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Abstract— The pulse compression of ultra-short few-cycle
pulses in nonlinear optical fibers is studied using the multisym-
plectic integration of the short pulse equation.

I. I NTRODUCTION

The study of different mechanisms of nonlinear pulse
compression is usually based on the nonlinear Schrödinger
equation (NSE) and its modifications. However, the present
day optical technologies and experiments are starting to use
ultrashort femto- and atto-second optical pulses [1], whose
duration is smaller than a few cycles of the corresponding
electromagnetic wave. In this case the usual description of
optical pulses using the NSE and the slowly varying envelope
approximation is not valid . Therefore, an analysis of the pulse
compression of ultra-short few-cycles optical pulses beyond
the slowly varying approximation is needed.

An approach to the description of ultrashort few-cycles op-
tical pulses is proposed in [2]. It leads (in properly normalized
units) to the so-calledshort pulse equation (SPE):

uzt = u +
1

6
(u3)tt, (1)

where u(z, t) represents the magnitude of the electric field.
This equation can describe ultra-short infrared pulses in silica
optical fibers [3]. SPE represents an opposite extreme to the
slowly varying envelope approximation and NSE: as the pulse
duration shortens, the description using the NSE becomes less
accurate, while the SPE provides a better approximation to the
corresponding solution of the Maxwell equations.

In [4] and [5] SPE is shown to be integrable. Multicompo-
nent generalizations of SPE have been discussed in [7] and
[8]. In [6] Sakovich& Sakovich constructed a first analytical
solution of SPE which represents ultra-short pulses.

In this paper we use the SPE in order to study the compres-
sion of ultra-short pulses.

II. M ULTISYMPLECTIC INTEGRATOR

The numerical study of SPE and its generalizations requires
a robust, fast and stable numerical scheme. Such a scheme has
been constructed [9] using the so-called multisymplectic (De
Donder-Weyl Hamiltonian) approach. It has been developed
in the context of classical field theory by many authors (see
e.g.[10]). An application to the numerical integration of PDEs
was suggested in [11]. The key idea is to use a specific
discretization, the multisymplectic integrator, which preserves
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the so-called multisymplectic structure. This idea general-
izes the technique of symplectic integrators to PDEs. Unlike
the infinite dimensional symplectic structure associated with
PDEs, the multisymplectic structure is defined over a finite
dimensional analogue of the phase space and its preservation
is easier to implement numerically.

The multisymplectic integrator for SPE is constructed by the
midpoint discretization of the De Donder-Weyl Hamiltonian
form of SPE written in terms of the potentialφ(t, z) : φt = u,
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where φi,j = φ(i∆t, j∆z). The discretization mesh is pre-
sented on Fig. 1.

In [9] we have seen that the multisymplectic integrator is
an order of magnitude more precise and approximately 25
times faster at long propagation times than the pseudo-spectral
method and even more effective when compared with the split-
step method. A comparison with the exact solution of SPE
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shows that our multisymplectic integration of SPE is stable
and robust and preserves the energy functional.

III. PULSE COMPRESSION

The multisymplectic integrator enables us to study the
behavior of the solutions of SPE at long propagation distances.
Here we use it to study the compression of ultra-short pulses.

Fig. 2 shows how a few cycles ultra-short initial pulse
evolves into the compressed pulse and radiation. This be-
haviour is observed only for a certain range of the amplitudes
of the initial pulse with the same initial width. If the initial
amplitude is too low the pulse actually broadens, and if the
initial amplitude is too high the carrier-wave shock formation
takes place. For the range of initial amplitudes which can be
used for pulse compression we found a linear dependence of
the compression rationc from the initial peak amplitudeumax,
see Fig. 4.

For broader pulses we observe a phenomenon similar to the
solition fission phenomenon [12] known from the perturbed
NSE, where several compressed pulses are created, see Fig. 3.

Note that in both cases the initial pulse evolves to a
Sakovich&Sakovich’ solitary wave solution [6] and the ra-
diation waves.
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