, at least, 10 times
greater than the corresponding values of the compressor with a single pulse. It
is also demonstrated that such a compressor can be considered as a universal
device, since its operation depends only slightly on the initial parameters of the
pulse subject to the compression.

1. Introduction
In the last decade intensive research in the !eld of pulse compression has been

stimulated by the increasing demand for short optical pulses, which are useful for a
variety of applications, e.g. measurement of extremely fast physical processes [1],
optoelectronics sampling [2, 3], generation of ultrafast X-ray radiation [4] and
ultrahigh-order harmonics [5]. They can also be employed to design spectroscopic
[6] and imaging [7, 8] devices for investigations of atomic or molecular systems,
including diagnostic and therapeutic tools for microbiology and medicine [9].
Moreover, generation of short optical pulses is of great interest for laser satellite
communication [10], ultrahigh bit-rate and long distance optical communication
[11], ultrafast optical storage [12] and data processing [13, 14]. Furthermore, in the
future, short pulses may play a crucial role in a development of all-optical
computers [15].

Depending on the application, the desired output of the compressor parameters
of the pulse and the form of the input pulse, various pulse compression techniques
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have been developed. In most cases these techniques make use of Kerr-type
nonlinear eVects, which can occur in optical !bres, planar waveguides or bulk
media. In the case of an optical !bre three diVerent compression techniques can, in
general, be distinguished: namely (i) a higher-order soliton compression [16, 17];
(ii) an adiabatic pulse compression, which can be realized in dispersion-decreasing
!bres [18], step-like dispersion pro!led !bres [19], as well as in uniform !bres with
distributed ampli!cation [20]; and !nally (iii) a compression based on self-phase
modulation in a single-mode !bre followed by a dispersive delay consisting of
prism pairs [21], a diVracting grating [22], or a coupled waveguide structure [23].
Moreover, in some applications, e.g. for nanostructuring [24, 25], it is essential
that pulses are con!ned not only in time, but also in space. An operation of a
compressor perfectly meeting this requirement can be based on, e.g. a Kerr-type
bulk medium [26] or a planar waveguide [27, 28], in which a dispersive pulse
propagates in the anomalous or normal dispersion regime.

Currently, elaborating new methods for pulse compression or upgrading
existing ones is of current interest; the aim is to construct such a compressor,
which on the output would give suYciently short, transform-limited (i.e. with the
time-bandwidth product equal to the time-bandwidth of a chirp-free sech pulse
[17]) pulses, would not require diYcult and time consuming trial-and-error
optimization of the length [22], and whose operation would not be restricted to
a peculiar class of pulses, e.g. with high intensities. One way to achieve this goal is
to launch into the compressor an auxiliary pulse that modi!es the refractive index
of the medium in which both pulses propagate and, as a result, the evolution of
eVects on the pulse which is the subject of the compression is altered. In this way
large compression, even for small energy of the compressed pulse, can be obtained.
An advantage of the two-pulses con!guration, which has also a potential applica-
tion for all-optical control of pulses, already has been veri!ed for various com-
pression techniques. Many of these techniques operate on the basis of optical
!bres, for example, a compression similar to higher-order soliton compression
employing an interplay between cross-phase modulation and group velocity
dispersion (GVD) [29, 30]; a compression in a single mode !bre followed by a
grating-pair dispersive delay line [31], a compression based on induced phase
modulation [31], four-wave mixing [32] and sum frequency generation [33]; and
!nally a compression using a semiconductor optical ampli!er operating in the
pump-probe con!guration [34]. The presence of an auxiliary pulse can be useful,
as well, for a compression in the con!guration of a bulk medium. Such a
compression can be realized, e.g. by intensity-dependent spatial de"ection of a
pulse and its subsequent spatial !ltering [35, 36]; or by using a grating-pair
dispersive delay line together with the two-beams interference technique, due to
which two-dimensional spatial bright solitons are formed [37, 38].

In this paper we will show that the two-pulse con!guration is bene!cial also
for a compressor based on a Kerr-type planar waveguide. We will study pro-
perties of such a compressor, and try to optimize it. We will assume that the
wavelengths of the pulses are chosen in such a way that the pulse, which is
the subject of the compression, propagates in the anomalous dispersion regime,
while the auxiliary pulse propagates in the normal regime. As the model equation
we will take two coupled (2 ‡ 1)-dimensional nonlinear Schrödinger equations
(NSEs):
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where ±, ½ , ¹ denote, respectively, the longitudinal coordinate, the local time, and
the transverse spatial coordinate. The subscript j ˆ 1 ( j ˆ 2) corresponds to
the pulse referred to as the anomalous (normal) pulse, i.e. propagating in the
anomalous (normal) dispersion regime; it means that ¼1 > 0 and ¼2 < 0 (the
limiting case of vanishing dispersion, ¼2 ˆ 0, will also be considered in this
paper). Here ¼j, ·, r stand, respectively, for the dispersion-to-diVraction ratio of
the j th pulse, j ˆ 1, 2, the ratio of the Fresnel diVraction length of the anomalous
pulse to the Fresnel diVraction length of the normal pulse; and !nally the ratio of
the carrier frequency of the anomalous pulse to the carrier frequency of the normal
pulse (further details regarding the notation used in equations (1 a) and (1 b) can be
found in [39]). The second and third terms in equations (1 a) and (1 b) are
associated, respectively, with diVraction, which causes spreading of the pulse in
space; and !rst-order group velocity dispersion, which leads to temporal broad-
ening of the pulses. The term before last in each equation describes self-phase
modulation; while the last one represents cross-phase modulation, a nonlinear
eVect through which the phase of one pulse is aVected by the other pulse and, as a
result, redistribution of energy within each pulse can occur. Terms describing
four-wave mixing, such as fast oscillating, are neglected, for in the con!guration of
two pulses with diVerent wavelength the phase-matching condition is not satis!ed
[29]; therefore, energy transfer between pulses is not taken into account. Terms
proportional to the diVerence in group velocities of the pulses are also omitted.
Such a treatment, which could be considered as inconsistent with the former
assumption, should be treated as the !rst step of the analysis. In addition, we
believe that an inclusion of a small diVerence in group velocities of the pulses
would not cause qualitative changes in the results presented in this paper (see also
the discussion in Appendix B of [39]). Note that equations (1 a) and (1 b) are valid
only for pulses in the picosecond time domain, for shorter pulses higher-order
time-derivative terms, such as higher-order GVD or self-steepening, should be
included.

The analysis of the set of equations (1 a) and (1 b) will be carried out with the
aid of the variational methods and numerical simulations (using the Split-Step
spectral method). The variational method (regarding the accuracy of variational
solutions see, e.g. [40] or the Appendix of this paper) will be used as an auxiliary
tool to outline the main characteristics of the evolution of the pulses, while the
essential part of the analysis will rely on exact numerical solutions. It will be
assumed that the trial function in the variational method is given by the Gaussian
function:

Áj…±; ½; ¹† ˆ Aj…±† exp ¡ ½2…1 ‡ iC½ j…±††
2w½ j…±†

µ ¶
exp ¡ ¹2…1 ‡ iC¹ j…±††

2w¹ j…±†

µ ¶
exp …i¿j†; …2†

which depends on 12 parameters, the temporal (spatial) width, w½ j …w¹ j†, the
temporal (spatial) chirp, C½ j …C¹ j†, the amplitude, µj and the phase, ¿j, of the j th
pulse, j ˆ 1, 2. As the initial condition we will take function (2) with
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w½ j…0† ˆ w¹ j…0† ˆ 1, C½ j…0† ˆ C¹ j…0† ˆ 0, ¿j…0† ˆ 0, where j ˆ 1, 2. We will as-
sume that « ˆ · ˆ 1. Magnitudes of the dispersion-to-diVraction ratio, ¼j, and the
parameter µj :ˆ Aj…0†, referred here to as the strength of nonlinearity of the j th
pulse, j ˆ 1, 2, will be varied in the analysis (note that the choice of name strength
of nonlinearity is motivated by the fact that µ is proportional to energy of the j th
pulse and to the nonlinear part of the refractive index of the Kerr medium in which
it propagates, see Appendix A of [39]).

Details concerning derivation of ODE in the variational method for all 12
parameters of ansatz (2) can be found in [39]; here we will rewrite only those
equations which refer to the temporal and the spatial widths of the pulses:
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where I j :ˆ w½ jw¹ jjAj…±†j2 ˆ µj represents a constant of the motion. Equations
(3 a)–(3 d) can be solved analytically only in the special case when I1 ˆ I2 and
¼1 ˆ ¼2 ˆ · ˆ 1. In a more general case they should be solved numerically; we will
use for this purpose the Runge–Kutta method.

2. Single-pulse con"guration
In this section we will study a compression of a single pulse propagating in a

Kerr-type planar waveguide. To model this con!guration we will use equation
(1 a) but neglecting the last term. The properties of such an equation were studied,
e.g. in [39], where it was demonstrated that the spatio-temporal dynamics of the
pulse depends, to a high degree, on the sign of the parameter ¼ (in order to
distinguish the one-pulse con!guration from the two-pulse one we will substitute
¼1 by ¼ and µ1 by µ).

In the case of anomalous dispersion some solutions can develop into a
singularity of the electric !eld in the self-focus point. This phenomenon, known
as catastrophic self-focusing, occurs simultaneously in space and time when values
of the parameters describing the system are above the threshold of catastrophic
self-focusing, which is usually computed with the aid of the method of moments
[41–43], the variational method [44, 45] and also numerical simulations [39, 46,
47]. The threshold obtained in the variational method is the same as in the method
of moments,

·µcatV ˆ 1 ‡ ¼; …4†

however, it is lower than the one given in the numerical simulations,
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·µcatN ˆ 0:885 ‡ ¼: …5†

Note that the occurrence of catastrophic self-focusing is not only non-physical, it
also prevents examination of the pulse behaviour behind the self-focus, for it
emerges just as an artefact of approximations made when deriving the NSE.
However, the NSE can still serve as the model equation for self-focusing when
values of the parameters describing the system are below the threshold of
catastrophic self-focusing [48]. It is also expected that below this threshold
!lamentation of the pulse does not develop in a real physical system, since neither
variational method nor numerical simulations predict its existence.

Another situation occurs in the case of normal dispersion, namely, the terms
describing dispersion and diVraction have diVerent signs and two diVerent eVects,
spatial self-focusing and temporal self-defocusing, simultaneously in"uence the
propagation of the pulse. This means that in the solution of the NSE neither
singularity [49] nor localized steady-states occur [50] and three diVerent types of a
pulse evolution, which we will classify here with respect to increasing nonlinearity
(for a !xed value of the dispersion-to-diVraction ratio), can be distinguished. They
can be characterized as follows: (i) both widths of the pulse spread monotonically
without initial focusing; (ii) the spatial width of the pulse decreases initially,
reaching a minimum on a certain distance of propagation, and then it spreads,
while the temporal widths spread monotonically without initial focusing; and
!nally (iii) both widths of the pulse focus initially, the distance of propagation on
which the spatial width of the pulse reaches its minimum and the value of this
minimum is, in general, larger than in the case of the spatial transverse variable. In
particular, for ¼ ˆ ¡1 the numerical simulations demonstrate that (ii) occurs when
µ 0 0:9 and (iii) when µ 0 28; while in the variational method (ii) occurs when
µ 0 2 and no behaviour described by (iii) is observed. A common feature which
concerns all above-mentioned categories of the pulse evolution is the fact that for
all ±, the temporal width of the pulse is larger than the spatial one. Moreover, from
the results of the numerical simulations it follows that breaking of spatio-temporal
symmetry and the uniform structure of the pulse takes place. This process can
!nally lead to an occurrence of several humps in the !eld distribution [50],
splitting of the pulses into two sub-pulses [51], or splitting into several sub-pulses
[52]. Worthy of notice is the fact that when splitting of the pulse occurs, it occurs
for a propagation distance larger than the distance on which initial focusing of the
pulse takes place. Note also that every time when the existence of spatio-temporal
splitting of pulses has been reported, numerical simulations were used.

Now, let us turn to the problem of a pulse compression and assume that values
of the parameters describing the system are below the threshold of catastrophic
self-focusing. Using the variational method and numerical simulations it has been
shown in [28, 53] that spatio-temporal compression of the pulse, which propagates
either in anomalous or normal dispersion, can occur when the strength of non-
linearity is suYciently large; however, only the temporal aspect of the compression
has been considered. The compressor has been characterized by two parameters;
one of them, the maximal compression factor, is de!ned as follows:

cmax :ˆ
w½ …0†

w½min…±min† ; ¯ ½ 1;
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where !½…0† is the initial temporal width of the pulse, and w½min is the minimal
temporal width, which can be achieved during the propagation of the pulse down
the waveguide. From the above de!nition it follows that the minimal temporal
width of the pulse takes place at the propagation distance ±min, which actually
constitutes the second parameter of the compressor, referred to here as the optimal
length of the compressor. Let us introduce also a third parameter which can
describe the compressor: namely the compression length, de!ned as the interval of
the propagation distance,

¢± :ˆ f± : w½…±† ¡ ¯w½min < w½ming;

within which the evolution of the pulse does not change signi!cantly, i.e. its
temporal width is approximately constant and equal to the minimal width.

From the results of the numerical simulations presented in [28, 53] it follows
that for both types of dispersion, anomalous and normal, the maximal compression
factor, cmax, increases with increasing strength of nonlinearity, µ, and with
decreasing dispersion-to-diVraction ratio, j¼j. However, in the case of anomalous
dispersion much smaller values of the strength of nonlinearity are necessary to
obtain the same maximal compression factor as in the case of normal dispersion;
for instance, the temporal compression of a pulse with anomalous dispersion,
¼ ˆ 1, occurs already for µ º 0:5, while in the case of normal dispersion, ¼ ˆ ¡1,
the required strength of nonlinearity is much larger, µ º 28. Another advantage of
the con!guration with anomalous dispersion, from the point of view of a com-
pression, is the fact that spatio-temporal splitting of the pulse, which can occur in
the case of normal dispersion, does not develop. In view of the above, let us now
assume that the pulse which is the subject of the compression propagates in the
anomalous dispersion regime. From table 1 it is evident that in order to optimize
such a compressor, i.e. to obtain cmax and ¢± as large as possible, values of the
parameters describing the system should be just below the threshold of cata-
strophic self-focusing. Indeed, when the above-mentioned condition is satis!ed,
the compression length is quite large, ¢± º 1. Owing to this fact the adjustment of
the length of the compressor should not be problematic. However, the maximal
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Table 1. Dependence of the maximal compression factor, cmax, and the dispersion
length, ¢±, on the strength of nonlinearity of the anomalous pulse, µ…µ1† for the
compressor operating in the single-pulse (two pulses) con!guration. It is assumed
that in both cases the strength of nonlinearity is just below the threshold of
catastrophic self-focusing, ·µNcat ˆ 1:885 (in the single-pulse con!guration with
¼ ˆ 1) and ··µNcat ˆ 1:985 (in the two-pulses con!guration with ¼1 ˆ 1, µ2 ˆ 1,
¼2 ˆ ¡1).

Single-pulse case
·µcatN

µ 1.885 1.88 1.87 1.86 1.85 1.84 1.83 1.82 1.81 1.80
cmax 1.56 1.55 1.52 1.50 1.49 1.47 1.46 1.45 1.44 1.43
¢± 1.25 1.06 0.89 0.81 0.76 0.70 0.65 0.61 0.57 0.53

Two-pulses case
··µcatN

µ1 1.985 1.98 1.97 1.96 1.95 1.94 1.93 1.92 1.91 1.90
cmax 4.64 4.30 3.98 3.77 3.61 3.48 3.36 3.26 3.15 3.03
¢± 0.25 0.27 0.30 0.35 0.36 0.41 0.38 0.41 0.35 0.38



compression factor in this con!guration is rather small, cmax º 1:5. Besides,
meeting the optimization condition would be, as a matter of fact, quite diYcult
in practice. This can be explained as follows: for a given medium which constitutes
the basic element of the compressor (with a !xed value of GVD and nonlinear
index of refraction), and for a !xed wavelength of the pulse, the only free
parameter of the system is energy of the pulse. It means that such a compressor
cannot be considered as an universal device, for its operation is limited to pulses
with energy belonging to a narrow interval of values.

In the next sections of this paper we will try to give an answer to the question
whether or not it is possible to improve the operation of the above-described
compressor, i.e. based on a Kerr-type planar waveguide in which a single pulse
with anomalous dispersion propagates. For this purpose we will examine such a
con!guration with an additional pulse launched into the waveguide.

3. Two-pulses con"guration
In this section we will study properties of the compressor with two simul-

taneously propagating pulses, the anomalous one and the normal one. We will
assume that the !rst pulse is the subject of the compression, while the second one
will be treated as an auxiliary pulse. As the model equation we will use two coupled
(2 ‡ 1)-dimensional NSEs (the set of equations (1 a) and (1 b)), which will be
solved with the aid of the variational method and numerical simulations. We chose
values of the parameters describing the anomalous pulse in such a way that: (i) it
focuses catastrophically or (ii) it focuses without an occurrence of a singularity.
The single normal pulse will undergo the following evolution: initial temporal or
spatio-temporal focusing, taking place on the propagation distance shorter than the
distance corresponding to catastrophic self-focusing of the single anomalous pulse,
and on larger propagation distances defocusing, with the possible occurrence of
spatio-temporal splitting. Note that case (i) occurs for µ1 > ·µcatV …µ1 > ·µcatN†,
where ·µcatV …·µcatV† is the threshold of catastrophic self-focusing given in the
variational method (numerical simulations) by condition (4) (condition (5)).

First, let us consider the evolution of the pulses in case (i) with an additional
assumption that catastrophic self-focusing of two simultaneously propagating
pulses does not develop, i.e. the strength of nonlinearity of the normal pulse (for
given values of µ1 > ·µcatX and ¼1) is suYciently large,

µ2 > µXlow…µ1; ¼1†; …6 a†

and the dispersion-to-diVraction ratio satis!es the following relation

j¼Xlow…µ2†j < j¼2j < j¼Xupp…µ2†j; …6 b†

where X ² V …X ² N† represents results obtained with the aid of the variational
(numerical) method. We observed that for the initial stage of propagation the
normal pulse can cause an additional focusing of the anomalous pulse; however, for
larger propagation distances, it experiences substantial spatio-temporal defocus-
ing, which causes, through cross-phase modulation, a deceleration and ever a total
arresting of catastrophic self-focusing of the anomalous pulse.

Let us consider now case (ii) with the following parameters: µ1 ˆ 1:88, ¼1 ˆ 1,
µ1 ˆ 1, ¼2 ˆ ¡1. A comparison of the evolution of the normal pulse, which
propagates in the presence of the anomalous pulse, with the evolution of the single
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normal pulse leads to the conclusion that the anomalous pulse strengthens initial
focusing of the normal pulse in the spatial transverse domain, but in the temporal
domain it gives rise to additional defocusing. This observation concerns the results
of the variational method and the numerical simulations, shown, respectively, in
!gures 1 (b) and (d). Note that for larger propagation distances, ± > 0:85, a
qualitative diVerence between results of both methods arises. It is associated
with the fact that in the numerical simulations spatio-temporal splitting of the
pulse takes place, which, however, is not predicted in the variational method (note
that this discrepancy is not evident from !gures 1 (b), and (d), since they concern
propagation distances shorter than the distance on which splitting takes place).
Regarding the anomalous pulse, from the results of the variational method and the
numerical simulations, displayed, respectively, in !gures 1 (a) and (c), it is evident
that the spatial widths of the pulse decreases initially, reaching the minimum on a
certain distance of propagation, ±min, and then it starts to increase. The evolution
of the temporal width is similar, but the distance of propagation on which the
width reaches its minimum and the magnitude of this minimum are, in general,
larger than the corresponding values of the spatial width. Moreover, the compar-
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Figure 1. The results obtained with the aid of the variational method, (a) and (b), and
numerical simulations, (c) and (d), showing the dependence of the spatial (full
curve), w¹, and the temporal width (long-dashed curve), w½ , of the anomalous and
the normal pulse propagating simultaneously …µ1 ˆ 1:88, ¼1 ˆ 1, µ2 ˆ 1, ¼2 ˆ ¡1).
For comparison, the dependence of the spatial (dotted curve), w¹, and the temporal
width (short-dashed curve), w½ , of the anomalous pulse …µ ˆ 1:88, ¼ ˆ 1† and the
normal pulse …µ ˆ 1, ¼ ˆ ¡1† propagating as single pulses, is also included. The
anomalous pulse is represented in (a) and (c), while the normal one in (b) and (d).



ison of the two-pulse con!guration and the single-pulse one leads to the conclusion
that in the !rst case the minimal widths (spatial and temporal) of the anomalous
pulse and the lengths of the distances of propagation, for which they are nearly
constant and equal to the minimal widths, are considerably smaller than in the
second case. Indeed, from the variational method it follows that temporal focusing
of the single anomalous pulse does not develop at all, while in the con!guration of
two pulses it is rather strong and gives rise to the maximal compression factor of
about 5. The numerical simulations demonstrate a slightly smaller diVerence,
namely in the con!guration of two pulses the maximal compression factor is
approximately 2 times larger than in the case of the single anomalous pulse,
cmax º 3.

Let us concentrate now on the anomalous pulse and its temporal compression
and try to !nd values of the parameters describing the system for which the
maximal compression factor, cmax, and the compression length, ¢±, are as large
as possible. For this purpose let us consider the dependence cmax versus the
dispersion-to-diVraction ratio of the normal pulse, ¼2. Such a dependence,
obtained with the aid of the variational method, is displayed in !gure 2, where
three diVerent values of the strength of nonlinearity of the anomalous pulse
are considered: µ1 ˆ 1:9 < ·µVcat, µ1 ˆ 2:0 ˆ ·µVcat and µ1 ˆ 2:1 > ·µVcat. It is
evident that for the !rst two cases represented, respectively, by the full and dashed
curves, the parameter cmax increases with decreasing ¼2, reaches a maximum at
¼2 ! 0, and then decreases. Another situation occurs for the strength of
nonlinearity exceeding the critical value: namely in the dependence cmax versus
¼2, two maxima, one at ¼2 ! ¼Vlow º 0 and the second one at ¼2 ! ¼Vupp º ¡1:5,
can be distinguished (see chain curve). Note that the parameters ¼Vlow and ¼Vupp

occur also in condition (6 b) deliminating the threshold of catastrophic self-
focusing. From !gure 2 it follows also that the maximal compression factor
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Figure 2. The maximal compression factor of the anomalous pulse, cmax, versus
the dispersion-to-diVraction ratio of the normal pulse, ¼2, obtained with the aid of
the variational method. Three diVerent values of the strength of nonlinearity of the
anomalous pulse are considered: µ1 ˆ 1:88 < ·µVcat (full curve), µ1 ˆ 2:0 ˆ ·µVcat
(dashed curve), and µ1 ˆ 2:1 ˆ ·µVcat (chain curve), where ·µVcat is the threshold of
catastrophic self-focusing obtained in the variational method for the single-pulse
con!guration.



increases with increasing strength of nonlinearity of the anomalous pulse. We can,
therefore, write that

~cmax > cmax; …7†

where ~cmax ² c…µ1 > ·µXcat†, cmax ² c…µ1 < ·µXcat†, X ² V.
Similar conclusions can be drawn from !gure 3, where results of the numerical

simulations are displayed. Indeed, in case (i), i.e. for large nonlinearity,
µ1 ˆ 2:0 > ·µNcat ˆ 1:885, two maxima occurring at ¼2 ! ¼Nlow º 0 and
¼2 ! ¼Nupp º 0:8 (see the empty circle points) can be distinguished for the
dependence cmax versus ¼2; while in case (ii), i.e. for small nonlinearity,
µ1 ˆ 1:88 < ·µNcat, only one maximum, occurring at ¼2 ! 0 (see full-circle points),
can be singled out (note that the parameters ¼Nlow and ¼Nupp are the same as in
relation (6 b) deliminating the threshold of catastrophic self-focusing). From !gure
3 it follows also that in case (i) the maximal compression factor is larger than in
case (ii), i.e. condition (7) (with X ² N) is satis!ed. Therefore, it can be concluded
that the optimization of the compressor can be achieved either when values of the
parameters describing this system are just below the threshold of catastrophic self-
focusing (as in case (i)) or when dispersion of the normal pulse vanishes, ¼2 ! 0 (as
in case (ii)). Now, let us consider these two cases in more detail.

3.1. Case (i): µ1 > ·µcat…¼2 < 0†
Let us examine table 1, where the dependence cmax and ¢± versus µ1, obtained

with the aid of the numerical simulations, is displayed. It is assumed that the
strength of nonlinearity of the anomalous pulse is just below the threshold of
catastrophic self-focusing, µ1 9 ··µNcat ˆ 1:985, occurring in the two-pulse con!g-
uration with the following parameters: ¼1 ˆ 1, µ2 ˆ 1, ¼2 ˆ ¡1. Table 1 also
contains a similar dependence for the case of the single anomalous pulse, whose
strength of nonlinearity just below the threshold of catastrophic self-focusing,
µ 9 ·µNcat ˆ 1:885. One can see that the maximal compression factor and the
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Figure 3. The maximal compression factor of the anomalous pulse, cmax, versus the
dispersion-to-diVraction ratio of the normal pulse, ¼2, obtained with the aid of
the numerical simulations. Two diVerent values of the strength of nonlinearity of
the anomalous pulse are considered: µ1 ˆ 1:88 < ·µNcat (full circles), and
µ1 ˆ 2:0 > ·µNcat (empty boxes), where ·µNcat ˆ 1:885 is the threshold of catastrophic
self-focusing obtained numerically for the two-pulses con!guration.



compression length are, respectively, 2.5–3 times larger and 1.5–5 times smaller
than the corresponding values of the single pulse. Therefore, the compressor with
two simultaneously propagating pulses, the anomalous one and the normal one,
can be considered as partially advantageous over the con!guration which operate
with a single anomalous pulse. Still, there is room for improvement: namely one
would like to have larger values of the compression length. Whether or not it is
possible will be studied in the subsequent part of this paper.

3.2. Case (ii): µ1 < ·µcat…¼2 ! 0)
Let us investigate now the con!guration of the compressor with values of the

parameters describing the system chosen in such a way that condition (ii) is
satis!ed, i.e. catastrophic self-focusing of the anomalous pulse does not occur
when it propagates as a single pulse. In order to satisfy the optimization condition
let us assume that the strength of nonlinearity of the normal pulse vanishes,
¼2 ! 0. Such a con!guration, from the physical point of view, can be realized
when the duration of the normal pulse is so large that the term describing
dispersion-to-diVraction ratio, ¼2, as inversely proportional to the temporal
width of the pulse [39], is small and can be neglected. In this situation, the
model equations given by (1 a) and (1 b), i.e. two coupled …2 ‡ 1†-dimensional
NSEs, can be reduced to a set of coupled …2 ‡ 1†- and …1 ‡ 1†-dimensional NSEs.
An analysis of such a system of equations, done with the aid of the variational
method and numerical simulations, has already been presented in [54], where it is
shown that soliton-like solutions, which propagate down the waveguide with
constant shapes, amplitudes and widths, can exist in the con!guration under
discussion. This can happen when values of the parameters describing the system
are properly chosen, i.e. the strength of nonlinearity of the anomalous pulse is
below the threshold of catastrophic self-focusing (note that this is exactly case (ii)
considered here), and the strength of nonlinearity of the normal pulse is above the
threshold of !rst-order soliton generation. It is important to note that both widths
of the pulses, which constitute such a solution, are a few times smaller than the
initial widths; it means that simultaneously with the formation of the soliton-like
solution a spatio-temporal compression takes place.

The compressor operating in the proposed con!guration, with values of the
parameters describing the system given by the example considered in !gures 2 (c)
and (d) of [54], i.e. with µ1 ˆ 1, ¼1 ˆ 1, µ2 ˆ 2, ¼2 ˆ ¡1, would have a large (at
least, when compared with other examples examined in this paper) maximal
compression factor, cmax º 5, a large optimal length, ±min º 15, and large com-
pression length, ¢± ¾ 1. Note that the optimal length of the compressor under
discussion is equivalent to the distance of propagation necessary for formation of
soliton-like solutions; the compression length, which is associated with the
distance of propagation on which soliton-like solutions maintain their shapes,
should be in!nitely large, assuming that soliton-like solutions are stable against
small perturbations (we hope to answer the question whether or not they are stable
in a forthcoming publication). The maximal compression factor and the optimal
length of such a compressor depend, in general, on the initial parameters of the
pulses which are subject to the compression. However, since the compression
length is considerably large, then it is possible to choose the length of the
compressor in a way which can guarantee that on the output optimally compressed
pulses, irrespective of their initial shapes, amplitudes and widths, are obtained.
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Such a compressor, therefore, can be considered as an universal device (in
contradiction to other con!gurations and examples considered in this paper).
Moreover, the maximal compression factor and the optimal length of the com-
pressor is, respectively, more than 3 times larger and, at least, 10 times greater than
the corresponding values for the compressor with a single anomalous pulse. There
is only one fact which can be considered a disadvantage of the proposed con!g-
uration, namely the large value of the optimal length of the compressor (this could
cause technical problems with preparing such a long planar waveguide).

4. Conclusions
We proposed in this paper a novel con!guration of an optical (spatio-temporal)

pulse compressor, whose operation is based on a Kerr-type planar waveguide into
which two pulses, the one which is the subject of the compression with anomalous
dispersion and the auxiliary one with normal dispersion, are simultaneously
launched. The idea of using an additional pulse was inspired by the desire to
include an additional degree of freedom in the system, which could make
optimization of the compressor easier. The proposed con!guration was modelled
by two coupled …2 ‡ 1†-dimensional nonlinear Schrödinger equations. The analy-
sis was carried out with the aid of the variational method and numerical simula-
tions (the variational method was used as an auxiliary tool to outline the main
characteristics of the evolution of the pulses, while the essential part of the analysis
was done based on numerical simulations). The temporal aspect of the com-
pression was characterized by three parameters: the maximal compression factor,
the optimal length of the compressor and the compression length. It was observed
that the best parameters of the proposed compressor can be obtained when
duration of the auxiliary pulse is so large that its dispersion can be neglected,
while energy of the pulse is above the threshold of !rst-order soliton generation. In
such a con!guration a spatio-temporal compression occurs simultaneously with
the generation of a soliton-like solution (formation of the soliton-like solution can
be explained as follows: the pulse with negligible dispersion, since its dynamics can
be modelled by integrable …1 ‡ 1†-dimensional NSE, creates a waveguide in the
medium in which it propagates and the other pulse gets trapped in this wave-
guide). It was also shown that the maximal compression factor and the optimal
length of the proposed compressor is, respectively, more than 3 times larger and, at
least, 10 times greater than the corresponding values for a compressor with a single
pulse. Moreover, in such a con!guration much smaller energies for the pulses
subject to the compression can be used to obtain the same compression as in the
single-pulse case. Besides, the compressor operating in the con!guration under
discussion can be considered, in contradiction to other con!gurations and ex-
amples investigated in this paper, as an universal device, because its operation
depends only slightly on the initial parameters of the pulse subject to the com-
pression (the compression length is relatively large, thus it is always possible to
choose the length of the compressor in such a way that at the output optimally
compressed pulses, irrespective of their initial shapes, amplitudes and widths, are
obtained). To our knowledge, there is only one fact which can be considered as a
disadvantage of such a con!guration, namely the large optimal length of the
compressor, thus long waveguides would be required and technical problems when
preparing them could arise. However, we believe that the proposed con!guration
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has the potential to be realized in practice. For this purpose AlGaAs structures,
which have high nonlinear refractive index and large damage threshold, could be
used. Note that we investigated in this paper only the temporal aspect of the
compression; however, in the con!guration under discussion one obtains pulses
that are con!ned not only in time but also in space. Note that such pulses,
compressed temporally and spatially, can be bene!cial, e.g. for nanostructuring.
Moreover, the con!guration proposed in this paper could be used also as a basic
element of an optical steering or switching device.
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Appendix
The variational method, known also as Whitham’s method [55], was adopted to

nonlinear partial diVerential equations (PDE) by Anderson [56]. It allows one to
replace an in!nite dimensional dynamical system by a !nite one by choosing an
appropriate multi-parametric ansatz for the solution. As a result, a set of ordinary
diVerential equations (ODE) for the parameters of the trial function, coupled, in
general, in a nonlinear manner, is obtained. In a special case analytical solutions of
such a system of ODE can be given, however, in a general case, the use of
numerical schemes is necessary. Still, even in the second case, it is pro!table to
apply the variational method, since it is much easier and consumes less time to
solve ODE than to integrate numerically PDE. Moreover, the variational method
is an universal device, suitable for equations in any dimension, with external forces
and potentials. It is, therefore, widely used and accepted as a standard tool,
especially in the nonlinear optics community.

The accuracy of the variational method depends, to a high degree, on the form
of the trial function. When it is properly chosen it can even give exact solutions
[57], very often it gives results which properly describe main characteristics of the
evolution, i.e. are qualitatively similar to numerical solutions. However, in some
cases, especially when during evolution substantial changes of the form of the
solution occur, e.g. splitting of the pulse, radiation of energy, results following
from the variational method may signi!cantly diverge from the numerical sol-
utions. Unfortunately, up to now, no general statement which could justify validity
of the variational results and to estimate the error, has been given [40].

Therefore, results of the variational method can be used only to outline the
main characteristics of the evolution, and one should always verify them numeri-
cally. Concerning the …2 ‡ 1†-dimensional NSE containing terms describing both
diVraction and (either anomalous or normal) dispersion, the accuracy of the
variational method depends on the kind of dispersion. In the case of anomalous
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dispersion it gives results qualitatively similar to the numerical ones, up to the
numerical factor (the threshold of catastrophic self-focusing in the variational
method is approximately 5% larger than the numerical one). Larger discrepancy
occurs in the case of normal dispersion, e.g. occurrence of spatio-temporal
splitting, which was observed in numerical solutions, has not been predicted in
the variational method.
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