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DYFRAKCJA ELEKTRONÓW I ŚWIATŁA NA SIECI KRYSTALICZNEJ 
 

 
1. Fundamentals 
 

The explanation of the photoelectric effect given by A. Einstein in 1905 and the phenomenon 
of scattering of X-rays on free electrons observed in 1923 radically changed our views on the nature 
of electromagnetic waves. 

Electromagnetic waves, although they exhibit properties characteristic of wave motion 
(diffraction, interference, etc.), in their interaction with an electron, behave as a stream of 

particles (photons) whose energy is equal to h (h – Planck's constant, - the frequency of the light 
wave) and momentum p is: 



 h

c

h
p ==  ,           (1) 

where c – speed of light,   - wavelength.  

It cannot be said that the nature of photons is a wave or a particle, only that they exhibit 
both wave and particle characteristics. This way of their behavior is called wave-particle duality. 

 
In 1924, Louis de Broglie formulated de Broglie hypothesis claiming that all matter exhibits a 

wave-like nature. de Broglie wavelength  associated with the matter particle is related to its 
momentum p through the Planck constant h: 

p

h
= .           (2) 

 
This means that a moving particle can exhibit wave-like behavior under certain 

conditions. Such a wave is called a particle wave or de Broglie wave. 
It is worth noting that equation (2) can be obtained by transforming equation (1). This 

convergence is not accidental. At the base of de Broglie's hypothesis lies an assumption that wave-
particle duality is a fundamental property of the whole matter, thus of both photons (of rest mass 
equal to zero!) and corpuscular particles (of rest mass different from zero). To In order to check the 
validity of de Broglie's hypothesis, it should be experimentally proved that particles exhibit wave 
phenomena, e.g., the phenomenon of interference or diffraction, fulfilling the relation (2).  

To observe the phenomenon of interference, it is necessary to use a diffraction grating whose 
constant (i.e., the distance between slits) does not differ significantly from the length of the 
incident radiation (no more than two orders of magnitude). At the same time, particles should have 
significant energy to be able to penetrate very thin layers of matter. Then their momentum will be 
large, and according to formula (2) the de Broglie wavelength will become very small. This, in turn, 
imposes a condition for a very small value of diffraction lattice constant, much smaller than 
possible.  

For example, electrons to penetrate an aluminum foil about 50 nm thick must have an energy 
of about 10 keV, but then their de Broglie wavelength is about 0.01 nm. This is a value smaller than 
the diameter of an atom. So how to make a diffraction grating with such small distances between 
slits? We do not have to make such a grating, as crystals fulfill their role. Atoms in a crystal are 
arranged periodically, and interatomic distances are a few Å (Angstrom) (1Å = 0,1 nm = 10-10m), 
which makes them useful for observing the phenomenon of de Broglie wave interference. A 
description of the different types of crystalline bodies and definitions of the basic concepts related 
to crystal structure are given in Appendix A. 
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1.1. Diffraction of a wave on a crystal lattice 

Suppose that a crystal is hit by a wave of length . Each atom of the crystal interacting with 
it becomes itself a source of a new (secondary) spherical wave of the same length (Huyghens' 
principle). The secondary waves emitted by individual atoms will interfere with each other. To find 
the result of the interference in the general case, let us first consider the case when a plane wave 
interacts with only one atomic plane. 
 Since a crystal can be represented as a set of parallel atomic planes, creating a new wave 
can be described as a superposition (interference) of spherical waves created in particular atomic 
planes. These waves, after superposition, will be, depending on the difference of their optical 
paths, amplified or weakened, see Fig.1. The condition of amplification of the waves is that the 
difference of the optical paths is equal to a multiple of the wavelength. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Diffraction of light on a crystal (1' is the direction in which the wave is amplified 
by interference) 

 
From Figure 1, it follows that the difference of optical paths for points of space located in 

directions 1'and 2' for two consecutive atomic planes (p1 and p2) is: sin2dBDCB =+  (the 

difference in paths is marked red in the figure). Interference gain will occur when it is equal to an 
integer multiple of the wavelength, i.e.: 
  

 nd =sin2            (3) 

 

where d - is the distance between the atomic planes and   - is the angle between the direction of 

the incident beam and the atomic plane (so-called angle of slip - not to be confused with the angle 
of incidence!!!), while = 1,2,3,...(order of deflection). Equation (3) is called the Bragg formula. 

Although obtaining Bragg's formula, we considered only the waves arising in only two 
consecutive atomic planes, and it turns out that it is also valid when a large number of these planes 
are involved. From Fig.1, it can also be seen that the angle between the direction in which 

interference maxima lie and the extension of the direction of the incident wave is 2 . 

The above-described mechanism of wave diffraction on a crystal is called Bragg diffraction (in 
literature, one can often meet the term "Bragg reflection"). However, it should be remembered that 

this is a special "reflection", i.e., it occurs only when the condition:  nd =sin2 . Thus, the Bragg 

phenomenon can only be observed for wavelengths comparable to the distance between interatomic 
planes (d of the order of 0.1 nm) and shorter. It is, therefore, possible to fulfill equation (3) for X-

rays but impossible for visible light ( = 400-700 nm).  
Many families of atomic planes can be distinguished in crystals. For example, in the cross-

section of the crystal shown in fig.2, apart from the planes p1, p2, p3, ... planes can be distinguished 
t1, t2, t3,..., s1, s2, s3,..., u1, u2, u3,... . Each family of planes listed here, characterized by its own 
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distance between planes di, can give the phenomenon described above as long as the Bragg 
condition is satisfied. For this reason, we obtain multiple directions of enhancement for different 

slip angles  i. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Examples of families of atomic planes in a crystal (in the figure, we see their 
projections on the plane of the figure) 

 
If the crystal is rotated with respect to the axis coinciding with the direction of the incident 

beam, the amplified beams will start to stagger conical surfaces with an angle of dilation 4. When 
a parallel and monochromatic wave falls on a polycrystal, i.e., a material containing a large number 
of small (micron-size) monocrystals (crystallites), oriented in a random way, we observe an effect 
like that of a crystal rotation. This is because there will always be a certain number of crystallites 

for which Bragg's condition will be fulfilled for a given angle  and then the reinforced beams will 

form the surfaces of cones with opening angles 4. If we place a screen in the path of the amplified 
beams, we will observe circles on it (fig.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig.3 Bragg phenomenon for a polycrystalline sample. 
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1.2. The Thomson experiment 
The considerations carried out earlier are the basis for understanding the experiment carried 

out by G. P. Thomson in 1927, confirming de Broglie's hypothesis. Thomson placed a thin gold foil 
(polycrystalline foil) in an oscilloscope tube behind a system of focusing anodes. Electrons falling on 
it were subjected to the phenomena discussed above (i.e., the phenomenon of interference), 

resulting in circles of different diameters on the screen iD . 

The ring system formed on the screen can be explained if we assume that the electron is 

associated with a wave whose length is determined by the formula: =h/p. It interacts with the 
polycrystalline film in the manner presented earlier. An additional argument for this assumption's 
validity is that the same arrangement of circles was obtained by irradiating the mentioned film with 
X-rays of a similar wavelength as the wavelength of electrons predicted by de Broglie. Thomson's 
experiment thus confirms the wave nature of the electron flux. The wave associated with the 
electron is a particle wave, the nature of which is described in detail in Appendix B. 

To investigate the properties of matter waves (and to test de Broglie's hypothesis), a suitably 
prepared oscilloscope tube was used. A thin foil (aluminum or graphite) was placed in the path of 
the electron beam. Its thickness is about 50 nm. This thin film is transparent to electrons with 
energies above 8 keV. It is obtained by vacuum vapor deposition. The electrons emitted by the 
cathode of the oscilloscope tube are accelerated to the kinetic energy of Ek=eU by the applied 
voltage U, which can be adjusted.  

Since the distance between the foil and the screen is much larger than the diameter of the 

interference circles D obtained on the screen, according to Fig.3: rD /44sin    (r - film-screen 

distance), and hence: .4/sin rD  

By substituting the value calculated in this way sin  to Bragg's formula (3), we obtain: 

 

n
r

dD
=

2
           (4) 

 

The value   is found from equation (1), i.e., ./ ph=  The momentum of the electron p is 

calculated by knowing the voltage U from the classical relation between momentum and its energy 
eU, i.e., eU=p2/2m (e - charge of the electron, m – its mass). Relativistic change of mass of the 
electron at energies of the electric field used in the experiment introduces negligible uncertainty. 

By substituting into Formula (4) the value  calculated for the accelerating voltage U: 
meU

h

2
=  

and n = 1 (since only circles of the first order are visible), we obtain: 
 

meUd

rh
D

2

2
=           (5)  

  
The diameter of the interference circle D, coming from the same set of atomic planes, should 

be inversely proportional to the square root of the electron accelerating voltage U. If we obtain such 
a result, it will confirm the formula describing de Broglie's hypothesis. 
 
1.3. Diffraction of light on a two-dimensional lattice 

The second part of the exercise is to get acquainted with the diffraction of light on a regular 
two-dimensional lattice when the light beam falls on the lattice at right angles to the lattice plane. 
According to what was written in the previous part of the manual, each atom becomes a source of a 
new spherical wave. These waves interfere with each other, and the effect can be seen on a screen 
placed perpendicularly to the direction of the incident wave, at some distance from the lattice.  
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Let us consider a regular rectangular network. The amplification condition in such a case is 
that two Laue's equations are satisfied, which can be written as follows: 

ma = 'cos   

          (6)  

nb = ''cos   

 

Where a, b - lattice constants, ` and `` – angles between the direction of incidence of the light 

beam and the direction of amplification (amplified beams form cones with opening angles of 2` 

and 2``), m and n - arbitrary integers. 
The solutions to each of Laue's equations are conical surfaces that form families on a screen-

oriented direction parallel to the surface of the grid (and perpendicular to the direction of incidence 
of the light beam) hyperbolas. The common solution of both equations observed on the screen in the 
form of luminous points are points of intersection of hyperbolas. In the experiment conducted, the 
length of the light wave (0.6 m) is almost three orders of magnitude smaller than the distance 
between atoms in the crystal lattice under investigation (0.1 mm). For this reason, on the screen, 
the points are arranged on hyperbolas of very small curvature, visible actually as straight lines 
(curvature of hyperbolas cannot be noticed). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  Screen appearance of diffraction case on the regular lattice - black points in the 
illustration are luminous points on the screen, the effect of the intersection of 
hyperbolas (definition of indices h and k) 

 
 We assign two indices to the luminous points on the screen (see figure 4) called Miller 
indices. The coordinates of the points are written as pairs of numbers (h, k), for example, (1, 1) (3, 
1) (-2, 5), etc. The segment that connects the point (h, k) with the center of the diffraction image 

(i.e., with the point (0, 0)) is denoted Hhk. Knowledge of the length of light  used in the 
experiment, the distance L of the screen from the crystal lattice, and the value of Hkl allow for the 
determination of the lattice constants of the tested lattice.  
 From the geometrical properties, we obtain the following formula: 

L

H
tg hk

hk =             (7) 

Taking into account the well known relationship 
 

nd hkhk =sin            (8) 
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we can calculate the constants dhk, and from them, the lattice constants of the tested lattice. The 
method of determining the lattice constants depends on the type of network. Relationships between 
the lattice constants and the determined constants dhk are the following: 

22 kh

a
d hk

+
=  (regular lattice, lattice constant a)     

( )22

3

4
kkhh
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d hk

++

=  (hexagonal lattice, lattice constant a)    (9) 
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=  (rectangular lattice, lattice constants a and b)     

 
When the beam falls on a polycrystalline lattice, you should get concentric circles on the 

screen (as in electron diffraction). If the circles (rings) are not clearly visible, it means that the light 
beam covers only a few differently oriented monocrystalline areas. 
 

2. Experiment 
 
2.1.  Electron diffraction - Thompson experiment 
 
Implementation of the exercise 
 
1. Familiarise yourself with the operation of the power supply unit for the oscilloscope tube (if in 

doubt, ask your instructor).  
2. Make sure the electron accelerating voltage adjustment knob is in the zero position (turned to 

the "left") - if not, move it to this position. 
3. Turn on the power supply and wait about 2 minutes for the cathode of the oscilloscope tube to 

warm up. 
4. Turn the electron accelerating voltage regulation knob and observe the appearance of a spot on 

the screen (adjust its brightness as necessary).  
5. Increase the electron accelerating voltage until rings appear (control brightness and sharpness of 

the image). 
6. Measure the diameters Di of all the rings visible on the screen as a function of the accelerating 

voltage U for at least 6 different voltages.   
7. Turn the accelerating voltage control knob to zero (extreme left) and switch off the power 

supply.  
8. Note the distance r (foil - screen). 
 
Compilation of results 
 
1. Verify that the results obtained are by formula (5), drawing a diagram of the dependence of the 

ring diameter Di on 
meU

rh

2

2
 (i.e., the function depending on the inverse of the square root of 

the accelerating voltage), and find the value of the slope coefficient of the resulting straight line 
b and its uncertainty using the method of least squares (calculations with the aid of a computer 
program!!). 

2. Calculate the distance between the atomic planes d and the uncertainty calculated by the Type 
A method from the results of the linear approximation. Calculate the uncertainty of Type B 
based on a single measurement point (take the necessary physical constants from tables). For 
the evaluation of the combined uncertainty, use the law of propagation of uncertainty. 

3. Using the graph obtained and the χ2 test, answer the question concerning the truth of the de 

Broglie hypothesis. Compare the obtained result with the values of interatomic distances in 
graphite crystals. 
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The figure below shows a diagram of the crystalline structure of graphite. 
 

 
Fig.5  Graphite crystal lattice 

 
The graphite layer through which the electron beam passes is polycrystalline. The long bonds 

between the individual layers are broken (fig.5), so the orientation of the cells is random. (Graphite 
is very "slippery" and spreads easily over the surface - this is the effect of the individual layers of 
carbon atoms moving against each other. On the other hand, graphite is very resistant to 
compression. For these reasons, it is used to produce various types of lubricants, particularly dry 
lubricants). 

 
 

Fig.6  Interplane distances for the first two interference rings 
 
4. The report should answer the following questions: Why are the intensities of the two rings 

comparable? Why are rings of higher interference orders or from other atomic planes not visible? 
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2.2.  Diffraction of light on a crystal lattice 
 
Implementation of the exercise 
 

Two-dimensional models of different types of crystalline and polycrystalline lattices in the 
form of transparencies on photosensitive film are used to observe the diffraction of light on crystals. 
A semiconductor laser is used as the light source, generating light of the length specified on the 
laser holder. The laser is fixed on a base to which the slides are magnetically attached (the frames 
have magnetic strips at the bottom). Each slide has a marking (e.g., A1, C2, etc.). The tripod with 
laser should be placed in the marked position on the laboratory table at exactly the specified 
distance from the screen located on the vertical housing of the laboratory station (the distance 
between the slide and the screen must remain constant). The screen is equipped with a clip where 
the protocol is attached, and the resulting diffraction images are redrawn. 

There is also an optical microscope on the bench, which is used to observe the network 
models and directly measure the network constants (using the micrometer slide of the microscope 
table or the spider web in the eyepiece).  

In the instructions given below, the command "trace the image" means to place the protocol 
on the screen and to mark with a pen the most important elements of the resulting interference 
image. 
 
1. Turn on the laser and place it in the position marked on the laboratory table so that the beam 

falls near the center of the screen. 
2. Insert slides A1, B1, and C1 into the laser beam. Trace the resulting images onto the protocol. 
3. Insert the slide marked D1 into the laser beam. Trace the resulting image onto the record. 
4. Insert the slide marked B5 into the laser beam. Trace the resulting image onto the protocol. 
5. Place all slides used in the exercise on the optical microscope table and measure the lattice 

constants directly. 
6. Insert slides marked B2 and B3 into the laser beam. 
 
Compilation of results 
 
1. Compare the interference images for slides A1, B1, and C1. What was observed under the 

microscope? Which physical principle is confirmed by this part of the experiment? 
2. Based on formulas (7), (8), and (9), calculate lattice constants for these crystalline networks. 

Compare the obtained result with measurements under a microscope. 
3. Calculate the lattice constants for the D1 slide. Compare the result with the result obtained from 

measurements under the microscope. 
4. Which crystal we are dealing with for slide B5. Determine the lattice constant by measuring the 

diameter of the interference ring. The result obtained should be compared with the result of 
measurements taken under the microscope. Can the interference image obtained for slide B5 be 
compared with the image obtained for electron diffraction in Thompson's experiment in the 
previous part of the exercise? The answer should be justified. 

5. What are the crystal lattices shown in slides B2 and B3? Calculate the lattice constans. 
6. For all lattice types, estimate the uncertainties of the determined lattice constants. 
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3. Questions 
 

1. What assumption underlies the de Broglie hypothesis? 
2. What conditions must be met for the interfering waves to be amplified? 
3. Derive Bragg's formula. 
4. What physical phenomenon is described by Laue's equations? 
5. Draw and explain the interference image when light diffracts on a polycrystal. 
6. Explain the essence of Thomson's experiment. What is the relationship between the diameter of 

the ring and the accelerating voltage? 
7. Assume that a neutron and an electron have the same energy. Which particle corresponds to the 

larger de Broglie wavelength? 
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APPENDIX A 
The crystalline structure of solids 
 
 Based on how the atoms (or particles) are arranged, solids can be divided into 
monocrystalline, polycrystalline, and amorphous (amorphous) bodies. Monocrystals are those bodies 
in which the atoms are arranged regularly throughout the volume of the body - this is called long-
range ordering. The distance between neighboring atoms is usually a few Angstroms (Å). The 
smallest cell whose repetition in all three directions gives a single crystal is called an elementary 
cell. An elementary cell is defined by the lengths of its sides (the so-called lattice constants) in 
three selected directions and the three angles that these sides form with each other. This 
experiment considers the simplest two-dimensional crystal lattice, as shown in Fig. 7.  
 The second type of crystalline body investigated in the experiment is polycrystals. These are 
bodies in which one can observe areas of monocrystalline structure arranged randomly in relation to 
each other. These areas (monocrystalline grains - crystallites) may be of the size of fractions of a 
micrometer, as well as of macroscopic dimensions. The natural state for most solids is the crystalline 
state, often monocrystalline, as the ordering energy of the atoms is lowest. In nature, beautiful and 
large-sized monocrystals can often be observed: salt crystals in Wieliczka, diamonds (carbon 
crystals!), etc. However, if the crystallization process is disturbed during crystal formation, a 
polycrystalline or even amorphous body is obtained.  
 Monocrystals are widely used in modern technology. They are the basis of all 
microelectronics; there would be no microprocessors, memories, electronic circuits, and computers 
without them. Most integrated circuits are manufactured on thin sheets of monocrystalline silicon. 
Every self-respecting student of the Warsaw University of Technology should know that the method 
of obtaining monocrystals by crystallization from a molten substance was developed by Jan 
Czochralski, an outstanding chemist and meteorologist, professor at the Warsaw University of 
Technology from 1930 until the end of the World War II. This method (known throughout the world 
as the Czochralski method) is still today the basic method for obtaining monocrystals with an 
incredible diameter of several tens of centimeters and length of several meters. The monocrystals 
are cut into slices a fraction of a millimeter thick, and on these slices, the ubiquitous integrated 
circuits are made. 
 
 
 
 
 
 
 
 
 
 
 
   a)    b)    c) 
 

Fig.7  Two-dimensional crystal lattice types: a) regular lattice, b) rectangular lattice, c) 
hexagonal lattice 
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APPENDIX B 
The nature of de Broglie's waves 
 

In trying to answer this question, we will refer to an experiment. If, in Thomson's 
experiment, an electron beam of extremely small intensity is used, it can be assumed that single 
electrons fall on the film, single flashes of equal intensity will be observed on the screen. Most 
flashes will occur at the point where electrons pass straight through, but a number of flashes will be 
observed on the interference circles. 

The appearance of single flashes clearly contradicts the possibility that the de Broglie wave is 
simply a ripple of electron matter. If this were the case, we would observe the whole interference 
pattern (i.e., a system of circles), although with very low intensity, already at the passage of a 
single electron. 

However, the result of the experiment should not shake our conviction about the wave 
properties of the electron (properties, not nature), since flashes appeared (except for the place 
corresponding to the passage of electrons straight ahead) only on the interference circles. As shown 
above, the interaction of the wave (electron) with many atomic planes is needed, so the electron 
behaves like a wave. However, we cannot explain why a single electron interacts with atomic planes 
as a wave but with screen atoms as a corpuscle.  

Analyzing the results of other experiments, one may formulate a conclusion: if a particle 
interacts with an object in such a way that it is impossible to determine with which part of the 
object the interaction takes place, then wave properties of the particle are revealed (interaction 
with atomic planes of thin-film crystals). However, when we can localize the interacting particle 
(e.g., interaction with specific atoms of the screen), then it interacts as a particle. In the region of 
accelerating electron, we can also exactly (in the range of field energy about 10 keV) trace the 
position and momentum of the particle. Interaction of the electron with the electric field in the 
oscilloscope lamp also allows for treating the electron as a particle. 

To complete the picture, let us add that if in the experiment in question a photographic 
plate is placed behind the screen (instead of observing single flashes), then after long exposure, the 
image obtained on it will not differ in any way from the image observed on the screen at a high 
intensity of the electron beam. The latter result proves the statistical character of laws governing 
the behavior of particles. This view is represented by quantum mechanics, a theory to which the de 
Broglie hypothesis contributed. Quantum mechanics does not enter into the nature of de Broglie's 
waves but only deals with the description of the behavior of particles taking into account their wave 
properties. 

The state of a particle in quantum mechanics is described by the wave function (x,y,z) with 
a mathematical form identical to the wave equation known from optics. The mathematical form of 
the wave function is found by solving the Schrödinger equation (the basic equation of quantum 
mechanics). Its interpretation is probabilistic (statistical). The square of the modulus of the function 

(x,y,z) is the probability density of finding a particle in a given point of space with x,y,z 
coordinates. Whereas the probability P of finding a particle in an element of the volume dV in the 
vicinity of a given point of space is: 

 

dVzyxP
2

),,(=   

 

The particle wave (de Broglie) is described by the function ),,( zyx  having the form of the wave 

equation. 


