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Abstract: We investigate the Bloch and dipole oscillations of a Bose Einstein condensate (BEC) in an optical
superlattice. We show that, as the effective mass increases in an optical superlattice, the BEC is
localized in accordance with recent experimental observations [J.E. Lye et. al. Phys. Rev. A 75, 061603
(2007)]. In addition, we find that the secondary optical lattice is a useful additional tool to manipulate
the dynamics of the atoms.
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1. Introduction

The interference of intersecting laser beams creates a pe-
riodic potential for atoms, known as an optical lattice [1].
Ultracold bosons trapped in such periodic potentials have
been widely used to study some fundamental concepts of
quantum physics such as Josephson effects [2], squeezed
states [3], Landau-Zener tunneling and Bloch oscillations
[4], and superfluid-Mott insulator transition [5]. Progress
in experimental techniques has led to many interesting
theoretical studies on Bloch dynamics of Bose-Einstein
condensates in periodic potentials such as the prediction
of a new, interaction-induced Bloch period [6], Bloch os-
cillations of cold atoms in two-dimensional optical lat-
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tices [7] and wavepacket analysis of the Bloch-Zener os-
cillations of a BEC in a periodic potential [8]. Localizing
BECs increases spatial control of the atomic cloud, which
can be used in many experiments and applications. Lo-
calized states of BECs in optical lattices have been pre-
dicted by Trombettoni et al. [9]. The dynamics of BEC
in periodic potentials is governed by the discrete non-
linear Schrödinger equation which is known to support
self-trapped states and travelling breathers [10]. A new
technique to localize BEC in optical lattice via bound-
ary dissipation was proposed recently by Livi et al. [11].
Nonlinear self trapping of matter waves in optical lattices
have also been observed experimentally [12]. Nonlinear
Josephson oscillations and self trapping of BEC are im-
portant fundamental concepts. They have been studied
in great detail in the context of two coupled condensates
and three coupled condensates. Noise thermometry with
two weakly coupled BECs was investigated recently by
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Gati et al. [13]. Tunneling and non-linear self trapping in
a single Bosonic Josephson junction have been observed
by Albiez et al. [14]. Theoretically in the context of two
coupled BEC’s, the Josephson effect, Π oscillations and
macroscopic quantum self-trapping were predicted some
time ago [15]. Self-trapping mechanisms in three coupled
BEC’s has also been extensively studied by Franzosi et al.
[16]. Recently, Josephson oscillation and transition to self-
trapping state in a triple well has also been studied [17].
An important promising application under study is quan-
tum computation in optical lattices [18]. Optical lattices
are therefore of particular interest from the perspectives of
both fundamental quantum physics and its connection to
applications. Using superposition of optical lattices with
different periods [19], it is now possible to generate peri-
odic potentials characterized by a richer spatial modula-
tion, the so-called optical superlattices. The light-shifted
potential of the superlattice is described as

V (z) = V1 cos2
(πz

d1

)
+ V2 cos2

(πz
d2

+ φ
)

. (1)

Here d1 and d2 are, respectively, the primary and sec-
ondary lattice constants, V1 and V2 are the respective
amplitudes and φ is the phase of the secondary lattice.
When φ = 0, all sites of the lattice are perfectly equiv-
alent due to the symmetries of the system, so that the
population and onsite energies are same at each site. An
asymmetry is introduced when φ "= 0 and hence the onsite
energies are not the same at each site.
Theoretical interest in optical superlattices started only
recently. Examples include work on fractional filling Mott
insulator domains [20], dark [21] and gap [22] solitons, the
Mott-Peierls transition [23], non-mean field effects [24] and
phase diagrams of BEC in two-color superlattices [25].
Porter et al. [26] have shown that optical superlattices
can manipulate and control solitons in BEC. The analogue
of the optical branch in solid-state physics has also been
predicted in an optical superlattice [27]. Rousseau et al.
[28] have considered the effect of a secondary lattice on a
one-dimensional hard core of bosons (strongly correlated
regime). A detailed theoretical study of the Bloch and Bo-
goliubov spectrum of a BEC in a one-dimensional optical
superlattice has been done by Bhattacherjee [29]. In an in-
teresting work [30], we show that due to the secondary lat-
tice, there is a decrease in the superfluid fraction and the
number fluctuation. The dynamic structure factor which
can be measured by Bragg spectroscopy is also sup-
pressed due to the addition of the secondary lattice. The
visibility of the interference pattern (the quasi-momentum
distribution) of the Mott-insulator is found to decrease due
to the presence of the secondary lattice. In a very recent
experiment [31], it was observed that the center-of-mass

motion of a BEC is blocked in a quasi-periodic lattice.
Considering the fact that these optical superlattices are
now being realized experimentally and interesting exper-
iments are being done routinely, we were motivated to
study the influence of the secondary lattice on Bloch os-
cillations and dipole oscillations of atoms. In particular,
we show that the effective mass of the BEC increases in
the presence of the secondary lattice which, consequently
blocks the center-of-mass motion of the BEC.

2. Bloch oscillations
We consider an elongated cigar-shaped BEC confined in
a harmonic trap potential of the form Vho(r, z) = m

2 (ω2r r2 +
ω2zz2) and a one-dimensional tilted optical superlattice of
the form Vop(z) = ER

(s1 cos2( πz
d ) + s2 cos2( πz

2d )) + mgz.
We have taken a particular case where d2 = 2d1 = 2d.
Here, s1 and s2 are the dimensionless amplitudes of the
primary and the secondary superlattice potentials with
s1 > s2. ER = h̄2π2

2md2 is the recoil energy (ωR = ER
h̄is the corresponding recoil frequency) of the primary lat-

tice. We take ωr # ωz so that an elongated cigar shaped
BEC is formed. The harmonic oscillator frequency corre-
sponding to small motion about the minima of the optical
superlattice is ωs ≈

√s1h̄π2

md2 . The peak densities in each
well match the Gaussian profile. Since the array is tilted,
the atoms undergo coherent Bloch oscillations driven by
the interwell gravitational potential mgz. The BEC is ini-
tially loaded into the primary lattice and the secondary
lattice is switched on slowly. The frequency of each min-
ima of the primary lattice is not perturbed significantly
by the addition of the secondary lattice. Here ωs # ωz
so that the optical lattice dominates over the harmonic
potential along the z-direction and hence the harmonic
potential can be neglected. The high laser intensity will
give rise to an array of several quasi-two-dimensional
pancake-shaped condensates. Because of the quantum
tunneling, the overlap between the wave functions of two
consecutive layers can be sufficient to ensure full coher-
ence. We study now the Bloch dynamics of the BEC in the
tilted optical superlattice by solving the discrete nonlin-
ear Schroedinger equation (DNLSE). The dynamics of the
BEC is governed by the Gross-Pitaevskii equation (GPE),

ih̄ ∂ζ
∂t = − h̄2

2m∇2ζ + {Vho(r, z) + Vop(z) + g0|ζ|2} ζ, (2)

where g0 = 4πh̄2a
m , with a the two body scattering length

and m the atomic mass. In order to understand the ba-
sic physics of the system, we consider the case of a deep
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optical lattice (large laser intensities), where analytic so-
lutions can be obtained in the tight binding approxima-
tion. In this approximation, the interwell barriers are much
higher than the chemical potentials. In the tight bind-
ing approximation the condensate order parameter can be
written as

ζ(r, t) = √NT
∑

j
Ψj (t)φ(r − rj ), (3)

where NT is the total number of atoms and φ(r − rj ) =
φj is the condensate wavefunction localized in the trap j
with ∫ drφjφj+1 ≈ 0, and ∫ dr ∣∣φj

∣∣2 = 1; Ψj (t) is the jth

amplitude. Ψj (t) = √ρj (t) exp(iθj (t)) where ρj = Nj
NT , with

Nj and θj being the number of particles and phases in the
trap j respectively. Substituting the Ansatz (3) in (2), we
find that the GPE reduces to the DNLSE,

i ∂Ψj
∂t = −1

2
{(1 − α(−1)j−1) Ψj−1 + (1 − α(−1)j) Ψj+1

} +
(

εj + Λ ∣∣Ψj
∣∣2) Ψj . (4)

Here εj = 1
J0

∫ dr
[

h̄2
2m

(
∇̄φj

)2 + (Vho(r) + Vop(z)) ∣∣φj
∣∣2

]
, Λ = g0NT

J0
∫ dr ∣∣φj

∣∣4, α = ∆02J0 . One can show using Jj =
− ∫ dr

[
h̄2
2m ∇̄φj · ∇̄φj+1 + φj

(Vho(r) + Vop(z)) φj+1
]

that there are distinctly two Josephson coupling parameters, J1,2 =
J0 ± ∆02 where J0 ≈ ER4

[(
π2
2 − 2

)
s1

]
exp

(
− π2√s1

4
)

and ∆0 ≈ ER2 s2 exp
(

− π2√s1
4

)
[29]. We have rescaled time as t → h̄

2J0 t.
In Eq. (4), εj = ωBj , where ωB = mgλ1

4J0 is the frequency of Bloch oscillation and λ1 is the wavelength of the laser creating
the primary lattice. In order to understand the Bloch and dipole oscillations, we solve the DNLSE using a variational
approach adopted from [9]. The Hamiltonian function corresponding to the DNLSE Eq. (4) reads

H = ∑
j

[−1
4

{(1 − (−1)jα) (ΨjΨ∗j+1 + Ψ∗j Ψj+1
) + (1 − (−1)j−1α) (ΨjΨ∗j−1 + Ψ∗j Ψj−1

)} + εj
∣∣Ψj

∣∣2 + Λ
2

∣∣ψj
∣∣4

]
, (5)

where ∑
j
∣∣Ψj

∣∣2 = 1. To analyze the Bloch dynamics, we study the dynamical evolution of a site-dependent Gaussian
wavepacket, which we parameterize as

Ψj (t) = √K exp
[
− (j − ξ)2

γ2 + ip (j − ξ) + i δ
2 (j − ξ)2 + i(−1)j φ

2
]

, (6)

where ξ(t) and γ(t) are, respectively, the center and width of the condensate, p(t) and δ(t) are their associated momenta,
and K (γ, ξ) a normalization factor. Here (−1)j φ

2 is the phase of the wave packet at the jth site. Clearly, depending upon
whether j is odd or even, the phase is ± φ

2 . As explained in [29], as the condensate moves from one well to the next, it
acquires additional phase, which depends on the height of the barrier. As the height of the barrier alternates, the phase
also alternates.
The dynamics of the wave packet can be obtained by the variational principle from the Lagrangian, L = ∑

j iΨjΨ∗j − H,
with the equations of motion for the variational parameters qi(t) = ξ, γ, p, δ, φ given by d

dt
∂L
∂q̇i = ∂L

∂qi . The phase is used
to enforce a constraint. The Lagrangian is

L = pξ̇ − γ2δ̇
8 −

[ Λ
2√πγ

]
+ {cos φ cos p + α sin φ sin p} exp(−η) − V (γ, ξ), (7)

where η = 1
2γ2 + γ2δ2

8 and V (γ, ξ) = K ∫ ∞
−∞ dj εj exp

(
−2 (j−ξ)2

γ2
)

.
The variational equations of motion are:

ṗ = −∂V
∂ξ , (8a)

ξ̇ = [cos φ sin p − α sin φ cos p] exp(−η), (8b)

δ̇ = [cos φ cos p + α sin φ sin p] exp(−η)
[ 4

γ4 − δ2
]

+ 2Λ
γ3√π − 4

γ
∂V
∂γ , (8c)
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γ̇ = γδ [cos φ cos p + α sin φ sin p] exp(−η), (8d)
tan φ = α tan p. (8e)

Since cos2 φ + sin2 φ = 1, together with equation (8a-8e),
we get the following constraints on cos φ and sin φ:

cos φ = cos p√
cos2 p + α2 sin2 p

, (9a)

sin φ = α sin p√
cos2 p + α2 sin2 p

. (9b)

Corresponding to the variational equations (8a-8e) and
constraints (9a-9b) the effective Hamiltonian is written as

H = Λ
2√πγ − cos p

√
1 + α2 tan2 p exp(−η) + V (γ, ξ).

(10)
We first study the Bloch oscillations. For the tilted
periodic potential, the on-site energies are written as
εj = jωB .

Figure 1. Oscillations of the center-of-mass ξ(t) are depicted for
two different values of the secondary lattice strength,
α = 0.1 and α = 0.4. The other parameters are
ξ(0) = 0, p(0) = 0, δ(0) = 0, γ(0) = 10, Λ = 20, ωB = 2.
On increasing the strength of the secondary lattice, the
amplitude of the center-of-mass motion reduces.

Using equations (8a-8e), we find V = ξωB and ṗ = −ωB .
We solve the variational equations of motion numerically
using a fifth-order Runge-Kutta method, with the initial
values ξ(0) = 0, p(0) = 0, δ(0) = 0, γ(0) = 10, and
the parameters Λ = 20, ωB = 2. The result for the
center-of-mass ξ(t) is depicted in figure 1 for two differ-
ent values of the secondary lattice strength, α = 0.1 and
α = 0.4. Clearly on increasing the strength of the sec-
ondary lattice from α = 0.1 to α = 0.4, the amplitude of

the center-of-mass motion reduces. The secondary lattice
serves to break the discrete translational invariance of the
system, thus favouring localization of the wave function.
Optical superlattices with higher periodicities will block
the center-of-mass more strongly. The observed damping
(with respect to time) in fig. 1 is due to interactions. In the
absence of interactions, the center of the BEC for p0 = 0
goes roughly as ξ(t) ≈ −(1 − α2)(1 − cos ωBt), while in
the presence of interactions, the oscillations roughly de-
creases as ξ(t) ≈ −(1 − α2)

(
1 − exp

(
− Λt2

2πγ4f

)
cos ωBt

)
.

Here, γf is some final value of γ. Clearly, when there is
no interaction, there is no damping of the Bloch oscilla-
tions in time but there is a reduction in the amplitude by
a factor (1 − α2) due to the presence of the secondary
lattice. In order to understand the origin of this blocking
of the center-of-mass motion, we derive the effective mass
(m∗)−1 = ∂2H

∂p2 as,

m∗ =
(1 + α2 tan2 p)3/2 exp(η)

cos p (1 − α2 tan4 p) (1 − α2) . (11)

A diverging effective mass m∗ → ∞ as t → ∞ due to
interactions leads to a self-trapping of the wave packet
[17]. In the expression for the effective mass (Eq. 11), in the
absence of interaction, the factor exp(η) is constant since γ
tends to a final value γf and δ(t) ≈ δ0 (initial value). This
can be seen from equations 8c and 8d. The effective mass
is now enhanced due to the presence of the secondary
lattice. Since Λ = 0, the effective mass stays constant in
time and the Bloch oscillations show reduced oscillations
compared to the case for a single frequency optical lattice
but does not show damping in time. On the other hand
when Λ "= 0, and t → ∞, γ → γf and δ(t) ≈ 2Λt

γ3f
√π , so that

m∗ → ∞. This causes not only a reduction in amplitude
but also damping in time. It is interesting to note that, we
now have an additional handle to tune the effective mass.
A plot between m∗ and α (for p = 0) in figure 2 shows
that as the strength of the secondary lattice increases,
the effective mass also increases. Therefore the origin
of the reduction of the amplitude of Bloch oscillations of
a BEC in an optical superlattice is due to an increase
of the effective mass. Dynamics of localized excitations,
such as solitons depends on the effective mass, hence the
secondary lattice emerges as a useful additional handle
to manipulate localized excitations.
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Figure 2. A plot relating m∗ to α shows that, as the strength of
the secondary lattice increases, the effective mass also
increases. Therefore the origin of the localization of a
BEC in an optical superlattice is due to an increase in
the effective mass.

3. Dipole oscillations
We study now the dipole oscillations. Instead of the grav-
itational potential, we consider a sufficiently large mag-
netic harmonic potential (ωz ≈ ωs) superimposed on the
optical lattice, εj = Ωj2, where Ω = mω2z d2

J0 . The vari-
ational equations of motion give V (γ, ξ) = Ω

( γ2
4 + ξ2

)

and ṗ = −2Ωξ . In the regime of negligible mean field
interaction (Λ = 0) and small momenta p, the equa-
tion for the center-of-mass is ξ̇(t) = (1 − α2) p. Con-
sequently, the center-of-mass obeys the equation of an
undamped harmonic oscillator, ξ̈ = ω2dξ , where the fre-
quency of dipole oscillation, ω2d = 2Ω (1 − α2) = ω2z

( m
m∗

)
is reduced in the presence of the secondary lattice since
m∗ > m. We consider the initial conditions ξ(0) = 0 and
p(0) = p0. The center-of-mass in the Λ = 0 regime and
small momenta is ξ(t) ≈ (1−α2)1/2

√2Ω sin ωdt. In the low mo-
menta limit, the amplitude of the center-of-mass decreases
with increasing strength of the secondary lattice approx-
imately as

[
1 −

(
s2

s1
( π2

2 −2
)
)2]1/4

. In the experiment [16],
ωz ≈ 2π × 10 Hz and λ1 ≈ 830 × 10−9 nm. This corre-
sponds to a very low value of Ω ≈ 0.0001 (in dimensionless
units).
We solve the variational equations of motion numerically
using the fifth-order Runge-Kutta method [32], for the
following initial values: ξ(0) = 0, p(0) = 0.1, δ(0) =
0, γ(0) = 40 and the parameters: Λ = 5, Ω = 0.0002.
The result for the dipole oscillation is depicted in figure
3 for two different values of the secondary lattice strength
α = 0.1 and α = 0.7. For Λ = 5, we are still in the regime
of negligible mean field interaction and we do not expect
any damping. On increasing the strength of the secondary
lattice, the amplitude of the center-of-mass ξ(t) is reduced

Figure 3. A plot of the dipole oscillations for α = 0.1 and α = 0.7.
The other parameters are ξ(0) = 0, p(0) = 0.1, δ(0) =
0, γ(0) = 40, Λ = 5, Ω = 0.0002. We notice that, as the
strength of the secondary lattice increases, the dipole os-
cillations are blocked in accordance with the experimen-
tal observations of [31]. Since we are in the negligible
mean field interaction regime, the dipole oscillations are
not damped.

in accordance with the experiments of [31]. This reduction
in the amplitude of the dipole oscillation on increasing
the strength of the secondary lattice is due to an increase
in the effective mass, as mentioned earlier in this pa-
per. The initial value of the effective mass can be positive
(cos p0 > 0) or negative (cos p0 < 0). Let us suppose that
cos p0 > 0 and initial values: γ(0) = γ0, δ(0) = δ0 = 0
and ξ(0) = ξ0 = 0. The initial value of the Hamiltonian
is H0 = Λ

2√πγ0 − cos p0
√

1 + α2 tan2 p0 exp (− 1
2 γ20

) + Ωγ204 .
Since the Hamiltonian is conserved, we have H0 =

Λ
2√πγ0 − cos p0

√
1 + α2 tan2 p0 exp

(
− 1

2 γ2 − γ2δ2
8

)
+ Ωγ2

4 .
The parabolic external potential helps to keep H0 > 0,
therefore,

Λ
2√πγ + Ωγ2

4 − H0 > 0. (12)

The trajectories in the γ − δ plane are given by

δ2 = − 1
γ4


8γ2 log




Λ
2πγ + Ωγ2

4 − H0

cos p0
√

1 + α2 tan2 p0


 + 4


 .

(13)
Figure 4 shows a plot of the center-of-mass for α = 0.1,
ξ(0) = 0, p0 = 0.1, δ0 = 0.1, γ0 = 10, Λ = 47, 57, ω =
0.0002. We notice that for such high values of Λ, the dipole
oscillations are completely blocked. Both interactions and
secondary lattice induced disorder cooperate to block the
center-of-mass motion. For the higher value of Λ, the
center-of-mass stops at an earlier time, which again is in
accordance with experiments [31]. From equation (13), we
notice that δ → ∞ as t → ∞. Therefore, for large time,
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Figure 4. Center-of-mass motion for α = 0.1 , ξ(0) = 0, p0 =
0.1, δ0 = 0.1, γ0 = 10, Λ = 47, 57, ω = 0.0002. We no-
tice that for such high values of Λ, the dipole oscillations
are completely blocked. Both interactions and secondary
lattice induced disorder cooperate to block the center-of-
mass motion.

ξ̇ ≈ (1 − α2) sin p0 exp
(

− 1
2γ2max

− γ2maxδ2

8
)

→ 0 (14)

and

m∗ =
(1 + α2 tan2 p)3/2 exp

(
1

2γ2max
+ γ2max δ2

8
)

cos p (1 − α2 tan4 p) (1 − α2) → ∞. (15)

The center of the BEC wavepacket stops and the effective
mass goes to infinity and there is an energy transfer from
the kinetic energy to the internal modes, since δ is the
momentum associated with the width γ. This is the self-
trapped regime. We also find that the final value of center-
of-mass ξf is not the same as ξ0. For a fixed Λ, an increase
in the secondary lattice potential will block the center-of-
mass at an earlier time.

4. Conclusions
For Bose-Einstein condensates trapped in an optical su-
perlattice, the addition of the secondary lattice blocks
centre-of-mass motion. This is due to an increase in ef-
fective mass. Adding the secondary lattice also reduces
the dipole oscillation frequency. These results agree with
recent experiments [31]. We found the secondary lattice
useful for theoretically investigating and manipulating lo-
calized excitations.
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