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1. Fundamentals 
 

One of the most widespread phenomena in nature is the phenomenon of vibrations. The main 
feature of oscillations is their periodicity. We can distinguish between two basic types of oscillatory 
movements:  
a) when the same sequence of identical system states is repeated regularly at equal intervals 

(Fig. 1a) - non-extinguishing vibration. 
b) When similar sequences of states of the system are repeated periodically, the value of the 

maximum deflection from the equilibrium position decreases (Fig. 1b) - fading vibrations. 
 
 
 
 a) 
 
 
 
 
 
 
 
 
 

 b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 a) non extinguishable vibrations, b) fading vibration. 
 
1.1. Harmonic movement 

Among the numerous types of non-extinguishable vibrations, the simplest is harmonic 
motion. Let us assume that a body moved out of equilibrium is subjected to a force that causes the 
body to return to this state, i.e., it is directed to the equilibrium position, and this force is 
proportional to the deflection from this position. We may write this force as: 
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where x is the deviation of the body from its equilibrium position, k is the coefficient of 
proportionality. Newton's second law of dynamics for a body of mass m has then the following form: 

 

kxma −=            (2) 

 
Knowing that acceleration is the second derivative of position after time, we can rewrite equation 
(2) as: 
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Dividing the above equation by m into both sides and substituting 
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The resulting equation is called the harmonic oscillator equation, whose general solution is the 
function: 
 

)sin()(  += tAtx ,          (5) 

 
where x - denotes the position of the body at time t (distance from the origin of the coordinate 
system assumed at the equilibrium position). A is called the oscillation amplitude (the system's 

maximum deviation from the equilibrium position), the argument of the sine function (t+) – 

oscillation phase,  - phase shift or initial phase, and  − circular frequency. The initial amplitude 
and the phase do not depend on the properties of the system but are determined by the so-called 

"initial conditions," i.e., the state of the system at time t = 0. Circular frequency  depends on the 
system properties and does not depend on the oscillation amplitude. 

We will now determine the period of oscillation - T in harmonic motion, i.e., the shortest 
time after which the deflection, velocity, and acceleration of motion take the same value. For this 

condition to be fulfilled, the phase of motion must change by 2 : 
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In general, a body can perform several vibrational motions simultaneously. The motion moves 

then are the resultant of all the component motions. If we consider only one oscillatory motion, we 

can choose the beginning of time counting so that the initial phase   = 0 (at time t = 0, the 

deflection is zero), so )sin()( tAtx = . 

 
1.2. Physical gravity pendulum 

 
A rigid body placed in the gravitational field suspended on a fixed horizontal axis that does 

not pass through its center of gravity forms a so-called gravitational pendulum (fig.2). When 
deflected from its equilibrium position, it oscillates about this position. Each of its points moves in a 
curve. Suppose the length connecting the solid's center of gravity - S - with the axis of rotation O is 
deflected by the angle   from a vertical line passing through the fixing point. In that case, 

a moment of gravity acts on the solid: 
 

sin−= mgdM           (7) 
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Where d - is the distance from the axis of rotation to the center of gravity. A minus sign means that 
this momentum produces a rotation opposite to the direction the angle  is measured. Using the 

Taylor series expansion of the sine function for small angles ...
53

sin
53

−+−=


 , (angle   

expressed in arc measure) and taking into account only the first term of the series, we obtain the 
equation: 
 

 DmgdM −=−=           (8) 

 
D = mgd is called the steering moment - the maximum value that the moment of force can take 
when trying to return a body to its equilibrium position. 

 
The second law of dynamics for rotary motion has the form: 
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where 
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 =  is the angular acceleration of the body, and I is the moment of body inertia about 

the given axis of rotation (
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irmI =  for a system of material points im , whose distances from the 

axis of rotation are respectively dmrIri = 2;  for continuous mass distribution). That is, for a 

pendulum tilted by a small angle: 
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We obtain an equation analogous to equation (5), so its solution will have the form: 

 

)sin(0  += t ,          (11) 

 

where frequency 
I

D
= , and the period of oscillation of the physical pendulum T is: 

D

I
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Substituting D = mgd, we get: 
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We shall now introduce the concept of the reduced length of a physical pendulum. 
 
The reduced length L of a physical pendulum is equal to the length of a mathematical 

pendulum, which has the same period of oscillation as the physical pendulum: 
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From comparing the expressions under the square roots, we obtain: 

md
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Fig. 2 Physical pendulum. 
 

 
Steiner's theorem states that the moment of inertia I of a solid relative to any axis is equal 

to the moment of inertia I0 of the solid relative to the axis passing through its center of mass (and 
parallel to the given axis), increased by the product of the mass of the solid by the square of the 

distance between the axes: 
2

0 mdII += . Therefore equation (14) can be written in the form: 
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The point O' away by L from the axis of rotation O is called the center of gravitational 

oscillation of a physical pendulum.  
We will show that if we pass the axis of rotation parallel to the original axis through point O', 

the period of vibrations with respect to this new axis will be equal to the period with respect to the 
original axis passing through point O. 
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An inverted pendulum (with its axis of rotation at the center of oscillation O') has a period of 
vibration T' expressed by the formula: 
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Figure 2 shows that L–d=d’, and from the equation (15): 
md
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This fact is used to determine the gravitational acceleration using a physical pendulum of special 
construction, the so-called reversible pendulum. 
 
1.3. Physical torsion pendulum 

 
In a gravitational pendulum, the guiding moment is produced by the force of gravity. In a 

torsion pendulum, it is caused by the elastic force from a twisted rod or other elastic body. 
After the deformation of an elastic body by an angle   from the equilibrium position, it 

vibrates under the influence of a torsional moment: M' = - D , which returns the body always to its 

equilibrium position. As in the case of the gravitational pendulum, the proportionality coefficient D is 
called the guiding moment. Thus the equation of motion has the same form as for the gravitational 
pendulum (equation 10), and therefore the period of oscillation is expressed by the same formula: 

D

I
T 2= . The magnitude of D is defined here by the physical properties of the tested system. 

Consider the case where forces were acting on a body cause it to deform elastically (the 
deformation disappears when the deforming force F ceases). 

Depending on the angle between the force vector and the surface of the deformed body, we 

distinguish between normal forces nF  acting perpendicular to the surface and tangential forces to 

the surface, sF . These are the forces we will be dealing with in our exercise. 

 
 
 a) b) 
 
 

                                                                   

 
 
 

 
 
 
 
 

  
 
Fig.3 Deformation of a cuboid under the influence of forces: a) normal, b) tangential. 
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Tangential stress τ - is the ratio of the tangential force sF to the surface S on which this 

force acts. The effect of such stress is called simple shear. 
 

S

Fs=            (17) 

 

The deformation is then measured using the so-called shear angle  , i.e., the angle formed 

by the original plane with the rotated plane due to shearing (Figures 3b and 4b). Between the 
quantities  i , there is a relationship known as Hooke's law which takes the form: 

 

 = G            (18) 

 
The factor G called the modulus of rigidity, or the shear modulus has the dimension  

Nm-2 rad-1 = Pa·rad-1. It characterizes the elastic properties of a material. The higher it is, the more 
difficult it is to change the body's shape. Its values vary from 1,5·106 Pa·rad-1 for rubber, up to 
approx. 8,5·1010 Pa·rad-1 for steel. 

In this exercise, we determine G using harmonic vibrations of a metal bar (rod) under the 
influence of elastic forces. Each element of the tested bar, twisted by an external force, undergoes 
a simple shear deformation. As a reaction to this force, an elastic force appears in the bar forcing it 
to return to an equilibrium state and, consequently, causing vibrations. 
 

The second law of dynamics for rotary motion MI = , we can write for this case as:  
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where (see derivation in Appendix): 
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This equation is analogous to equation (9a), i.e., the period of oscillation can be expressed by the 
formula (12): 
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By transforming this expression, we find the value of the modulus of elasticity: 
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Recall that L - is the length of the rod, r - its radius, I - the moment of inertia of the mass 

vibrated about the axis through the axis of the rod, T - the period of vibration. 
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2. Experiment 
 
2.1. Determination of gravitational acceleration using a reversible pendulum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 The reversible pendulum.   Fig.5. The torsion pendulum.  
 

 
The reversible pendulum consists of a metal rod with two sliding weights mA and mB (fig.4), 

and two blades (axes of rotation) 0 and 0', which positions can also be changed. By changing the 
position of the weights, we can make the periods of oscillations on the axis 0 and 0' equal to each 
other. Then the distance between these axes will become the reduced length L of the considered 
physical pendulum. Knowing the reduced length and the period of oscillation T will allow us to 
calculate the value of the gravitational acceleration g from the formula (16a): 
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2.2. Determination of elastic modulus using a torsion pendulum. 

 
The elastic modulus can be determined experimentally using the simple instrument shown in 

Fig. 5. 
The test bar of length L is loaded with a vibrator in the form of a cross, on which weights can 

be placed. Torsion of the vibrator by a small angle causes elastic forces to develop in the bar, which 
induces harmonic vibrations of the whole system.  

All quantities present in formula (22) can be easily measured except for the moment of 
inertia I. It would be very complicated to determine the moment of inertia of a solid such as a 
vibrator. We shall overcome this difficulty in the following way: In the first phase of the experiment, 
we set the vibrator in motion unloaded, or place on it weights giving a "preload" (to be considered as 
part of the mass of the unloaded vibrator) and find the period of vibration of such a system: 
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D

I
T 21 = .           (24)  

 
We then place additional weights on the vibrator, whose moment of inertia about the axis passing 
through their center of mass can be easily determined, and measure the new period of vibration T2: 
 

D
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Iz – is the moment of inertia of the additional weights. 

By squaring the last two equations, subtracting them from each other and considering 
equation (22), we obtain: 
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and finally: 
 

)(

8

2
1

2
2

4 TTr

LI
G z

−
=


.          (27)  

 
In the particular case where this additional load consists of homogeneous cylinders having a 

moment of inertia about an axis through their center of gravity and parallel to the axis of the bar, 

which is 
2

0
2

1
mRI =  (m - is the mass of the cylinder, R - is its radius), and if we place these 

cylinders in the distance d from the axis of the bar, then, according to Steiner's theorem, the value 

of )
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1
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0 mdmRnmdInI z +=+= , where d – is the mean distance of the center of the loading 

cylinder from the vibrator centerline, and n is the number of weights. The stiffness modulus G is 
determined from formula (27) by substituting into it the expression for Iz: 
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3. Measurements 
 
3.1. Reversible pendulum 

1. Place the weight Am  in the position closest to the 0' axis. (Do not change the position of the B 

weight.) 
2. Start the pendulum and measure the time taken for twenty oscillations about the 0 axes. 
3. Determine the period of oscillation T0. Invert the pendulum, measure the time of 20 oscillations 

about the 0' axis and determine the period of oscillation T0'. 

4. Move the weight Am  by 2 cm, find the periods of oscillation T0 and T0' about the 0 and 0' axes 

again. Each time measure the distance of the moving weight A from the 0' axis and proceed until 

the weight Am  is at the end of the pendulum. 

5. After measuring the periods of oscillation of the pendulum suspended on 0’-T0' and 0-T0 axes as a 
function of the position of the moving weight - x draw a graph T0 = T0(x) and T0’= T0' (x) 
(dependence of the periods of oscillation of the pendulum on the distance of the moving weight 
from the selected axis of rotation). 

6. Find the point of intersection of the curves T0(x) and T0' (x) – point (x0, T). 
7. If you find that the curves on the graph do not intersect, ask the assistant to reposition the 

weight Bm  , and the experiment must be repeated from the beginning. 

8. If the curves intersect, check by adjusting the weight Am  at point x0, then T0 = T0'. If it turns out 

that the periods are not exactly equal for this setting, move Am  by about 1 cm in either 

direction. Repeat the measurements. Change the position of the weight until the periods within 
the uncertainties are equal.  

9. Measure the distance L between the axes (reduced length). 
10. The found value of T and L are substituted into the formula (23), from which the value of 

gravitational acceleration can be calculated.  
11. Calculate the combined uncertainty uc of the measured quantity. Calculate the expanded 

uncertainty Uc. 
12. Compare the determined quantity with the table value and evaluate the correctness of the 

applied measurement method. 
 
Measurement results table 

L =                                                        n =  

         x             

         t0             

n

t
T 0

0 =  
            

t0'             

n

t
T

'
' 0

0 =  
            

 
 

3.2. Torsion pendulum 
1. Using a micrometer screw, measure the diameter of the test bar several times at various points 

(2r). 
2. Measure the length of the test rod (L). 
3. Set the vibrator in motion, unloaded or preloaded. Measure the time t1 of the twenty vibration 

periods. 
4. Measure the diameters (2R) of n additional weights. 
5. Weigh n additional weights. 
6. Measure the distance between the pins on which the weights are placed (2d), (fig.5). 
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7. After placing the weights on the pins, vibrate the vibrator again. Measure the time t2 of the 
twenty periods of vibration. 

8. After taking appropriate measurements, determine the value of T1 and T2 and calculate the 

average values .,,, mdRr   

9. Determine G from the formula (28). 
10. Determine the standard uncertainties of all quantities measured directly. For each uncertainty 

state, whether the uncertainty is determined by the Type A or Type B method. 
11. Determine the composite uncertainty and the expanded uncertainty of quantity G. Correctly 

record the results. 
12. Compare the determined value of G with the table value (whether found quantity falls within the 

uncertainty range). 
 
 

4. Questions 
 
1. What conditions must be met for a body to move in harmonic motion? 
2. Draw the time dependence of acceleration and velocity in harmonic motion. Do they change in 

phase with the tilt? 
3. Think about the purpose of changing the position of weights in a reversible pendulum (with a 

fixed distance between axes). 
4. Can the vibrations of a physical pendulum be observed in weightlessness? A torsion pendulum? 
 
 

5. References 
 
1. J. Orear – Fizyka. 
2. H. Szydłowski – Pracownia fizyczna. 
 



 

Simple harmonic vibrations: reversible pendulum and torsion pendulum 11 

APPENDIX – Relation between stiffness modulus and moment of force 
 

Derive the mathematical relationship between the stiffness modulus G and the moment of 
force acting on a twisted bar. Consider a cylindrical member with inside radius r', thickness dr', and 
length L, equal to the length of the whole bar (L>>r') (fig.4). The tangential stress in this case is: 
 

L

s
GG ==  ,          

where s - is an element of the arc. But =
'r

s
 , so: 

 
L

r
G

'
= .           

 
      a)                                                        b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 a) Deformation of the torsion bar members. 

 b) Deformation of the cylindrical layer of a torsion bar.  
 
The area ds of the cross-section of the ring bounded by the perimeters of radii r' i r’+ dr' is 

''2 drr . The value of the tangential force acting on such a ring can be determined using formula 

(17) and the preceding: 
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while the moment of force is equal to:  
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Integrating this expression from 0 to r gives the value of the moment of force acting on the 
entire cross-sectional area of the bar: 







L

Gr
drrG

L
M

r

2
''

2
4

3

0

==           

r' dr' 

r 

-FS 

FS 
L

 

 

 

r 

dr 


