
 
 
 
 
 
 
 

 
 
1. Fundamentals 
 

Electromagnetic waves are periodical changes of electric and magnetic fields propagated 
periodically in space. Vectors of electric E and magnetic B fields are mutually perpendicular and their 
magnitudes are proportional. Thus it is enough to choose one of them (for instance E) to describe the 
wave phenomena. An electromagnetic wave propagated along the X axis can be represented with a 
wave function: 

 
  E(x,t) = E0sin(ωt – kx)                   (1a) 
 
where: E0 denotes amplitude of the electric field, argument of sine function, (ωt – kx) is called wave 
phase, ω – angular frequency, k – wave number related to wavelength λ according to the pattern:  
 



2
k .                    (1b) 

 
According to the formulas (1a) and (1b), if a wave passes the x = λ distance, it changes its 

phase by 2π angle. As 2π is the period of the sine function, thus all the points with the phase 
difference of 2π will have the same values of the electric field E. One says in this case that electric 
field vibrations are in phase at these points. 

The electromagnetic wave is a transverse wave which means that electric and magnetic fields 
vectors are always perpendicular to the direction of the wave propagation. In case of the wave given 
with the formula (1a), they will change only long the X axis – by contrast, they will be constant on XY 
planes perpendicular to X axis. All the points on the chosen YZ plane will have the identical phase. 
Such a wave is called a plane wave. Generally speaking, points in space featuring the same phase 
create wavefront. The wavefront of a plane wave is a plane. 

 
 

1.1. Interference, diffraction and diffraction grating 
  

Interference and diffraction are the main phenomena related to propagation and interaction of 
waves. Interference is a phenomenon in which a countable number of waves superpose in a chosen 
point in space which may lead to their strengthening (constructive interference) or weakening 
(destructive interference) – depending on the phase difference. The result of interference – i.e. 
interference image - can be seen when: (1) wave sources are monochromatic (they emit waves of the 
same wavelength) and (2) sources of interfering waves are coherent – i.e. the waves they emit 
maintain a phase difference that is constant in time. 

Interference and diffraction are inseparably related to the Huygens’ principle. According to it, 
each point of the space a wave reaches can be treated as a source of a new, secondary spherical 
wave. These partial spherical waves propagate in all the directions superposing each other, creating a 
new wave. If there are no obstacles in the propagation spaces, in the result of overlapping 
uncountable quantity of secondary spherical waves, the primary wave is recovered and its front 
remains unchanged. If the propagating wave reaches an obstacle (which can be a slit), the 
interference of the secondary waves does not lead to recovery of the wavefront. The shape of the 
wavefront changes, the distribution of the electric field is changed which might lead to creation of 
directions where the wave is strengthened or weakened. This set of phenomena is called diffraction. 
One can easily notice that diffraction is a complex phenomenon covering both the Huygens’ principle 
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and interference of uncountable amounts of spherical waves resulting in a change of a wavefront 
shape. 

The interference image can be created with the application of a set if parallel slits which is 
called a diffraction grating. The main parameter characterizing a diffraction grating is the distance 
between slits d called grating constant. Illumination of a diffraction grating with a parallel light beam 
leads to creation of an interference image on the screen located behind the grater which will consist 
of a set of light and dark bands shown in figure 1a. The image is clearly visible if the mentioned above 
conditions are fulfilled and if the grating constant is comparable with the wavelength. For the visible 

light range of a wavelength from 400 to 700 nm the distance between the slits should be about 1 m. It 
means that the beam of the width 2 mm illuminates 2000 slits. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 1a. Creation and distribution of light intensity in a diffraction image. 

 
The description of creation of such an image on the screen can be originated once again from 

the Huygens’ principle. As it has already been mentioned, the principle says that every point of the 
space where the wave reaches can be treated as a source of a new secondary spherical wave. The 
spherical wave propagates in all the directions, and the observed wave is a superposition of all 
elementary spherical waves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1b. Illustration of Huygens’ principle. 
 
Now, let’s assume that a plane wave strikes a diffraction grating of d constant with such narrow 

slits that they can be treated as the point sources of spherical waves. According to Huygens’ principle 
each slit of diffraction grating is a source of a new spherical wave of identical initial phase (figure 1b). 
It means that spherical waves are propagated in the space behind the grating. The number of these 
waves is equal to the number of slits illuminated with the light beam. Each point of the space behind 
the grating is being reached by waves from all the sources and the interference phenomenon takes 
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place. According to the definition given, interference is the phenomenon of overlapping of a countable 
number of waves that can lead to their strengthening or weakening, dependent on the phase 
difference. Maximum of intensity will happen at points where the interfering waves are in phase 
i.e. their phase difference will be: 

 

= m2   (where m=0, 1, 2, ...).                 (2a) 
 
Under assumption of equality of initial phases of all spherical waves created by the diffraction 

grating, the phase different at any point of the space P depends only on difference of optical paths 

(geometrical paths in vacuum) . The path difference that is equal to wavelength, = corresponds 

phase difference  = 2. In general one can write this dependence as: 
 



 


2
           .......(2b) 

 
Comparing (2b) formula with (2a) one obtains a formula:  
 

 =m·.                     (2c) 
 
Thus the strengthening (interference maximum) takes place when the optical path 

difference is equal to the multiple wavelength. 
 
Minimum intensity happens at points where the phase difference of interfering waves equals to 

odd multiple : 
 

= (2m+1)    (where m=0, 1, 2, ...),                 (3a) 
 

what corresponds to difference of optical paths: 

 =(2m+1)· 
2


,   m = 0, 1, 2,... .               (3b) 

 
1.2. Creation of interference maxima in a diffraction grating 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
                        
 
 

Fig.2a An idealized diffraction grating, 
consisting of only five rulings, that 
produces an interference pattern on a 
distant viewing screen E. 

 Fig.2b Due to a long distance to the 
screen with respect to the slit’s 
width, light beam leaving the slits 
are approximately parallel. 
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As it is shown in Figure 2b, the optical path difference of two adjacent rays is  = dsin. 
Interference maxima in diffraction grating are observed according to the condition defined by the 
formula (2c) when: 

 

dsin = m.             (4) 
 

 angle in this formula denotes angle (measured to the normal axis of the grating) at which the 
maximum of m-th order is seen on the screen. The maxima location is marked in Fig 1a. 

As it is seen in the above formula, the angles at which one observes interference maxima do not 
depend on the number of slits, but they depend on the distance between slits, d, and on the 

wavelength  of intrinsic light. Thus the diffraction grating can be used for decomposition of intrinsic 
wave on the component of various wavelengths. 

 

 
 

Fig. 3. Helium lamp spectrum. 
 

Through the measurement of  angles and knowing the grating constant one can figure out the 

wavelength of the light source: :=dsin/m. 
 
1.3. Intensity of light in the interference image 
 

The resultant intensity i.e. the average power transferred by waves sent from N slits of 
diffraction grating can be expressed with the formula: 
 

)(sin

)N(sin
II

2

2
2

2

0



  .           (5)  

 

where: I0  is intensity of wave originating from one source (slit) and is equal to the squared amplitude 

E0
2,  - denotes phase difference of two various waves sent from adjacent slits of the diffraction 

grating. 
 
Dependence of intensity I with respect to φ angle (which is dependent on θ angle), contains a 

variable factor sin2(Nφ/2), modulated by a significantly less variable sin2(φ/2) expression. Each of this 
factors and their quotient are presented in Fig. 4. The derivation of the formula can be found in the 
Appendix at the end of this manual. 

The value of the formula (5) for φ = 0, can be found with application of the approximation sin(N/2) ~ 

(N/2) and sin(φ/2) ~ (φ/2), transforming φ→0. One obtains then: 
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The identical result can be obtained for all angles fulfilling the condition: φ = m·2π. Thus the resultant 
intensity in principal maxima is N2 times higher than the intensity from a single slit.  
 

With the increase of φ from the 0 value, the ratio of two squared sine functions in the formula 
(5) is decreasing and the first diffraction minimum will be obtained when the numerator of the formula 
(5) has the zero value, i.e. when (Nφ/2) = π, which means that φ = 2π/N. The further increase of φ 
phase leads to the increase of the resulting amplitude and creation of the side maximum. The side 
maxima occur for φ angles for which the numerator of the formula (5) is equal to 1. However, they are 
far weaker than the principal maxima (Fig. 3). 
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 Fig. 4. Interference image for five slits. The factors of Fig. 5 have been shown and their 

quotient. The principal maxima are separated by a number of weaker side maxima. 
 
 
1.4. Resolvability of a diffraction grating 
 

As it has already been mentioned, a diffraction grating can be applied to separate different 
wavelengths. The question is what it she minimum difference between wavelengths λ and λ’ so that 
they can be distinguished with the application of diffraction grating. For this purpose, we introduce a 
concept of resolvability of a grating R, which is defined as: 






R   ,            (6)  

where: λ – is one of two spectral lines and Δλ = λ’- λ  is a wavelength difference between them.  
 
 
 
 
 
 
 
 
 
 
 
 
   

Fig.5. Illustration of Rayleigh’s criterion.  
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A commonly used condition of separation of two waves of similar wavelengths is so-called 
Rayleigh’s criterion according to which two principal maxima are distinguishable when the angular 
distance has such a value that the minimum of one line at the maximum of the second line (fig. 5). As 
we know the first diffraction minimum is located at the distance φ = (2π/N) from the principal 
maximum (the numerator in the equation (5) is equal to 0). Such a phase difference corresponds to the 
difference of optical paths (λ/N). Thus the condition for the first minimum for the spectrum of the  
m-th order can written as: 

  
N

md


 sin   .           (7) 

Simultaneously for a wavelength λ’ one can obtain at this location a maximum intensity,  
so dsinθ = mλ’. Subtracting these formulas side by side we obtain after a transformation: 
 

mNR 






                     (8) 

where: Δλ = λ’- λ , m-th order of the spectrum, N is a number of slits. 
One can see that the higher number of slits and the higher order of spectrum the higher is the 

resolvability of the grating. One can prove this fact easily by observing the interference image with 
application of the spectrometer with diffraction grating that can be illuminated with – for example – 
neon lamp. The fringes in the spectrum of 2nd order are better separated than in the 1st order, but 
there is a certain difficulty in their observation as they have a weaker intensity compared by the 1st 
order fringes. How can you explain this? 

 
1.5. Influence of the finite width of a single slit on the interference image. 

Based on the considerations until now, one can see that all the principal maxima should have 
the same intensity. However, we cannot ignore the fact that we have obtained this result under 
assumption that we can neglect the phase differences between points within one slit. In practice, this 
condition is not fulfilled and one has to consider diffraction on a single slit. To obtain a formula for a 
single slit we can proceed in a similar way as in case of the diffraction grating. We separate the slit 

into M equal, very narrow stripes. With the limit M → , while maintaining the constant phase 

difference  = Mφ between both edges of the slit, the angle φ in the formula (5) is getting so small 

that the approximation sin(/M) ~ (/M) is getting valid. Then I0 = I0’M
2 – where I0’ is intensity of light 

sent by one of stripes into which we divided the slit. The formula for the intensity of light diffracted 
on one slit is then: 

2

2

0.
)2/(

)2/(sin




IIdyf  ,                    (9) 

where: – denotes a phase difference between two rays sent from two edges of the slit, I0 – intensity 
of light sent from one slit. 

Thus the formula for intensity of light from one diffraction grating will be a composition of two 
formulas (5) and (9): 

)2/(sin

)2/(sin
2

2

.


N
II dyf  .                  (10) 

 
 
 
 
 
 
 
 
 
 
 
 Fig.6. Intensity distribution for a diffraction grating for which the slit width is a = (d/3),  

where d is the distance between slits. 
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In Figure 6, the interference image for the diffraction grating with N=5 slits has been shown, 
taking into account diffraction on a single slit of width a = d/3, where d is a distance between slits. In 

this case, one can easily note that  = φ/3, so the formula (9) is changing slower than (5), thus one 
obtains a gradual decrease of the brightness of further pars of spectrum. The distribution of intensities 
presented in Figure 6 was obtained under assumption of ideal slits of sharp parallel edges. Through the 
appropriate choice of slit shape one can find the form of modulating factor, Idif., in the formula (10). 
For example to make better visible the further orders of the spectrum, which have a better 
resolvability, . 

 
 
2. Measurements 
 
1. Turn the sodium lamp on and set the diffraction grating on the spectrometer table perpendicularly 

to the light beam exiting from the collimator. 
2. Measure the angles at which the subsequent orders of the spectrum are seen at the left and right 

side with respect to the intrinsic beam. If diffraction angles measured and the left and right side 
differ by more than 6’, adjust the position of the grating. The yellow fringe of the sodium light 
consists in practice of two very near lines of wavelengths of λ1 = 589,6 nm and λ2 =589,0 nm. 
Observe for which diffraction order the separated sodium doublet is visible. 

3. Turn the lamp chosen by the supervisor and perform measurements of angles for the observed 
fringes. 
 

 
 

3. Calculations 
 
1. Based on the measurements performed with the sodium lamp, figure out the grating constant 

(formula 4) and its uncertainty. Consider the uncertainties of type A and B. Assume the wavelength 
of the sodium lamp as λNa= 589,3 nm. 

2. Knowing the grating constant, figure out the wavelength of the light emitted by a second gas and 
calculate the combined standard uncertainties. Report the results correctly and compare them 
with the reference data. 

3. Based on the measurement and observations performed in the point 2 in the section in 
Measurements section figure out the resolvability of the diffraction grating and calculate the 
number of fringes taking part in the interference (formula (8)). 
 

 
 

4. Questions (a full list is available on the laboratory website) 
 
1. When can the interference image be observed? 
2. Explain the formula for the location of maxima of the interference image. (formula 4). 
3. What is the resolvability of a diffraction grating and how to increase it? 
4. Why the further orders of the spectrum are less visible? 
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Appendix 
 
Intensity of light in the interference image 
 

Let’s analyze now, how the interference image will look like at points located between the 
principal maxima, for a grating consisting of N slits. For this purpose, we are going to use the graphical 
method called method of phasors. In this method, the amplitude of E field described with the formula 

(1a) is represented as a vector of a magnitude E0 and the phase – as the angle  between the vector 
and the X. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.1D   a) Vector representation of the formula (1a): E0 – wave amplitude, α = (ωt – kx) – 

phase,  E = E0sinα. Vector rotates counterclockwise. b) Vector addition of two waves,  
φ – phase difference, Ew – resulting amplitude.  
 
As the phase is changing with time, this vector is rotating counterclockwise. As the phase 

difference of two waves resulting from adjacent slit is φ the vector diagram of perturbations will 
contain N vectors of equal magnitudes E and of the angle between adjacent vectors equal φ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.2D. Graphical addition wave functions originating from N parallel slits for which phase 

difference between adjacent slits is φ. The figure presents the situation of N = 5 slits. 

 

 

 
As it is shown in Fig. 2D, ends of these vectors are located on the circle whose radius R is given 

with the formula:  
 

Eo E 



a) 

Eo 

E 

Eo 



b) 

R 

R 

Ew 

Eo 

 

 

 

 

 

N 

R 

Eo 

2


 

2


 

a) b) 



 
Measurement of the wavelength with application of a diffraction grating and a spectrometer 9 

2
sin

2

1
0


RE   .                   (1D) 

 
The resulting amplitude Ew is the base of isosceles triangle of sides equal to R and the vertex 

angle Nφ. Thus:  
 

2
sin2

N
REw  .                   (2D)  

 
Combining these two formulas, w obtain a formula for the resulting amplitude: 
 

)2sin(

)2sin(
0



N
EEw   .                  (3D)  

 
Resulting amplitude i.e. the average power carried by the wave is proportional to the square of 

the resulting amplitude Ew and is equal to:  
 

)2(sin

)2(sin
2

2

0


N
II   .                   (4D)  


