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Abstract

In this work, we study the behaviour of matter-wave band gap spectrum and eigen-

states as the periodicity of the optical superlattice is increased. We show that the band

gap (between the two lowest bands) which opens up in a doubly periodic superlattice

decreases as the periodicity increases further. This is interpreted as a decrease in the

Periels-Nabarro barrier which the dark soliton experiences as it goes from one well to
the next. For higher periodicity the mobility of the dark soliton is restored.

1. Introduction

When a gas of ultracold atoms is loaded into an optical lattice,its properties are modi-

fied strongly [1]. Ultracold bosons trapped in such periodic potentials have been widely

used recently as a model system for the study of some fundamental concepts of quantum

physics like Josephson effects[2], squeezed states[3], Landau-Zener tunneling and Bloch

oscillations[4] and superfluid-Mott insulator transitions[5].

One of the many advantages of a macroscopic quantum periodic system such as a BEC

in an optical lattice, is that the effective periodic potential created by a standing light wave

can be easily and precisely manipulated by changing the intensities, polarizations, frequen-

cies or geometric arrangement of the interfering laser beams. For example, the depths of

the periodic potential wells induced by an optical lattice can be controlled by tuning the

intensities of the laser beams. Using superposition of optical lattices with different periods

[6], it is now possible to generate more sophisticated periodic potentials characterized by

a richer spatial modulation, the so-called optical superlattices. An important and exciting

application of optical superlattice is quantum computation [7]. Theoretical interest in op-

tical superlattices started only recently. Examples include work on fractional filling Mott



2 Aranya B Bhattacherjee and Monika Pietzyk

insulator domains [8], dark[9] and gap[10] solitons, the Mott-Peirels transitions[11], non-

mean field effects[12] and phase diagrams of BEC in two-colour superlattices[13]. Porter

et al.[14] have shown that optical superlattices can manipulate and control solitons in BEC.

The analogue of the optical branch in solid-state physics has also been predicted in an op-

tical superlattice [15]. Rousseau et al.[16] have considered the effect of a secondary lattice

on a one-dimensional hard core of bosons (strongly correlated regimes). A detailed theo-

retical study of the Bloch and Bogoliubov spectrum of a BEC in a one-dimensional optical

superlattice has been done by Bhattacherjee [17]. In an interesting work [18], we show that

due to the secondary lattice, there is a decrease in the superfluid fraction and the number

fluctuation. The dynamic structure factor which can be measured by Bragg spectroscopy is

also suppressed due to addition of the secondary lattice. The visibility of the interference

pattern (the quasi-momentum distribution) of the Mott insulator is found to decrease due

to the presence of the secondary lattice. In a very recent experiment [19], it was observed

that the center-of-mass motion of a BEC is blocked in a quasi-periodic lattice. This was

interpreted as a result of an increase in the effective mass in an superlattice [20]. Most

remarkably, periodicity of the optical lattice potential leads to the effective dispersion of

the BEC wavepackets being a function of the band structure. In the majority of conden-

sates currently created experimentally, the interatomic interaction is repulsive. This corre-

sponds to an effectively defocusing nonlinearity of the matter-wave which can support dark

solitons-localized dips on the condensate density background with a phase gradient across

the localized regions. Similar to other types of solitons, they can remain dynamically stable

due to the balancing effects of nonlinearity and the (positive) dispersion. Dark solitons have

been created experimentally in repulsive condensates by using phase imprinting technique

to apply a sharp phase gradient to a condensate cloud in a magnetic trap [21, 22]. In the case

of BECs loaded into optical lattices, i.e. with the possibility for dispersion management,

dark solitons can be supported in both repulsive (for positive effective dispersion) and at-

tractive condensates (for negative effective dispersion). Moreover, dark lattice solitons are

expected to be easier to create experimentally than bright gap solitons as they are not con-

fined to the spectral gaps and a phase imprinting technique can be applied to a nonlinear

Bloch-wave background within a spectral band.

The theory of dark solitons has been developed extensively for many types of periodic

systems such as discrete atomic chains and waveguide arrays [23, 24, 25, 26, 27]. Applying

the concepts of discrete dynamical systems to the physics of the Bose-Einstein conden-

sates in optical lattices, Abdullaev et al. [28] studied dark and bright solitons on non-zero

backgrounds in a vertical lattice by employing a discrete mean-field model derived in the

tight-binding approximation, i.e. considering a single isolated band of the Bloch-wave

spectrum. In contrast, Yulin and Skryabin [29] used a single-gap continuous coupled-mode

model in order to examine the stability and existence of out-of-gap dark and bright soli-

tons. A more general analysis based on the continuous Gross-Pitaevskii equation with a

periodic potential was presented by Alfimov et al. [30] who showed that for a repulsive

condensate in an optical lattice, dark solitons can exist as stationary localized solutions

with nonvanishing asymptotics. Alfimov et al. [30] as well as Konotop and Salerno [31]

also found numerically stable dark solitons for periodic quasi-one-dimensional BEC sys-

tems. The weak spectral instability of the dark solitons in the combined optical lattice and a

strong harmonic potential, both in the discrete and continuous mean-field models, has been
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established in [32].

In this work, we study the behaviour of matter-wave gap spectrum and the eigenstates as

the periodicity of the optical superlattice is increased.We study the structure and mobility

properties of dark solitons in superlattices by employing the full continuous mean-field

model. We show that the band gap (between the two lowest bands) which opens up in a

doubly periodic superlattice decreases as the periodicty increases further. This is interpreted

as a decrease in the Periels-Nabarro barrier which the dark soliton experiences as it goes

from one well to the next. For higher periodicity the mobility of the dark soliton is restored.

2. The Model

We consider an elongated cigar shaped BEC in an optical superlattice. The dynamics of

the BEC can be described in the mean-field approximation by the Gross-Pitaevskii (GP)

equation for the macroscopic condensate wavefunction ψ(x, y, z, t).

i!
∂ψ(x, y, z, t)

∂t
=

(

−
!2

2m
∇2 + VL(x) + V (x, y, z)+ g3D|ψ(x, y, z, t)|2

)

ψ(x, y, z, t),

(1)

where V (x, y, z) is the time-independent magnetic trapping potential and g3D = 4π!2

as/m is the two-body interaction with m and as as the mass and scattering length of the

condensate atoms respectively. We will consider only the case of repulsive interaction. For

the cases examined in this paper, we use the parameters set by 87Rb: m = 1.44x10−25 kg

and as = 5.7 nm. We consider an anisotropic parabolic magnetic trapping potential V (x, r)
of the form V (x, r) = 1

2
mω2

⊥
(x2 + Ω2r2)+ VL(x), where r2 = y2 + z2, and Ω = ω⊥/ωx.

The light shifted optical lattice potential of the superlattice is described as

VL = V0

(

ε sin2 k1x + (1 − ε) sin2 k2x
)

, (2)

where 0 ≤ ε ≤ 1. The superlattice potential can be obtained by creating two separate

far-detuned quasi-1D single-periodic lattices using lasers of different wavelengths (Fig.1).

If the two lattices are orthogonally polarized, when they are superimposed, the resulting

dipole trapping potential is proportional to the sum of their individual intensities. With this

interpretation, V0 is proportional to the total intensity and ε related to the relative intensities

of the two standing light waves. The lattice wavevectors are k1 = 2π/λ1 and k2 = 2π/λ2,

and the larger of the two periods is d = λ1/2. In this paper we choose λ1/λ2 = κ = 2, 4, 6.

All length scales are made dimensionless with respect to aL = d/π and energy scales

made dimensionless with respect to twice the single photon recoil energy EL = !2/ma2
L.

Time is made dimensionless with respect to τL = !/EL. The condensate is elongated

along the x direction (cigar shaped) and this can be achieved experimentally by making the

magnetic trap frequency along the x direction very weak compared to the magnetic trap

frequencies along the radial direction. The condensate wavefunction can be separated as

ψ(x, r, t) = χ(r)φ(x, t), with χ(r) well described by the ground-state of a two-dimensional

radially symmetric quantum harmonic oscillator, with the normalization
∫

∞

−∞
|χ|2dydz =

1. . Further since the magnetic trap along the x direction is weak compared to the optical
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Figure 1. The structure of the superlattice potential described by Eqn.2 for ε = 0.3, V0 = 1
and κ = 2 (top left plot, orange color), κ = 4(top right plot, yellow color), κ = 6(bottom

plot, green color).

trap, we will ignore it along the x direction. Integrating out the radial coordinates, we obtain

the 1D GP equation.

i
∂φ(x, t)

∂t
=

(

−
1

2

∂2

∂x2
+ VL(x) + g1D|φ(x, t)|2

)

φ(x, t), (3)

where g1D = 2(as/aL)(ωr/ωL), ωr is the radial trap frequency. In the next section we

will calculate the matter-wave band-gap sprectrum and the corresponding eigenstates for

the superlattices κ = 2, 4, 6.

3. Matter-wave Band Gap Spectrum and Dark Solitons

Stationary states of Eqn. 3 can be written in the form

φ(x, t) = Φ(x)exp(−iµt), (4)

where µ is the corresponding chemical potential. The steady state wavefunction obeys

the time-independent GP equation

(

1

2

∂2

∂x2
− VL(x) + µ − g1D|Φ(x, t)|2

)

Φ(x, t) = 0. (5)
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Figure 2. Matter-wave band gap spectrum for the non-interacting condensate in an optical

superlattice with κ = 2 and ε = 0.3. The shaded areas are Bloch bands where k is real and

the unshaded regions between the bands are the gaps where κ is complex. Also shown is

the density profile of dark solitons in the big well and the smallest well.

In order to find the matter-wave band-gap spectrum, we will consider g1D = 0 (the

case of non-interacting condensate). This condition is true if the number of atoms is small.

Eqn. 5 becomes linear in Φ(x) and the condensate wavefunction can be represented as a

superposition of Bloch waves

Φ(x) = a1Φ1(x)eikx + a2Φ2(x)e−ikx, (6)

where Φ1,2(x) have the periodicity of the lattice potential, a1,2 are constants, and k
is the Floquet exponent. The matter-wave spectrum in the linear case consists of bands

in which k is real. The bands are separated by band-gaps in which k is complex. The

solutions at the band edges are exactly periodic stationary Bloch states. Figure 1 presents

the band-gap diagram on the plane (µ, V0) for the Bloch wave solutions of Eqn. 5 in the

non-interacting case for a lattice potential described by Eqn.2 for κ = 2. The spectrum

is obtained by solving the matrix eigenvalue problem corresponding to g1D = 0 in Eqn.5.

Only few lowest bands are shown. Also shown along with the band-gap spectrum is the
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Figure 3. Matter-wave band gap spectrum for the non-interacting condensate in an optical

superlattice with κ = 4 and ε = 0.3. Note that the lowest three band-gaps decreases in

comparison to the case κ = 2. The profile of the dark solitons also changes with respect to

Fig.1. Noticeable changes in the background is seen.

corresponding density profile of the dark solitons. Note that there are two stable solitons

centred at the largest and the smallest well. The density profile consists of the dark soliton

and the background. The corresponding potential is also shown for convenience. The

background has a spatial structure of a periodic Bloch wave. The matter-wave band-gap

spectrum and the corresponding density profiles of the dark solitons for the case κ = 4, 6
are shown in figures 3 and 4 respectively. Increasing the periodicity of the secondary lattice

causes structural changes in the matter-wave band-gap spectrum as well as in the spatial

structure of the Bloch states. The gaps which opens up in the κ = 2 case changes as κ
increases. In particular the lowest gap (between µ1(k = 1) and µ2(k = 1)) decreases

as κ increases. Correspondingly in the density profile, we find that the width of the dark

soliton profile increases as κ increases. The back ground which is a superposition of Bloch

waves shows two distinct peaks (one big and one small) for κ = 2. As κ increases, the

smaller peak starts to diminish. This is probably because of the fact for higher periodic

superlattice the local periodicity over a few lattice sites is restored and the local influence of
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Figure 4. Matter-wave band gap spectrum for the non-interacting condensate in an optical

superlattice with κ = 6 and ε = 0.3. The lowest three band-gaps decreases further com-

pared to the case κ = 4. This is an indication of restoration of mobility of the dark solitons

as discussed in the text.

the secondary lattice over a few lattice sites is insignificant. The above observations leads

to a speculation that the local mobility of the dark solitons which is reduced for the doubly

periodic optical superlattice (κ = 2) is restored for higher periodic superlattice (κ = 4, 6).

To check this speculation, we calculate the Peierls-Nabarro barrier for different κ’s.

4. Peierls-Nabarro Barrier

The energy difference between a soliton centered at a maximum of the periodic potential

and one centered at a neighbouring potential minimum corresponds to the height of an ef-

fective potential known as the Peierls-Nabarro (PN) potential. The value of the PN potential

can be understood as the minimum energy required to move a localized wavepacket by one

lattice site and this gives the measure of the mobility of the wavepacket. We calculate the

PN potential by calculating at a fixed value of µ the energy difference between dark solitons

centered at the biggest minima and the next nearest minima. A fixed value of µ ensures that
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Figure 5. The Peierls-Nabarro (PN) potential versus the chemical potential for κ = 2, 4, 6.

The height of the barrier is decreasing with increasing κ.

the amplitude of the Bloch-wave background is constant, which is the case for a dark soliton

moving across the lattice. We analyse the dark solitons originating in the first band. We use

the energy functional:

E =

∫

{

1

2

(

∂Φ(x, t)

∂x

)2

+ VL(x)Φ(x, t)2 + g1D|Φ(x, t)|4
}

dx. (7)

Strictly speaking this difference is the PN barrier experienced by the dark soliton cen-

tered in the neighboring wells. The dark states of the biggest well and the nearest well

correspond to the minima and maxima of the PN potential respectively. This means that

the biggest minima dark states should be stable, and the next nearest minima states unstable

with respect to the variations in their position relative to the lattice. The knowledge of the

PN barrier potential height is essential in answering the questions about mobility of the lat-

tice soliton and its ability to interact with other localized states. Fig. 5 shows the PN barrier

experienced by a dark soliton in the three different superlattices κ = 2, 4, 6 as a function of

the chemical potential µ. Clearly we see that the PN barrier experienced by a dark soliton in

a superlattice decrease as the periodicity increases. This confirms our speculation that the

local mobility increases with κ. For moderate values of µ within the first band, the energy

difference ∆E = Enext−nearest−well − Ebiggest−well is positive. Therefore we expect that

even in a shallow lattice regime the dark biggest well soliton is effectively pinned by the

lattice due to the presence of a large PN barrier. As the periodicity increases, the PN barrier

decreases and the lattice is no longer able to pin the soliton. As the periodicity increases,

the chemical potential required to release the soliton decreases. The variations in energy

difference for different periodicity of the lattice suggests that for a fixed chemical potential,

variation in the superlattice parameters controls the mobility and interaction properties of

the dark solitons.
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5. Conclusions

We have analysed the band-gap structure of the Floquet-Bloch matter waves in optical su-

perlattice structures in the framework of the Gross-Pitaevskii equation. We have shown

that band-gaps that initially appear in a double periodic lattice decreases as the periodicity

is increased further. This is interpreted as an increase in the soliton mobility and this was

confirmed by calculating the Peierls-Nabarro potential barrier which was found to decrease

with increasing periodicity of the optical lattice. We have demonstrated that the mobility

of the dark solitons can be effectively controlled by changing the periodicity of the optical

superlattice.
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[6] Peil, S et. al. Phys. Rev. A. 2003 67 051603(R).

[7] Sebby-Strabley. J et. al. Phys. Rev A 2006 73, 033605.

[8] Buonsante. P; Vezzani, A. Phys. Rev. A 2004 70, 033608.

[9] Louis, P. J. Y.; Ostrovskaya, E. A; Kivshar, Y. S.; J. Opt. B 2004 6, S309.

[10] Louis, P. J. Y.; Ostrovskaya, E. A; Kivshar, Y. S.; Phys. Rev. A 2005 71, 023612.

[11] Dmitrieva L. A.; Kuperin, Y. A.; Cond-mat/0311468.

[12] Rey, A. M.; Hu, B. L.; Calzetta, E.; Roura, A.; Clark, C. W.; Phys. Rev. A 2004 69,

033610 .

[13] Roth, R.; Burnett, K,; Phys. Rev. A 2003 68, 023604.

[14] Porter, M. A.; Kevrekidis, P. G.; Carretero-Gonzalez, R.; Frantzeskakis, D. J.; Phys.

Letts. A 2006 352, 210.

[15] Huang, Chou-Chun.; Wu, Wen-Chin. Phys. Rev. A 2005 72, 065601.

[16] Rousseau, V. G.; Arovas, D. P.; Rigol, M.; Hébert, F.; Batrouni, G. G.; Scalettar, R.
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