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On the propagation of vector ultra-short pulses
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Abstract

A two component vector generalization of the Schäfer-Wayne short pulse equation
is derived. It describes propagation of ultra-short pulses in optical fibers with Kerr
nonlinearity beyond the slowly varying envelope approximation and takes into account
the effects of anisotropy and polarization. We show that in a special case this system
gives rise to three different integrable two-component short pulse equations which
represent the counterpart of the Manakov system in the case of ultra-short pulses.

1 Introduction

The nonlinear propagation of optical pulses in Kerr media is usually described by nonlinear
Schrödinger equation which is an integrable system in (1+1) dimensions. The derivation
of this equation is based on the slowly varying envelope approximation [1]. However, this
approximation is not valid for the ultra-short pulses whose temporal extent is less than
just a few periods of the corresponding optical wave (see e.g. [2]). There is an increasing
number of experiments and applications which involve such ultra-short pulses in femto-
second atto-second domain [3].

The problem of mathematical description of the propagation ultra-short pulses has
been addressed from different points of view which range from the consideration of the
full Maxwell-Bloch system to the studies of the nonlinear Schrödinger equation with higher
order corrections (see e.g. [4–7]).
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In [8] Schäfer and Wayne have derived an equation which describes ultra-short infrared
pulses in silica optical fibers. In properly normalized units the equation takes the form [11]

uzt = u +
1

6
(u3)tt, (1.1)

where u(z, t) represents the magnitude of the electric field. Following [11] we will refer to it
as the Short Pulse Equation (SPE). SPE represents the opposite extreme from the slowly
varying envelope approximation: as the pulse duration shortens, the description using the
nonlinear Schrödinger equation becomes less accurate, while the SPE provides increasingly
better approximation to the corresponding solution of the Maxwell equations. Sakovich &
Sakovich [11] and Brunelli [12] have shown using different methods that this equation is
integrable. Moreover, Sakovich & Sakovich [13] have constructed a first analytical solution
of (1) which possibly represents ultra-short pulses.

However, the single-component SPE neglects the fact that all single mode optical fibers
actually support two orthogonally polarized modes. It is only in perfectly isotropic fibers
that the polarization modes are completely degenerate and the treatment in terms of
the single-component equations is justified. In reality optical fibers are supporting two
orthogonally polarized modes with different propagation constants, i.e the fibers are bire-
fringent. The birefringence and its interplay with nonlinearity may have strong influence
on propagation of optical pulses along the fiber. Moreover, the dynamics of polarization in
specially fabricated anisotropic fibers and microstructured or photonic crystal fibers [14]
is also interesting from the point of view of applications, e.g. to polarimetric sensors [15]
or in soliton computing [16].

The standard description of optical pulses in birefringent fibers in the slowly varying
envelope approximation is achieved by means of the pair of coupled nonlinear Schrödinger
equations [17], also known as the vector nonlinear Schrödinger equation [18, 19]. A par-
ticular case of this system is the well known integrable Manakov system [19]. The vector
nonlinear Schrödinger equation also appears in many other different contexts in nonlinear
optics, see e.g. [20–22].

In this paper we consider the nonlinear propagation of ultra-short pulses with two
orthogonally polarized components. In Section 2 we derive a system of two coupled short-
pulse equations. This system plays the same role in the dynamics of ultra-short pulses as
the vector non-linear Schrödinger equation does in the case of broader pulses which can be
described by the slowly varying envelope approximation. In Section 3 we show that in a
particular case this system gives rise to three different integrable two-component systems
which can be viewed as an ultra-short pulse analogue of the Manakov system.

2 Vector short-pulse equation

We consider a propagation of two orthogonally polarized modes in the anisotropic fiber
along the direction z

E = Eiei = E1e1 + E2e2, (2.1)

where e1 · e1 = 1 = e2 · e2, e1 · e2 = 0. The starting point is Maxwell’s equation (c = 1)
for the wave propagating in z-direction

Ezz − Ett = Ptt (2.2)
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which is valid if the diffraction terms ∆⊥E and the transverse inhomogeneities of the
polarization ∇divP are neglected. Here P is the polarization of the medium in response
to the electric field. It has both linear and nonlinear contributions: P = P ln + Pnl.

Assuming the medium is homogeneous and anisotropic and neglecting the spacial dis-
persion, the most general linear contribution to polarization is

P ln
i (z, t) =

∫ +∞

−∞

dτχ(1)
ij (t − τ)Ej(z, τ) (2.3)

which accounts for the retarded response of the medium if the causality is enforced by the

condition χ(1)
ij (t) = 0 if t < 0. For the linear susceptibility we assume that the frequency

range of the pulse under consideration and the pulse frequencies are much higher than the

resonance frequencies. In this case the Fourier transformation of χ(1)
ij (t − τ) is given by

χ̃(1)
ij (ω) ≈ −χijω

−2. (2.4)

Substituting this expression to (1) we obtain in the linear approximation the equation

(Ei)zz − (Ei)tt = χijEj. (2.5)

A rigorous derivaton of the isotropic version of (5) is found in Proposition 2.4 in [9].
Next, we turn to the nonlinear contribution to polarizability, Pnl. We restrict our

attention to the centrosymmetric materials, so that there is no quadratic nonlinearity
(c.f. [23]) and the lowest order nonlinearity is cubic:

Pnl
i (z, t) =

∫

dτ1dτ2dτ3 χ
(3)
ijkl (t − τ1, t − τ2, t − τ3)Ej(z, τ1)Ek(z, τ2)El(z, τ3). (2.6)

We shall take into account only the instantaneous nonlinear response

χ(3)
ijkl(t − τ1, t − τ2, t − τ3) = χijkl δ(t − τ1)δ(t − τ2)δ(t − τ3). (2.7)

Though the effects of delay in nonlinear response of the medium can be a part of the
ultra-short pulse dynamics [6], the instantaneous contribution is expected to dominate in
the case of very short, small amplitude pulses [8]. In this approximation Eq. (3) reduces
to

(Ei)zz − (Ei)tt = χijEj + χijkl (EjEkEl)tt. (2.8)

The solutions of the linear part of this equation split into forward- and backward-propagating
wave packets and the nonlinear term may generate interaction between them. However, in
the case of very short pulses this interaction can be neglected. In order to incorporate the
effects of the nonlinear and dispersive terms in (9) we make a multiple scale Ansatz [24]

Ei(z, t) = εU (0)
i (ζ, z1, z2, ...) + ε2U (1)

i (ζ, z1, z2, ...) (2.9)

with

ζ :=
t − z

ε
, zn := εnz. (2.10)
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At z = 0 this Ansatz reduces to

E(0, t) = εU0(t/ε) + ε2U1(t/ε) + ...,

which represents a short pulse at small ε.
We insert (10) into (9) and find that the chosen form of the multiple scale Ansatz

cancels the terms of the order O(1
ε ) and that there are no terms O(ε0). Hence, in the

leading nontrivial order O(ε) we obtain

−2∂z1
∂ζU

(0)
i = χijU

(0)
j + χijkl∂ζζ(U

(0)
j U (0)

k U (0)
l ). (2.11)

This system describes the unidirectional propagation of ultra-short pulses with orthog-
onal polarization components in a general anisotropic fiber whose material is characterized
by linear and third-order nonlinear susceptibility coefficients χij and χijkl.

Let us consider now the birefringent optical fibers characterized by anisotropic lin-
ear susceptibility and isotropic nonlinear susceptibility. Then the nonlinear polarization
consistent with the underlying spatial symmetries has the form [25]

Pi = γ(E2
1 + E2

2)Ei (2.12)

which implies

γ = χ1111 = χ2222 = χ1122 + χ1212 + χ1221 = χ2112 + χ2121 + χ2211. (2.13)

Assuming that the linear susceptibility is homogeneous along the z direction, we transform
(12) to the eigenbasis of χij . Denoting the modes along the eigendirections of the linear
susceptibility as A and B and the corresponding eigenvalues of 1

2χij as a and b, we obtain
the following system of coupled SPE-s

Az1ζ = aA +
γ

2
(A3 + B2A)ζζ ,

Bz1ζ = bB +
γ

2
(B3 + A2B)ζζ . (2.14)

3 The integrable interaction of ultra-short pulses

In the previous section we have obtained a two-component generalization of the short-
pulse equation of Schäfer and Wayne [8]. The single-component SPE has been proved to
be integrable by Sakovich & Sakovich [11] and Brunelli [12]. The proof by Sakovich &
Sakovich is based on the explicit construction of the zero-curvature representation of SPE.
In this section we construct an integrable system of two coupled SPEs by generalizing the
results of Sakovich & Sakovich to the multicomponent case. For the sake of simplicity, in
this section we denote the rescaled variables (z1, ζ) as (z, t).

Let us consider a linear system

Ψt = TΨ, (3.1)

Ψz = ZΨ, (3.2)
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with

T =

(

λ λUt

λUt −λ

)

(3.3)

and

Z =

( λ
2U2 + 1

4λ
λ
6 (U3)tt −

1
2U

λ
6 (U3)tt + 1

2U −λ
2U2 − 1

4λ

)

, (3.4)

where U is assumed to be a square matrix and λ is an arbitrary nonzero constant. The
compatibility of (1) and (2), Ψzt = Ψtz, gives rise to the zero-curvature condition

Tz − Zt + [T,Z] = 0. (3.5)

Now, by direct calculation we obtain

Tz − Zt =

(

−λ
2 (U2)z λUzt −

λ
6 (U3)ttt + 1

2Ut

λUzt −
λ
6 (U3)ttt −

1
2Ut

λ
2 (U2)t

)

(3.6)

and

[T,Z] =





λ2

6 V + λ
2 (U2)t

λ2

6 W − 1
2Ut − λU

λ2

6 W + 1
2Ut − λU λ2

6 V − λ
2 (U2)t



 , (3.7)

where

V := Ut(U
3)t − (U3)tUt, (3.8)

W :=
1

3
(U3)t −

1

2
U2Ut −

1

2
UtU

2.

Therefore, if V = 0 = W the zero-curvature condition (5) is equivalent to

Uzt − U −
1

6
(U3)tt = 0 (3.9)

which is a matrix generalization of SPE. The existence of the zero-curvature representation
shows that this matrix generalization of SPE is integrable provided the conditions V = 0,
W = 0 are fulfilled identically. These conditions restrict the choice of admissible matrix
variables U .

Let us consider the case of 2 × 2 matrices

U =

(

A B
C D

)

.

If follows from (8) that the sufficient condition that V = 0 = W is fulfilled can be taken
in the form

UUt − UtU = 0.
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In terms of the components of U we obtain

(

BCt − BtC ABt − AtB + BDt − BtD

CAt − CtA + DCt − DtC CBt − BCt

)

= 0. (3.10)

This condition is fulfilled if, for example,

(i) B = C = 0, i.e. U =

(

A 0
0 D

)

. (3.11)

Substituting (11) to (9) we obtain just a set of two uncoupled SPE-s for functions A and
D.

The condition (10) can be also satisfied by taking

(ii) B = C, A = D, so that U =

(

A B
B A

)

. (3.12)

The substitution of (12) to (9) yields a new system of two coupled SPE-s

Azt = A +
1

6
(A3 + 3B2A)tt,

Bzt = B +
1

6
(B3 + 3A2B)tt. (3.13)

As it follows from the consideration in the previous section this equation describes an
integrable interaction of two ultra-short pulses. It can be viewed as a short-pulse ana-
logue of the Manakov equation [19]. The value of the cross-modulation coefficient β = 3
corresponding to the integrable system (13) is different from β = 1 for birefringent fibers
made of nonlinearly isotropic material. Note, that the value β = 3 can in principle be
realized in the materials with the point symmetry 432, 4̄3m or m3m [25]. However, in
the non-centrosymmetric materials 432, 4̄3m the effects of quadratic nonlinearities would
dominate over those of cubic nonlinearity considered here.

Another possibility to satisfy (10) is to take

(iii) B = −C, A = D, so that U =

(

A B
−B A

)

. (3.14)

In this case the matrix system (9) yields

Azt = A +
1

6
(A3 − 3B2A)tt,

Bzt = B −
1

6
(B3 − 3A2B)tt. (3.15)

The corresponding Kerr coefficients are compatible in principle with the symmetries of 1̄,
2/m and mmm materials [26].

The last possibility to satisfy (10) is to take

(iv) A = D, C = 0, so that U =

(

A B
0 A

)

. (3.16)
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Substituting (16) to (9) yields

Azt = A +
1

6
(A3)tt,

Bzt = B +
1

2
(A2B)tt. (3.17)

This system describes a propagation of small perturbation B on the background of the
solution A. Note, that a nonlinear Schrödinger equation analogue of this system has been
studied in the context of the so-called induced phase modulation [27].

4 Conclusions

We have extended the multiple scale analysis of the ultra-short pulse propagation in a one-
dimensional non-resonant Kerr medium [8] by taking into account the polarization and
anisotropy. It leads to a system of coupled SPEs. The two-component vector generalization
of SPE describes propagation of two orthogonally polarized ultra-short pulses when the
slowly varying approximation is not valid anymore.

The potential applicability of the vector SPE extends beyond the nonlinear fiber optics
of ultra-short pulses. It can be used in all those situations where the coupled nonlinear
Schrödinger equation has been proven to be useful, when the ultra-short pulses are used
instead of the usual broader pulses described by the slowly varying envelope.

Using the zero-curvature representation of Sakovich & Sakovich [8] we have analized
the integrability of the vector SPE by viewing it as a matrix generalization of the single
component short pulse equation. This allowed us to construct the short pulse analogues
of the integrable coupled nonlinear Schrödinger equations, i.e. the Manakov system [19].
We have briefly outlined the possible applicability of these equations to the propagation
of ultra-short pulses in the fibers made of natural or artificial materials with specific
symmetry groups.

The analysis of the solutions of the presented equations is beyond the scope of this pa-
per. An analysis of the short-pulse equation from the point of view of the multisymplectic
Hamiltonian formalism and the results of the numerical calculations will be presented in
fothcomming publications, see e.g. [28].
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