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ZJAWISKO INTERFERENCJI ŚWIATŁA 
PIERŚCIENIE NEWTONA, INTERFEROMETR MICHELSONA 

 
 

1. Fundamentals 
 
Interference is one of the most typical phenomena of the wave motion. Generally speaking, 

it is an effect of waves’ superposition which can lead to strengthening of the output wave (the 
overlapping waves are in phase) or its weakening (the overlapping waves are in opposite phases). 
The argument of the periodic function describing the propagating wave is called phase. The 
interference phenomenon is observable when superposing waves have to feature a constant phase 
difference i.e. they have to be coherent. If this condition is not fulfilled, there are some moments 
in time when the waves are in phase – at the chosen point of the space, leading to the 
strengthening, and in the other moments, on the contrary, they lead to weakening. The rapidly 
changing strengthening and weakening leads to lack of a constant image in time and the 
interference image cannot be observed.  

Most of light sources are not coherent. This is the consequence of the fact that each atom, 
making a transition from the higher to lower energy level, emits a short wave pulse which is 
independent of the other atoms in the excited states. Even the light emitted by a monochromatic 
source (i.e. of a single wavelength) is a superposition of short wave pulses sent in a random way 
(their phases are uncorrelated). Thus the source as a whole is incoherent. 

We can observe the interference even with the application of an incoherent light source if 
we can assure a mutual coherence of interfering rays (ray is a light flux of a very narrow cross 
section). An appropriate method of this is splitting a ray sent from one light source into two when 
each of them travels a different path and then causing them to superpose once again. One can 
assume that those two rays are sent from two mutually coherent sources. The mutual coherence of 
these rays will be however maintained only if the difference of paths they travel will not be too 
significant. If this condition is not fulfilled, then the ray that travels a longer distance “may not be 
able” to meet with its original wave and the mutual coherence will not be maintained. 

 
1.1 Wave interference 

In this chapter, we are going to discuss conditions for obtaining a stable interference image. 
We consider an optical system consisting of a lens and a glass plate – the created image will be 
called “Newton’s rings”. Generally, one can say that a stable interference image can be obtained 
only when the phase difference of waves of the same frequency will be constant at each moment 
of the observation of the phenomenon. 

Let’s assume that two plain, harmonic electromagnetic waves 1 and 2 (having identical 
frequency ω and the same direction of linear polarization) propagate in the positive direction of 
the x axis. Those waves are described by their electric field values E1 and E2. 

Let the wave 2 travels an additional distance Δ. Then the propagation of waves 1 and 2 can 
be described by the equations: E1 = E01sin(ωt – kx) and E2 = E02sin[ωt – k(x+Δ)] where E01 i E02 

denote wave amplitudes 1 and 2, 

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k   is a wave number, and λ – wavelength (in air). When 

wave 2 travels the additional distance Δ in other medium the air, its wavelength in the other 
medium changes, and consequently the wave number k changes as well. If the refraction index at 

this path section is equal to n, the wavelength will decrease to the value 
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1   will increase and will be equal to nk. The equation describing wave 2 for 

this case will be : E2 = E02sin(ωt – kx – knΔ).  
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The product found in the sine function argument nΔ is called a difference of optical paths 
(optical path = refraction index multiplied by geometrical path). Whereas the product knΔ, 
characterizing the phase change caused by travelling of additional optical path is called the phase 

shift angle φ (  nkn





2
). 

Mathematical calculations describing superposition of waves 1 and 2 are presented in the 
Appendix at the end of the manual. Their main conclusion is that the intensity of the output wave 
is:  

 

I = I! + I2 + 212 II cosφ         (1) 

 
The first component of the right hand side of the equation (1) (i.e. I1) is the intensity of the wave 
2, the second one is the intensity of the wave 2, whereas the third one describes result of the 

interference of waves 1 and 2. Depending on the angle of phase shift  n





2
, the value of this 

component is changing within the range: 

from 212 II  (when cosφ = -1, and 



 )12(

2
 mn  where m = 0,1,2,...) 

to 212 II  (when cosφ = 1, and ).2
2





 mn   

In the first case, the intensity will be weakened )2( 2121 IIIII  , and in the second 

case – it will be strengthened ).2( 2121 IIIII   The most convenient way of constructing of 

the condition for weakening (or strengthening) of intensity is to do if with the reference of 
optical paths nΔ. Based on the above considerations, one can conclude that the weakening takes 
place when nΔ=(2m+1)λ/2, and the strengthening when nΔ=mλ. 

Let’s analyze a particular situation when I1 = I2 = I0. Once we plug these values to equation 
(1) we obtain I = 2I0 + 2I0cosφ. For the strengthening (i.e. cosφ = 1) I = 4I0. It means that at 
superposition of waves 1 and 2 the output intensity is four times higher than the intensity of the 
component wave than the intensity of the component wave. Does it mean that the energy 
conservation law is not conserved anymore? This seeming infringement of the energy conservation 
law can be easily explained when we take into consideration the fact that there are some points in 
the space where I = 0 (and the wave is extinct). So this is not an example of infringement of the 
energy conservation law but this is the example of energy redistribution. In the above 
considerations, the phase shift was caused by travelling of an additional path. However this is not 
the only cause of phase change. Light reflection, depending on the type of a reflection surface and 
an angle of incidence, can also lead to phase change (in an abrupt way). And for example, the light 
reflection from the optically more dense medium which is also an isolator, causes the phase shift of 

. 
 

 

2. Newton’s rings 
 
Let’s lay a semi-convex lens with a large curvature radius on a glass plate in such way that 

the convex side touches the plate (fig. 1a). There will be an air gap of variable thickness between 
the lens and the plate. Let’s illuminate this system with a monochromatic light of wavelength λ 
travelling perpendicularly to the plate surface. 

The rays reflected from the convex side of the lens (1’) can interfere with the rays reflected 
from the upper surface of the plate (1”) as they are mutually coherent, because they originate 
from the split of the incident ray (1), and their optical path difference is not big (∆ <100λ). The 
other rays do not fulfill these conditions. 
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According to the previously presented considerations, the strengthening will take place 

when nΔ = mλ (m=0,1,2,3...) and the weakening (attenuation) when 
2

)12(


 mn . The optical 

path difference nΔ in this case (rys.1a) is equal 2e (as n=1 and the light travels e section twice). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1a Light ray paths creating the Newton’s ring image: 1 - incident ray, 1’ - a ray 

reflected on the convex side of the lens, 1’’ - ray reflected on the top surface of the 
plate; R - the radius of curvature of the lens; rm - radius of the Newton’s ring of the 
m order 

 
Due to the phase change into the opposite one at reflection from a more optically dense 

medium, one has to add 
2


 to 2e. The experimental confirmation of the mentioned above phase 

step is a creation of dark circle at the point where the lens touches the plate (it’s a zero-order 
fringe). Taking into consideration the above remarks, the condition for extinction (Newton’s rings 

are dark!) will be 
2

)12(
2

2


 me , and after the transformation: 

 
2e = mλ .           (2) 

 
Now, let’s link e with the other parameters that can be relatively easily measured. Looking 

at the AOB triangle (Fig. 1a) we see the relation 
222 )( eRrR m  . After rising R-e to the power 

of 2, we obtain: 
2222 Re2 eRrR m  . As e<<R the component with e2 can be ignored. After a 

reduction we finally obtain: 
R

r
e m

2

2  .  

 
After plugging this component to (2), we obtain a relation between the Newton's ring radius 

rm of an order m with the lens curvature R, wavelength λ and interference order m. 
 

mRrm 2
.           (3) 

 
We have to underline ones again that the relation (3) is valid for dark fringes, in case of 

observation of rays reflected from the system of lens and plate. 

Fig.1b Newton’s rings 
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3. Michelson’s Interferometer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Michelson’s interferometer scheme;  ZP – half-silvered mirror;  

ZN – fixed reflecting mirror; ZR – adjustable reflecting mirror 
 

The laser beam falls on a half-silvered mirror (a so-called beam splitter) that splits the 
beam into two beams: (1) one of them falls on the mirror ZN and after reflection falls on a screen 
or a sensor; the second beam (2) falls on the mirror ZR and after a sequence of reflections reaches 
the screen as well. Both beams interfere, creating an interference image on the screen. The shape 
of the interference image depends on the type of the applied mirrors. With application of a 
parallel beam and ideally plane mirrors the screen should be homogenously illuminated (from light 
to dark level) and the intensity of illumination should depend of the mutual setting of both mirrors 
i.e. the optical paths’ difference of both beams. The shift of adjustable mirror ZR should cause 
changes of intensity of illumination of the screen in the range from the maximum value to the full 
extinction. In the laboratory setup, a divergent beam is used (the laser is equipped with a short 
focal length lens) as a result a phenomenon similar to the creation of Newton’s rings. The 
interference rings are created on the screen. The shift of the mirror ZR leads to “rings’ shift” as a 
result of change of conditions of strengthening at a given point of the screen. One has to remember 
that the shift of the mirror at a distance of d causes the change of optical paths of interfering rays 
by2d. Thus the condition of creation of maxima is: 

 

N=2d            (4) 
 
There is a lever 1:10 in the mirror shift, so the mirror shift is ten times smaller than the 

shift shown on the gauge.  
The Michelson’s interferometer is an example of application of the interference 

phenomenon in measurement devices. This device is usually used for measurement of the 
wavelength or measurement of very small displacements comparable with a wavelength used in the 
interference.  

Michelson’s interferometer is an example of application of the interference phenomenon in 
measurement devices. It is usually used for measurement of the wavelength or measurement of 
very small displacements of the same order of magnitude as the light source wavelength. The 
Michelson’s interferometer significantly supported the progress in physics as it was used, among 
others, in the Michelson-Morley experiment. This experiment is the experimental base for the 
special theory of relativity. It was carried out to confirm or deny the existence of ether and 
dependence of the speed of light on the direction of its propagation. The decisive measurement 
were carried out by Albert Michelson and Edward Morley at the beginning of July 1887. They come 
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to the following conclusion “There is no significant difference in the speed of light independent of 
the direction of motion of the observer”. (American Journal of Science, nr 207, 1887). 

On 15th January 1931 after the scientific conference there was a banquet to honor Albert 
Einstein, during which he said among others following words: “It was you, my honored Dr. 
Michelson, (…) who led the physicists into new paths, and through your marvelous experimental 
work paved the way for the development of the theory of relativity. You uncovered the insidious 
defect in the ether theory of light as it then existed. ” In 1907, A. Michelson was awarded a Nobel 
Prize "for his optical precision instruments and the spectroscopic and metrological investigations 
carried out with their aid". 

It is notable that Albert Abraham Michelson was born on 19th December 1852 in Strzelno, 
Kujawy, Poland (Prussia at the time) in a family of a Jewish merchant. The Michelsons family left 
Strzelno in 1855 and moved to the United States and thus in all the encyclopedias is described as 
an American scientist of Prussian (more often) or Polish (unfortunately less often). 
 

 

4. Measurements 
 

Newton’s rings 
1. Turn the monochromatic light source on (for example the sodium lamp of the wavelength: 

λ=589.3nm). 
2. Place the convex lens with the plain plate on XY table and find the focus image of the Newton’s 

rings. 
3. Measure the diameters (not radiuses as it is difficult to find the centre location) of 10 Newton’s 

rings in x and y direction, writing down their interference order m. 
4. Using the light of unknown wavelength, measure 10 diameters of Newton’s rings (writing down 

m order). The light of unknown wavelength can be obtained by letting the white light through 
the interference filter. 

 
Michelson’s Interferometer 
Operation of the electronic frequency meter-counter 
The device connected to the photodetector is a universal meter that can be used as frequency 
meter, timer or pulse counter. In this experiment, it is used as pulse meter. 
1. Turn the device on - the display will show “P1-F“ and the device will start in frequency 
measurement mode. (If the external light is on, the display should show the value of approx. 100.) 
2. Press the right top button twice (labeled UP). The display will show “P3-CU” and the device will 
switch to pulse counting mode. (If the room light is on, the meter should count the pulses of 
fluorescent lamps.) 
3. Turn the room lights off – the counter should stop counting. 
4. The left bottom button serves as the counter reset. If the micrometer screw is at the desired 
position, reset the counter (the display should show zero). 
 
CAUTIONS: 
The interferometer is a very precise and sensitive optical device. All the operations should be 
performed with care. The measurement range is within the range of 2.5 to 4.5 mm on the 
micrometer screw (green laser). During the measurement the screw has to be rotated VERY 
SLOWLY in one direction only (do not turn the screw in the opposite direction).  
The fringes should be clearly visible, and their width on the screen should exceed the diameter 
of the hole. During the measurement the screw step should remain within the 0.2 - 0.5 mm 
range (the mirror shift is 10 times smaller!). 
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Measurement procedure: 
1. Set the screw position according to the recommended value given on the plate. 
2. Reset the counter. 
3. Rotate the screw SLOWLY by about 0.2 mm for example (less than 0.5 mm). 
4. Repeat the measurement several times by turning the screw in both directions (please 

remember not to exceed the measurement range) by 0.1; 0.2; 0.3; 0.4 i 0.5 mm respectively. 
5. Based on the measurement result find the laser light wavelength and estimate the uncertainty 

(do not surpass the screw measurement range!). 
 
 

 

5. Results 
 

Newton’s Rings 

1. Plot a graph 
2

mr    vs. λm for the light of the known wavelength. 

2. By applying the least squares method and using the equation (3) with substitutions 
2

mry   and  

x = λm find R. Figure out u(R). Based on the χ2 test decide whether the equation (3) is true or 
false. 

3. For the light of unknown wavelength (for both colors), plot the graph 
2

mr  vs. Rm (where R – 

convex radius found in the step 2) to find λ, using the R value found in the step 2. Calculate the 
combined uncertainty uc(λ) and extended uncertainty Uc(λ). Report your final results correctly. 

4. Comment on the results you have found.  
 

Michelson’s Interferometer 
1. Convert the equation (7) in the form that will enable you to apply the least squares method. 
2. Plot a graph in Origin software and based on the linear approximation find the unknown 

wavelength λ. Calculate the uncertainty. What conclusions can be drawn from the χ2 test 
results? 

 
 

6. Questions (a full list is available on the laboratory website) 
 

1. What conditions have to be fulfilled to make the interference phenomenon observable? 
2. How to obtain mutual ray coherence? 
3. How to calculate the output intensity of interfering waves? 
4. What are the conditions of strengthening (weakening) of the output wave intensity in the 

interference phenomenon? 
5. How to obtain the Newton’s rings image (their mathematical description)? 
6. What is the Michelson’s interferometer? 
7. How to figure out the laser wavelength based on the measurement of fringes’ shift in the 

Michaleson’s interferometer? 
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Appendix  
 
Wave superposition – mathematical calculations 

Let’s assume that two plane, harmonic electromagnetic waves 1 and 2 (having identical 
frequency ω and the same direction of linear polarization) propagate in the positive direction of 
the x axis. Those waves are described by their electric field values E1 and E2. 

Let the wave 2 travels an additional distance Δ. Then the propagation of waves 1 and 2 can 
be described by the equations: E1 = E01sin(ωt – kx) and E2 = E02sin[ωt – k(x+Δ)] where E01 i E02 
denote wave amplitudes 1 and 2.  

Let’s calculate the result of superposition of those two waves. 
 

E = E1 + E2 = E01sin(ωt – kx) + E02sin(ωt – kx – φ)      (D1a) 
 

Electromagnetic wave detectors (including our eyes) react on the wave intensity I, i.e. the 
average amount of energy falling on the unitary area in the time unit. The energy carried by the 
wave is proportional to the square of the intensity of electric field. For the case we analyze (see 
(D1a)) the energy will be proportional to: 

 
E2 = (E1 + E2)

2 =  
= E01

2sin2(ωt-kx) + E02
2sin2(ωt-kx-φ) + 2E01E02sin(ωt-kx)sin(ωt-kx-φ)   (D1b)  

 

According to the trigonometric equation 
2

sin
2

sin2coscos





 , the last component 

of the equation for E2 can be converted into the following form:  
 

2E01E02sin(ωt-kx)sin(ωt-kx-φ) = E01E02{cos(φ) – cos[2(ωt-kx)-φ]} 
      ←–→       ←––→                     ↔        ←–→         

      
2

 
      

2

 
                                          

Taking into consideration the last result, E2 can be expressed as: 
 

E2=E01
2sin2(ωt-kx)+E02

2sin2(ωt-kx-φ)+E01E02{cosφ-cos[2(ωt-kx)-φ]}    (D2) 
 
According to the above equation the energy carried by the wave depends on time. However, the 
detector registers not an instantaneous value of the wave intensity, but the value of the energy 
flux average in time. For the analyzed electromagnetic waves, one can calculate this average 
based on the equation: 

dtE
T

E

T



0

22 1
           (D3) 

 
Based on (D2) and (D3), finding <E2> can be limited to calculation of average values of the 
functions of type sin2(ωt + δ) i cos(2ωt + γ) within their period.  

Averaging of the first mentioned above function gives 
2

1
 and the second one 0. Thus, we obtain: 

cos
22

0201

2
02

2
012 EE

EE
E  .       (D4) 

 
Finally the intensity of the output wave will be equal to: 
 

I = I! + I2 + 212 II cosφ.         (D5) 


