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Abstract— The pulse compression of ultra-short few-cycle pi+1,j' pi+1,j+1‘ pi’j
pulses in nonlinear optical fibers is studied using the mulgym-

plectic integration of the short pulse equation. known:
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. INTRODUCTION L+l i+,

The study of different mechanisms of nonlinear pulse _
compression is usually based on the nonlinear Schrodinger =1 N i=N-11=N
equation (NSE) and its modifications. However, the present e o o ® o =0
day optical technologies and experiments are starting o0 us
ultrashort femto- and atto-second optical pulses [1], whos e o o
duration is smaller than a few cycles of the corresponding
electromagnetic wave. In this case the usual description of o O O
optical pulses using the NSE and the slowly varying envelope
approximation is not valid . Therefore, an analysis of this@u © o0 o o0o/O0o O O e |3
compression of ultra-short few-cycles optical pulses beyo
the slowly varying approximation is needed. 2 t 4pt

An approach to the description of ultrashort few-cycles op- Ca|CU|ateipi,j Pij pi,j+1 ij
tical pulses is proposed in [2]. It leads (in properly norized
units) to the so-calleghort pulse equation (SPE):
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Fig. 1.
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the so-called multisymplectic structure. This idea gekRera
whereu(z,t) represents the magnitude of the electric fieldzes the technique of symplectic integrators to PDEs. énlik
This equation can describe ultra-short infrared pulsedlitas the infinite dimensional symplectic structure associateéith w
optical fibers [3]. SPE represents an opposite extreme to ABEs, the multisymplectic structure is defined over a finite
slowly varying envelope approximation and NSE: as the pulsémensional analogue of the phase space and its preservatio
duration shortens, the description using the NSE beconsss I& easier to implement numerically.
accurate, while the SPE provides a better approximationeio t  The multisymplectic integrator for SPE is constructed gy th
corresponding solution of the Maxwell equations. midpoint discretization of the De Donder-Weyl Hamiltonian

In [4] and [5] SPE is shown to be integrable. Multicompoform of SPE written in terms of the potenti@lt, z) : ¢; = u,

nent generalizations of SPE have been discussed in [7] and

. . . . t t
[8]. In [6] Sakovich& Sakovich constructed a first analytical Pip1j+1 ~ P41 n p;-%,j-ﬁ-l —Pf%,j _ 4
solution of SPE which represents ultra-short pulses. At Az = Pitdi+se
_ In this paper we use the SPE in order to study the compres- ¢i+17j+% - quﬁ - )
sion of ultra-short pulses. Al =201 (2)
[I. MULTISYMPLECTIC INTEGRATOR itt1 ~ Piryg —opt . L+ §(pz o
Az i+3.g+5 | gWitg.a+s/ 0

The numerical study of SPE and its generalizations requires

a robust, fast and stable numerical scheme. Such a schemewlaare ¢; ; = ¢(iAt, jAz). The discretization mesh is pre-
been constructed [9] using the so-called multisymplediie ( sented on Fig. 1.

Donder-Weyl Hamiltonian) approach. It has been developedin [9] we have seen that the multisymplectic integrator is
in the context of classical field theory by many authors (se& order of magnitude more precise and approximately 25
e.9.[10]). An application to the numerical integration &@Bs times faster at long propagation times than the pseuddssihec
was suggested in [11]. The key idea is to use a specifitethod and even more effective when compared with the split-
discretization, the multisymplectic integrator, whicteperves step method. A comparison with the exact solution of SPE
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1.9 . .
© Ll i For broader pulses we observe a phenomenon similar to the
2 .l | solition fission phenomenon [12] known from the perturbed
e Lol i NSE, where several compressed pulses are created, see Fig. 3
c ’ . e e
O s i Note that in both cases the initial pulse evolves to a
ﬁ Lal- | Sakovicl§sSakovich’ solitary wave solution [6] and the ra-
S 13 | diation waves.
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