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A numerical study of the properties of Gaussian pulses propagating in a planar wave-
guide under the combined effects of positive Kerr-type nonlinearity, diffraction in planar
waveguides and anomalous or normal dispersion, is presented. It is demonstrated how
the relative strength of dispersion and diffraction, the strength of nonlinearity and the
initial spatial and temporal pulse chirps effect the parameters of pulse compression,
such as the maximal compression factor and the distance to the point of maximal
compression.

1. Introduction
The compression of optical pulses in Kerr-type nonlinear media have been subject to
investigation for many years and continue to attract some attention [1, 2]. In single-mode
®bres with anomalous group-velocity dispersion (GVD) and positive nonlinearity the
pulse compression is based on the mechanism of higher-order soliton generation [3]. In
single-mode ®bres with normal GVD the pulse compression can be obtained in the con-
®guration with a grating pair [4, 5]. In both cases self-phase modulation (SPM) induced by
an intense pulse is used. However, the intense pump pulse propagating together with a
weak probe pulse can also cause pulse compression by the mechanisms of so-called cross-
phase modulation (XPM) [6], or induced-phase modulation (IPM) [7].
The possibility of pulse compression in non-dispersive nonlinear bulk media due to

another nonlinear e�ect, that of self-focusing, is discussed in [8±10] with the aid of the
paraxial ray approximation [8, 10], and by means of variational analysis [9]. Still another
pulse compression technique that uses the self-con®nement of two-dimensional spatial
bright solitons propagating in non-dispersive bulk media is mentioned in [11], where a
two-beam interference technique is used in order to ensure that a ®lamentation (a splitting
of the beam into many sub-beams) does not occur.
Moreover, a simultaneous space±time collapse, which can occur in bulk media and in

planar waveguides under the combined e�ect of nonlinearity, di�raction and anomalous
dispersion, may also be useful for pulse compression [12, 13]. This kind of collapse
gives rise to short pulses with an extremely high optical ®eld [14±16]. It is realizable
both in the case when dispersion and di�raction have comparable e�ects on pulse
propagation and in the more general case when one of the above e�ects dominates (see
[17]).
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On the other hand, the interplay of normal dispersion and positive nonlinearity causes
quite a di�erent behaviour of the pulse. In optical ®bres where di�raction terms are not
included it leads to a monotonic pulse spreading. However, the inclusion of the di�raction
term, which is necessary for a planar waveguide, can lead to a pulse compression, as was
described in [17, 18]. In addition, in a planar waveguide, normal dispersion slows the self-
focusing of the pulse and causes a splitting of the pulse into two pulses [18, 36]. The e�ect
of pulse splitting was also observed in the bulk media [12].
In this paper the compression of a pulse propagating in a planar, self-focusing nonlinear

planar waveguide in the regime of anomalous and normal dispersion is considered. The
structure of the paper is as follows. In Section 2 the nonlinear SchroÈ dinger equation
describing dispersive pulse propagation in nonlinear planar waveguides and the para-
meters of pulse compression are introduced. In Section 3 an estimation of the condition of
pulse collapse is made with the aid of the so-called method of moments [19]. Numerical
results describing the in¯uence of the magnitude of nonlinearity, the relative strength of
dispersion and di�raction and the spatial and temporal chirp of the initial Gaussian pulse
on the pulse compression parameters are discussed in Section 4.

2. Basic equations
It is well known that starting from the Maxwell equations for the envelope U�x; y; z; t� of
the electric ®eld

E�x; y; z; t� � U�x; y; z; t�eÿi�xtÿn0b0z�

propagating along the z-axis in a planar waveguide with positive, instantaneous Kerr-type
nonlinearity, one obtains the two-dimensional nonlinear SchroÈ dinger equation (NSE) [18]:
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if the paraxial and the slowly varying envelope approximations are applied and the term
r � (rE), the shock term [20] proportional to @�jEj2E�=@t and higher-order dispersion
e�ects can be neglected.
In Equation 1, f � z=zf is the normalized longitudinal spatial coordinate, n � x=w0

is the normalized transverse spatial coordinate, s � �t ÿ b1z�=t0 is the normalized local
time, r � b2zf =t20 represents the relative strength of dispersion and di�raction,
N � b0U0w0

���������
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p

parameterizes the strength of nonlinearity, b0 � x=c is a wave number,
bn � dnb=dxn are dispersion terms, zf � b0n0w

2
0 is the Fresnel di�raction length, w0 is the

spatial width of the input pulse, t0 is the temporal width of the input pulse (i.e., duration of
the input pulse), U0 is the peak amplitude of the input pulse, and n � n0 � n2jU j2 is the
refraction index for the Kerr-type nonlinear media. Recall that r > 0 corresponds to the
normal dispersion and r < 0 corresponds to the anomalous dispersion.
As the initial condition the Gaussian chirped pulse is taken. This is given by (cf : [21])

U�n; s; f � 0� � eÿn2�1�iCn�=2eÿs2�1�iCs�=2 �2�
where Cn �Cs� is the spatial (temporal) pulse chirp (the focusing spatial chirp corresponds
to Cn < 0 and the focusing temporal chirp corresponds to sgn�ÿrCs� < 0�.
Here a pulse is characterized by its spatial width, wn�f�, and temporal width, ws�f�,

which are de®ned by
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U�wn; 0; f� � 1

e
U�0; 0; f� and U�0;ws; f� � 1

e
U�0; 0; f�

The maximal compression factor is also introduced:

cmax � s0
wsmin fm� �

where wsmin�fm� is the minimal temporal width of the pulse (see [18, 22]). In the following
fm is called the position of the minimal pulse width.
The solution of NSE (Equation 1) with the initial condition given by Equation 2 can

describe a propagation of a dispersive Gaussian pulse in nonlinear planar waveguides. It is
worth remarking that for the anomalous dispersion regime a solution of this equation can
also describe a dispersionless elliptic Gaussian beam [23, 24] (i.e. a CW beam with an
elliptic Gaussian transverse pro®le) propagating in a nonlinear bulk media.
In this paper the case of r � ÿ1 is referred to as the cylindrically symmetric spatio-

temporal pulse; the case of r 6� ÿ1 is to be referred to as the asymmetric spatiotemporal
pulse.
In the particular case of the cylindrical spatiotemporal pulse a simple analytic solution

of the NSE exists which describes the behaviour of a beam propagating in nonlinear media
by means of variational approximation [14] or by means of the scaled complex rays
formulation within the so-called ABCD matrix formalism (see [25, 26]). For the asym-
metric spatiotemporal pulse only the semi-analytical approach of [23, 24] is known in the
literature.
It is known that some solutions of the two- or three-dimensional NSE can develop into

a singularity of the electric ®eld when the initial pulse power exceeds a certain critical value
[14]. This phenomenon, known as a pulse collapse, can occur simultaneously in space and
time for a pulse propagating in a planar waveguide with anomalous GVD [14, 15], and
also for a dispersionless beam propagating in a self-focusing bulk medium. This singu-
larity, however, is obviously non-physical, for it emerges just as an artefact of the paraxial
approximation made when deriving the NSE. In order to avoid this limitation, either a
non-paraxial treatment of the process of self-focusing [27] or some other e�ects, such as
the nonlinear absorption and the saturation of the nonlinear refractive index, should be
taken into consideration. On the other hand, the appearance of a non-physical singularity
in numerical simulations based on the NSE can serve as an indication of a real collapse
taking place in a certain point of space. This is in fact the criterion used in Section 4.
The study of the details of the development of the pulse collapse is left beyond the scope

of this paper. Instead, the task here is to determine the values of the parameters r and N 2

for which the pulse collapse can occur. For this the so-called method of moments [28]
could be used. However, it gives only an estimation of the su�cient conditions of the pulse
collapse, whereas the collapse can in fact occur at an earlier time or a shorter propagation
distance [10]. More precise conditions will be obtained by the numerical simulations
presented in Section 3 (cf. also [14]).

3. Suf®cient conditions of pulse collapse
The method of moments originates from the paper of Vlasov et al. [28]. It can be used as
an approach to the determination of whether a given initial wave pulse can collapse to a
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singular point in a ®nite period of time [29]. An application of the method of moments to
the NSE may be found in [19].
In order to formulate the condition of collapse in terms of the strength of nonlinearity,

N2, and the relative strengths of dispersion and di�raction, r, the second moment of
intensity is ®rst introduced:

I�f� �
Z1
ÿ1

Z1
ÿ1
�n2 � �s2�jU j2 dn d�s

where U is a solution of the NSE given by Equation 1, with the normalization
�s � �ÿr�ÿ1=2s; �r 6� 0�:
Parameter I can be interpreted as the e�ective beam size, measuring the size of the area

to which most of the energy is con®ned.
Assuming that U decays suitably as r !1, one can obtain [19]

d2I

df2
� �I � 4E �3�

where E is the Hamiltonian of the NSE

E �
ZZ
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Because E remains constant during a pulse propagation, i.e. it is independent of f,
Equation 3 may be integrated twice to give:

I�f� � 2Ef2 � _I�0�f� I�0�
where _I � dI=df.
If the right-hand side of the above equation vanished, then the pulse width (both spatial

and temporal) will decrease to zero in a ®nite distance leading to beam collapse. Therefore a
su�cient condition for collapse can occur if the following conditions are satis®ed [19, 21, 29]:

E < 0

E � 0 and _I�0� < 0

E > 0 and _I�0� < ÿ
��������������
8EI�0�

p �4�

For a Gaussian input pulse, given by Equation 2, Hamiltonian E can be expressed in the
following form

E � 1

2

ZZ
n2 ÿ r2�s2
ÿ �

eÿn2eÿr�s2 ÿ N2eÿ2n
2

eÿ2r�s2
h i

dn d�s � 1

4

�������ÿr
p

p�1ÿ rÿ N2�

In the particular case of ¯at phase front, Cn � Cs � 0, we obtain that _I�0� � 0 and
because of this the last two criteria in Equation 4 are not satis®ed. The ®rst criterion,
E < 0, yields

N 2 > 1ÿ r �5�
Equation 5 may be considered as the su�cient condition of the pulse collapse in terms of

the strength of nonlinearity, N2, which is proportional to the peak amplitude, jU0j2, and
the relative strength of dispersion and di�raction, r. The magnitude of the parameter N 2
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which is su�cient for the pulse collapse to occur increases linearly with jrj. This is not
unexpected because the collapse of the pulse occurs when the self-focusing caused by the
nonlinearity dominates over the broadening of a pulse, which is due to the di�raction and
dispersion. It is obvious that the smaller the values of the parameter jrj are, the weaker is
the in¯uence of the dispersion on the pulse broadening.
Note that the su�cient conditions of pulse collapse can be formulated also in terms of

the critical initial power, Pc, of the pulse as follows [21, 24]

Pc
P0
�

������
jrj

p
� 1������jrjp" #

� 1

where Pc�r� �
R jU j2 d�s dn � pjU0j2 1=

������jrjp� �
; P0 � 2p is the initial power of the cylin-

drically symmetric pulse (i.e. r � 1).
We conclude that the decrease of the parameter jrj leads to the decrease of the critical

amplitude, jU0j2, and to the increase of the critical power, Pc.
Note, that the collapse criteria obtained with the aid of the method of moments for the

particular case of the spatiotemporal symmetric pulse agrees with the result of the vari-
ational approximation in [10, 14].

4. Numerical results and discussion
In this section, the results of the numerical solution of the (2+1)-dimensional NSE by
means of the well-known split-step spectral method (SSSM) [30] with the two-dimensional
(2d) fast Fourier transform [31] are presented. The calculations were performed on a two-
dimensional grid with 512 � 512 points (transverse steps, Dn � Ds � 0:08) and with a
longitudinal step depending on the nonlinearity so that for N2 � 1;Df � 0:01. Because of
the lack of spatial±temporal cylindrical symmetry of the problem it is not possible to
simplify calculations by reducing the two-dimensional fast Fourier transform to the one-
dimensional Hankel transform developed in [32, 33]. Several checks of our numerical
procedure were made, including a simulation of beam propagation in the absence of
group-velocity dispersion (r � 0), repeated testing with di�erent transverse grid and
longitudinal step lengths, and the monitoring of pulse energy during each simulation. The
latter was kept constant with a relative error of less than 0.000 05.
As an initial condition in the numerical calculations the Gaussian pulse given by

Equation 2 was taken. First, for the case of the anomalous dispersion regime the condi-
tions of pulse collapse predicted by the method of moments is compared with those
obtained from numerical calculations. Further, with the aid of numerical calculations, the
in¯uence is studied of the strength of nonlinearity, relative strength of dispersion and
di�raction and spatial and temporal pulse chirps on pulse compression parameters. The
above analysis is performed for both the anomalous and the normal dispersion regime.

4.1. The anomalous dispersion regime
In this section the in¯uence of the parameters r and N2 on the pulse collapse and com-
pression will be considered.
In Fig. 1, a comparison of the conditions of the collapse of pulse predicted by the

method of moments with those obtained by numerical calculations is presented. In the
numerical procedure the occurrence of pulse collapse was identi®ed with the discontinuity
of the phase /�0; 0; f� in the central point of the pulse u � jujei/, and with non-monotonic
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behaviour of the intensity in the central point of the pulse after the collapse point has been
reached. The results of numerical simulations are plotted by two sets of points corre-
sponding to the cases when, respectively, the pulse collapse occurs or does not occur. The
prediction obtained by the method of moments is given by the straight line N2 � 1ÿ r (see
Equation 5). The boundary line between the collapse and the no-collapse regions, obtained
from the numerical data is approximately described by N2 � �0:85ÿ r�. It is parallel to the
straight line predicted by the method of moments, unless the absolute value of r is too
small.
Therefore, for both methods, the magnitude of the parameter N2 which is su�cient for

the pulse collapse to occur increase linearly with jrj. The discrepancy appears to be due to
the theoretical idealization of the picture of the collapse where all the energy of the pulse
goes to the singularity point. This also explains why conditions of numerical collapse are
typically softer than those predicted by the method of moments described in Section 3.
The study of details of pulse collapse is left beyond the task of this paper. Instead, a

study is made of the in¯uence of the relative strength of dispersion and di�raction, the
nonlinearity and the spatial and temporal chirps on the parameters of pulse compression
under the condition that pulse collapse does not occur.
Figures 2 and 3 represent the results of calculations of the in¯uence of the relative

strength of dispersion and di�raction, r, on the maximal compression factor, cmax, and on
the position of the minimal pulse width, fm, for di�erent values of the strength of non-
linearity, N2 and for a Gaussian initial pulse with a ¯at phase front. As could be expected,
the parameters of pulse compression, cmax and fm, increase monotonically with the in-
crease of N2 and the decrease of r until collapse conditions are reached. This behaviour is

Figure 1 Comparison of the suf®cient conditions for pulse collapse predicted by the method of moments

(straight line) and numerical calculations (®lled circle points denote pulse collapse and empty circle points

indicate no collapse). This was performed for an initial Gaussian pulse with a ¯at phase front, propagating in a

medium described by two parameters: the strength of the nonlinearity, N 2, and the relative strength of

dispersion and diffraction, r.
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obvious from the fact that increase of N2 causes increase of pulse self-focusing, it helps to
concentrate pulse energy in the centre. In addition, a decrease of r causes a decrease of
dispersion broadening of the pulse.

Figure 2 The maximum compression ratio, cmax, as a function of the relative strength of dispersion and

diffraction, r < 0, for a different value of the strength of nonlinearity, N 2, and for an initial Gaussian pulse with

a ¯at phase front.

Figure 3 The distance to the point of minimal pulse width, fm, as a function of the relative strength of

dispersion and diffraction, r < 0, for a different value of the strength of nonlinearity, N 2, and for an initial

Gaussian pulse with a ¯at phase front.
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In Fig. 4 the results of numerical simulations of the in¯uence of the initial spatial, Cn � C,
and two cases of temporal, Cs � �C, chirps on the pulse compression parameters are pre-
sented. In order to distinguish between the above two cases we introduce a parameter

S � sgn�ÿCnCsr�
which equals 1 for the case of focusing (defocusing) temporal and spatial chirps and equals
)1 for the case of focusing (defocusing) temporal and defocusing (focusing) spatial chirps.
As could be expected, the focusing spatial and temporal chirps, C < 0; S � 1, cause the

increase of the pulse compression parameters. The explanation is that a defocusing chirp
spreads the energy out from the centre of the pulse, whereas a focusing chirp concentrates
it there. As a result, the nonlinearity-induced phase curvature of the ®eld is, respectively,
reduced or enhanced. A similar e�ect of the focusing chirp of the initial pulse takes place
in the region close to the collapse. Namely, the focusing spatial chirp can hasten the
collapse, whereas a defocusing chirp can either delay or eliminate it entirely [17].
More interesting is the case of S � ÿ1 (i.e. the spatial focusing chirp and the temporal

defocusing chirp occur simultaneously). The increase of the maximal compression factor
occurs only for the case of the focusing temporal chirp, C > 0, whereas this is not always
true for a spatial focusing chirp C < 0, see Fig. 4. One can conclude that the temporal
chirp has a larger e�ect on the temporal pulse compression than the spatial one. One can
expect the reverse situation in the case of spatial compression of the pulse.

4.2. Normal dispersion regime
In the case of a normal dispersion regime the collapse of the pulse does not occur.
However, owing to the spatiotemporal coupling occurring in the nonlinear medium when

Figure 4 The maximal compression factor, cmax , and the distance to the point of the minimal pulse width, fm,

as a function of the initial spatial and temporal pulse chirps, Cn �C and Cs � �C, respectively. Spatial focusing

chirp occurs for C< 0, temporal focusing chirp occurs for Cs < 0; r � ÿ0:5 and N 2� 1:0:
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both the di�raction and the dispersion e�ects take place a pulse compression can be
obtained [18].
In this section a study is made of the in¯uence of the relative strength of dispersion and

di�raction, the nonlinearity and the spatial and temporal pulse chirps on the parameters of
pulse compression.
It is seen from Fig. 5 that the maximal compression factor, cmax, monotonically decreases

with r, and increases with N2. It is clear because a smaller value of the parameter r has a
weaker in¯uence on the dispersion broadening of the pulse,moreover the increase ofN2 leads
to the increase of the spatiotemporal coupling and nonlinearity-induced phase curvature of
the ®eld. Ultimately both e�ects lead to the temporal compression of the pulse.
From Fig. 6 it is seen that for su�ciently small values of r the parameter fm decreases

with N 2. However it appears to be practically independent on r once a certain threshold
level of N2 is reached. This fact was explained in [17] by means of the periodic beam
narrowing of higher-order spatial solitons. A di�erent behaviour takes place at larger
values of r (r > 0:25). Namely, at ®rst fm increases with N2 for su�ciently small N2 and
then it slowly decreases after reaching a maximal value at the certain value of N2. This
behaviour can be explained by the fact that at small nonlinearities the e�ects of dispersion
prevent a creation of spatial solitons.
In Fig. 7 the results of numerical calculations of the in¯uence of the initial pulse chirp on

the parameters of pulse compression cm and fm are presented. The focusing spatial and
temporal chirps, C < 0; S � 1, cause the increase of the compression parameters (cmax and
fmax) and this behaviour appears to be similar to that which we have previously observed
in Fig. 4 for the anomalous dispersion regime. However, in the case of the anomalous
GVD, cmax grows with C much faster that in the case of normal GVD. Namely, for the

Figure 5 The maximal compression factor, cmax, as a function of the relative strength of dispersion and

diffraction, r > 0, for a different value of the strength of nonlinearity, N 2, and for an initial Gaussian pulse with

a ¯at phase front.
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Figure 6 The distance to the point of the minimal pulse width, fm, as a function of the strength of nonlinearity,

N 2, for a different value of the relative strength of dispersion and diffraction, r > 0, and for an initial Gaussian

pulse with a ¯at phase front.

Figure 7 The maximal compression factor, cmax , and the distance to the point of the minimal pulse width, fm,

as a function of the initial spatial and temporal pulse chirps, Cn �C and Cs � �C, respectively. Spatial focusing

chirp occurs for Cn < 0; temporal focusing chirp occurs for Cs > 0;r � 0:1 and N 2� 2:0.

588

M. Pietrzyk



anomalous GVD the maximal compression factor for a chirped initial pulse with C � ÿ2
is three times larger than that for an initial pulse with a ¯at phase front �C � 0; i.e.
cmax�C � ÿ2� � 3� cmax�C � 0�. For the normal GVD the increase of cmax is rather slow,
e.g. cmax�C � ÿ2� � 1:1� cmax�C � 0�, and a saturation of the maximal compression
factor occurs for the initial chirps below )2 (see Fig. 7).
Moreover, for the case of C < 0; S � ÿ1 (i.e. the spatial focusing chirp and the temporal

defocusing chirp) the maximal compression factor increases only for the focusing temporal
chirp, whereas this is not always true for a spatial focusing chirp Cn < 0.

5. Conclusions
In this paper, the physical conditions of collapse and compression of dispersive Gaussian
pulses propagating in waveguide with positive Kerr-type nonlinearity, di�raction and
anomalous or normal dispersion were investigated.
The values of the relative strength of dispersion and di�raction, r, and the strength of

nonlinearity, N 2, for which the pulse collapse can occur were determined. For this purpose
an estimation was ®rst given by the method of moments [28]. More precise conditions were
obtained by means of the numerical simulations based on the (2+1)-dimensional non-
linear SchroÈ dinger equation (see Section 4).
A pulse compression was characterized by two parameters: the maximal compression

factor, cmax, and the distance to the point of the maximal compression, fm, (see Section 2).
By means of a numerical simulation, how these two parameters depend on the parameters
N2 and r, and the initial spatial and temporal pulse chirps was studied. It was demon-
strated that in the regime of both anomalous and normal dispersion the increase of the
nonlinearity and the decrease of the relative strength of dispersion and di�raction cause an
increase of the maximal compression factor. Moreover, in the case of the anomalous
dispersion regime the compression factor is maximal in the region �1ÿ r�KN2.
Furthermore, it was observed that the increase of the focusing temporal and spatial

chirps of the initial pulse lead to an increase of the maximal compression factor, cmax. In
the case of the anomalous GVD, cmax grows with chirp, C, much faster than in the case of
normal GVD, for which a saturation of the maximal compression factor occurs.
Moreover, the increase of the focusing temporal chirp might lead, even in the presence

of the defocusing spatial chirp, to an increase of the maximal compression factor, cmax,
whereas the defocusing temporal chirp always leads to a decrease of cmax, even in the case
of the focusing spatial chirp. It may be concluded, therefore, that the temporal chirp has a
larger e�ect on the maximal pulse compression factor than has the spatial chirp. Con-
versely, it is expected that the spatial focusing chirp has a larger impact on the beam than
the temporal chirp, independently of its sign.
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